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This paper deals with the problems of exponential admissibility and H∞ control for a class of
continuous-time switched singular systems with time-varying delay. The H∞ controllers to be
designed include both the state feedback (SF) and the static output feedback (SOF). First, by using
the average dwell time scheme, the piecewise Lyapunov function, and the free-weighting matrix
technique, an exponential admissibility criterion, which is not only delay-range-dependent but
also decay-rate-dependent, is derived in terms of linear matrix inequalities (LMIs). A weighted
H∞ performance criterion is also provided. Then, based on these, the solvability conditions for
the desired SF and SOF controllers are established by employing the LMI technique, respectively.
Finally, two numerical examples are given to illustrate the effectiveness of the proposed approach.

1. Introduction

Many real-world engineering systems always exhibit several kinds of dynamic behavior
in different parts of the system (e.g., continuous dynamics, discrete dynamics, jump
phenomena, and logic commands) and are more appropriately modeled by hybrid systems.
As an important class of hybrid systems, switched systems consist of a collection of
continuous-time or discrete-time subsystems and a switching rule orchestrating the switching
between them and are of great current interest; see, for example, Decarlo et al. [1], Liberzon
[2], Lin and Antsaklis [3], and Sun and Ge [4] for some recent survey and monographs.
Switched systems have great flexibility in modeling parameter-varying or structure-varying
systems, event-driven systems, logic-based systems, and so forth. Also, multiple-controller
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switching technique offers an effective mechanism to cope with highly complex systems
and/or systems with large uncertainties, particularly in the adaptive context [5]. Many
effective methods have been developed for switched systems, for example, the multiple
Lyapunov function approach [6, 7], the piecewise Lyapunov function approach [8, 9], the
switched Lyapunov functionmethod [10], convex combination technique [11], and the dwell-
time or average dwell-time scheme [12–15]. Among them, the average dwell-time scheme
provides a simple yet efficient tool for stability analysis of switched systems, especially when
the switching is restricted and has been more and more favored [16].

On the other hand, time delay is a common phenomenon in various engineering
systems and the main sources of instability and poor performance of a system. Hence, control
of switched time-delay systems has been an attractive field in control theory and application
in the past decade. Some of the aforementioned approaches for nondelayed switched systems
have been successfully adopted to hand the switched time-delay systems; see, for example,
Du et al. [17], Kim et al. [18], Mahmoud [19], Phat [20], Sun et al. [21], Sun et al. [22], Wang
et al. [23], Wu and Zheng [24], Xie et al. [25], Zhang and Yu [26], and the references therein.

Recently, a more general class of switched time-delay systems described by the
singular form was considered in Ma et al. [27] and Wang and Gao [28]. It is known that
a singular model describes dynamic systems better than the standard state-space system
model [29]. The singular form provides a convenient and natural representation of economic
systems, electrical networks, power systems, mechanical systems, and many other systems
which have to be modeled by additional algebraic constraints [29]. Meanwhile, it endows
the aforementioned systems with several special features, such as regularity and impulse
behavior, that are not found in standard state-space systems. Therefore, it is both worthwhile
and challenging to investigate the stability and control problems of switched singular time-
delay systems. In the past few years, some fundamental results based on the aforementioned
approaches for standard state-space switched time-delay systems have been successfully
extended to switched singular time-delay systems. For example, by using the switched
Lyapunov function method, the robust stability, stabilization, and H∞ control problems
for a class of discrete-time uncertain switched singular systems with constant time delay
under arbitrary switching were investigated in Ma et al. [27]; H∞ filters were designed in
Lin et al. [30] for discrete-time switched singular systems with time-varying time delay.
In Wang and Gao [28], based on multiple Lyapunov function approach, a switching signal
was constructed to guarantee the asymptotic stability of a class of continuous-time switched
singular time-delay systems. With the help of average dwell time scheme, some initial results
on the exponential admissibility (regularity, nonimpulsiveness, and exponential stability)
were obtained in Lin and Fei [31] for continuous-time switched singular time-delay systems.
However, to the best of our knowledge, few work has been conducted regarding the H∞
control for continuous-time switched singular time-delay systems via the dwell time or
average dwell time scheme, which constitutes the main motivation of the present study.

In this paper, we aim to solve the problem of H∞ control for a class of continuous-
time switched singular systems with interval time-varying delay via the average dwell time
scheme. Both the state feedback (SF) control and the static output feedback (SOF) control
are considered. Firstly, based on the average dwell time scheme, the piecewise Lyapunov
function, as well as the free-weighting technique, a class of slow switching signals is
identified to guarantee the unforced systems to be exponentially admissible with a weighted
H∞ performance γ , and several corresponding criteria, which are not only delay-range-
dependent but also decay-rate-dependent, are derived in terms of linear matrix inequalities
(LMIs). Next, the LMI-based approaches are proposed to design an SF controller and an SOF
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controller, respectively, such that the resultant closed-loop system is exponentially admissible
and satisfies a weighted H∞ performance γ . Finally, two illustrative examples are given to
show the effectiveness of the proposed approach.

Notation 1. Throughout this paper, the superscript T represents matrix transposition. Rn

denotes the real n-dimensional Euclidean space, and Rn×n denotes the set of all n × n real
matrices. I is an appropriately dimensioned identity matrix. P > 0 (P ≥ 0) means that
matrix P is positive definite (semi positive definite). diag{·, ·, ·} stands for a block diagonal
matrix. λmin(P) (λmax(P)) denotes the minimum (maximum) eigenvalue of symmetric matrix
P , L2[0,∞) is the space of square-integrable vector functions over [0,∞), ‖ · ‖ denotes the
Euclidean norm of a vector and its induced norm of a matrix, and Sym{A} is the shorthand
notation for A + AT . In symmetric block matrices, we use an asterisk (∗) to represent a
term that is induced by symmetry. Matrices, if their dimensions are not explicitly stated, are
assumed to be compatible for algebraic operations.

2. Preliminaries and Problem Formulation

Consider a class of switched singular time-delay system of the form

Eẋ(t) = Aσ(t)x(t) +Adσ(t)x(t − d(t)) + Bσ(t)u(t) + Bwσ(t)w(t),

z(t) = Cσ(t)x(t) + Cdσ(t)x(t − d(t)) +Dσ(t)u(t) +Dwσ(t)w(t),

y(t) = Lσ(t)x(t),

x(θ) = φ(θ), θ ∈ [−d2, 0],

(2.1)

where x(t) ∈ Rn is the system state, u(t) ∈ Rm is the control input, z(t) ∈ Rq is the controlled
output, y(t) ∈ Rp is the measured output, andw(t) ∈ Rl is the disturbance input that belongs
to L2[0,∞); σ(t) : [0,+∞) → I = {1, 2, . . . , I} with integer I > 1 is the switching signal; E ∈
Rn×n is a singular matrix with rankE = r ≤ n; for each possible value, σ(t) = i, i ∈ I, Ai, Adi,
Bi, Bwi, Ci, Cdi, Di, Dwi, and Li are constant real matrices with appropriate dimensions; φ(θ)
is a compatible continuous vector-valued initial function on [−d2, 0]; d(t) denotes interval
time-varying delay satisfying

d1 ≤ d(t) ≤ d2, ḋ(t) ≤ μ < 1, (2.2)

where 0 ≤ d1 < d2 and μ are constants. Note that d1 may not be equal to 0.
Since rankE = r ≤ n, there exist nonsingular matrices P , Q ∈ Rn×n such that

PEQ =
[
Ir 0
0 0

]
. (2.3)

In this paper, without loss of generality, let

E =
[
Ir 0
0 0

]
. (2.4)
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Corresponding to the switching signal σ(t), we denote the switching sequence by S :=
{(i0, t0), . . . , (ik, tk) | ik ∈ I, k = 0, 1, . . .} with t0 = 0, which means that the ik subsystem
is activated when t ∈ [tk, tk+1). To present the objective of this paper more precisely, the
following definitions are introduced.

Definition 2.1 (see [2]). For any T2 > T1 ≥ 0, let Nσ(T1, T2) denote the number of switching of
σ(t) over (T1, T2). If Nσ(T1, T2) ≤ N0 + (T2 − T1)/Ta holds for Ta > 0, N0 ≥ 0, then Ta is called
average dwell time. As commonly used in the literature [21, 26], we choose N0 = 0.

Definition 2.2 (see [21, 29, 32]). For any delay d(t) satisfying (2.2), the unforced part of system
(2.1) with w(t) = 0

Eẋ(t) = Aσ(t)x(t) +Adσ(t)x(t − d(t)),

xt0(θ) = x(t0 + θ) = φ(θ), θ ∈ [−d2, 0]
(2.5)

is said to be

(1) regular if det(sE −Ai) is not identically zero for each σ(t) = i, i ∈ I,
(2) impulse if deg(det(sE −Ai)) = rank E for each σ(t) = i, i ∈ I,
(3) exponentially stable under the switching signal σ(t) if the solution x(t) of system

(2.5) satisfies

‖x(t)‖ ≤ ιe−λ(t−t0)‖xt0‖c, ∀t ≥ t0, (2.6)

where λ > 0 and ι > 0 are called the decay rate and decay coefficient, respectively,
and ‖xt0‖c = sup−d2≤θ≤0{‖x(t0 + θ)‖},

(4) exponentially admissible under the switching signal σ(t) if it is regular, impulse
free, and exponentially stable under the switching signal σ(t).

Remark 2.3. The regularity and nonimpulsiveness of the switched singular time-delay system
(2.5) ensure that its every subsystem has unique solution for any compatible initial condition.
However, even if a switched singular system is regular and causal, it still has inevitably finite
jumps due to the incompatible initial conditions caused by subsystem switching [33]. For
more details about the impulsiveness effects on the stability of systems, we refer readers
to Chen and Sun [34], Li et al. [35], and the references therein. In this paper, without
loss of generality, we assume that such jumps cannot destroy the stability of system (2.1).
Nevertheless, how to suppress or eliminate the finite jumps in switched singular systems is a
challenging problem which deserves further investigation.

Definition 2.4. For the given α > 0 and γ > 0, system (2.1) is said to be exponentially
admissible with a weighted H∞ performance γ under the switching signal σ(t), if it is
exponentially admissible with u(t) = 0 and w(t) = 0, and under zero initial condition, that is,
φ(θ) = 0, θ ∈ [−d2, 0], for any nonzero w(t) ∈ L2[0,∞), it holds that

∫ t

0
e−αszT (s)z(s)ds ≤ γ2

∫ t

0
wT (s)w(s)ds. (2.7)
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Remark 2.5. For switched systems with the average dwell time switching, the Lyapunov
function values at switching instants are often allowed to increase β times (β > 1) to reduce
the conservatism in system stability analysis, which will lead to the normal disturbance
attenuation performance hard to compute or check, even in linear setting [15, 36]. Therefore,
the weighted H∞ performance criterion (2.7) [15, 21, 24] is adopted here to evaluate
disturbance attenuation while obtaining the expected exponential stability.

This paper considers both SF control law

u(t) = Kσ(t)x(t) (2.8)

and SOF control law

u(t) = Fσ(t)y(t), (2.9)

where Ki and Fi, σ(t) = i, i ∈ I, are appropriately dimensioned constant matrices to be
determined.

Then, the problem to be addressed in this paper can be formulated as follows. Given
the switched singular time-delay system (2.1) and a prescribed scalar γ > 0, identify a class
of switching signal σ(t) and design an SF controller of the form (2.8) and an SOF controller
of the form (2.9) such that the resultant closed-loop system is exponentially admissible with
a weighted H∞ performance γ under the switching signal σ(t).

3. Exponential Admissibility and H∞ Performance Analysis

First, we apply the average dwell time approach and the piecewise Lyapunov function
technique to investigate the exponential admissibility for the switched singular time-delay
system (2.5) and give the following result.

Theorem 3.1. For prescribed scalars α > 0, 0 ≤ d1 ≤ d2 and 0 < μ < 1, if for each i ∈ I, there exist
matrices Qil > 0, l = 1, 2, 3, Ziv > 0, Miv, Niv, Siv, v = 1, 2, and Pi of the following form:

Pi =
[
Pi11 0
Pi21 Pi22

]
, (3.1)

with Pi11 ∈ Rr , Pi11 > 0, and Pi22 being invertible, such that

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φi11 Φi12 Φi13 −Si1E c1Ni1 c12Si1 c12Mi1 AT
i Ui

∗ Φi22 Φi23 −Si2E c1Ni2 c12Si2 c12Mi2 AT
di
Ui

∗ ∗ Φi33 0 0 0 0 0
∗ ∗ ∗ Φi44 0 0 0 0
∗ ∗ ∗ ∗ −c1Zi1 0 0 0
∗ ∗ ∗ ∗ ∗ −c12Zi2 0 0
∗ ∗ ∗ ∗ ∗ ∗ −c12Zi2 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −Ui

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (3.2)
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where

Φi11 = Sym
{
PT
i Ai +Ni1E

}
+

3∑
l=1

Qil + αETPi,

Φi12 = PT
i Adi + (Ni2E)T + Si1E −Mi1E, Φi13 = Mi1E −Ni1E,

Φi22 = −(
1 − μ

)
e−αd2Qi3 + Sym {Si2E −Mi2E},

Φi23 = Mi2E −Ni2E, Φi33 = −e−αd1Qi1, Φi44 = −e−αd2Qi2,

c1 =
1
α

(
eαd1 − 1

)
, c12 =

1
α

(
eαd2 − eαd1

)
,

d12 = d2 − d1, Ui = d1Zi1 + d12Zi2.

(3.3)

Then, system (2.5) with d(t) satisfying (2.2) is exponentially admissible for any switching sequence
S with average dwell time Ta ≥ T ∗

a = (ln β)/α, where β ≥ 1 satisfies

Pi11 ≤ βPj11, Qil ≤ βQjl, Ziv ≤ βZjv, l = 1, 2, 3, v = 1, 2, ∀i, j ∈ I. (3.4)

Moreover, an estimate on the exponential decay rate is λ = (1/2)(α − (ln β)/Ta).

Proof. The proof is divided into three parts: (i) to show the regularity and nonimpulsiveness;
(ii) to show the exponential stability of the differential subsystem; (iii) to show the
exponential stability of the algebraic subsystem.

(i) Regularity and nonimpulsiveness. According to (2.4), for each i ∈ I, denote

Ai =
[
Ai11 Ai12

Ai21 Ai22

]
, (3.5)

where Ai11 ∈ Rr . From (3.2), it is easy to see that Φi11 < 0, i ∈ I. Noting Qil > 0, l = 1, 2, 3, we
get

Sym
{
PT
i Ai +Ni1E

}
+ αETPi < 0. (3.6)

Substituting Pi and E given as (3.1) and (2.4) into this inequality yields

[

 


 AT

i22Pi22 + PT
i22Ai22

]
< 0, (3.7)

where 
 denotes a matrix which is not relevant to the discussion. This implies thatAi22, i ∈ I,
is nonsingular. Then, by Dai [29] and Definition 2.1, system (2.5) is regular and impulse free.
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(ii) Exponential stability of differential subsystem. Define the piecewise Lyapunov
functional candidate for system (2.5) as the following:

V (xt) = Vσ(t)(xt)

= xT (t)ETPσ(t)x(t) +
2∑

v=1

∫ t

t−dv

xT (s)eα(s−t)Qσ(t)vx(s)ds

+
∫ t

t−d(t)
xT (s)eα(s−t)Qσ(t)3x(s)ds

+
∫0

−d1

∫ t

t+θ
(Eẋ(s))Teα(s−t)Zσ(t)1(Eẋ(s))dsdθ

+
∫−d1

−d2

∫ t

t+θ
(Eẋ(s))Teα(s−t)Zσ(t)2(Eẋ(s))dsdθ.

(3.8)

Then, along the solution of system (2.5) for a fixed σ(t) = i, i ∈ I, we have

V̇i(xt) ≤ 2xT (t)PT
i Eẋ(t) +

2∑
v=1

[
xT (t)Qivx(t) − xT (t − dv)e−αdvQivx(t − dv)

]
+ xT (t)Qi3x(t)

− (
1 − μ

)
xT (t − d(t))e−αd2Qi3x(t − d(t)) + (Eẋ(t))T (d1Zi1 + d12Zi2)(Eẋ(t))

−
∫ t

t−d1

(Eẋ(s))Teα(s−t)Zi1(Eẋ(s))ds −
∫ t−d1

t−d2

(Eẋ(s))Teα(s−t)Zi2(Eẋ(s))ds

− α
2∑

v=1

∫ t

t−dv

xT (s)eα(s−t)Qivξ(s)ds − α

∫ t

t−d(t)
xT (s)eα(s−t)Qi3x(s)ds

− α

∫0

−d1

∫ t

t+θ
(Eẋ(s))Teα(s−t)Zi1(Eẋ(s))dsdθ

− α

∫−d1

−d2

∫ t

t+θ
(Eẋ(s))Teα(s−t)Zi2(Eẋ(s))dsdθ.

(3.9)

From the Leibniz-Newton formula, the following equations are true for any matricesNiv, Siv,
and Miv, v = 1, 2, with appropriate dimensions

2
[
xT (t)Ni1 + xT (t − d(t))Ni2

][
Ex(t) − Ex(t − d1) −

∫ t

t−d1

Eẋ(s)ds

]
,
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[
xT (t)Si1 + xT (t − d(t))Si2

][
Ex(t − d(t)) − Ex(t − d2) −

∫ t−d(t)

t−d2

Eẋ(s)ds

]
,

2
[
xT (t)Mi1 + xT (t − d(t))Mi2

][
Ex(t − d1) − Ex(t − d(t)) −

∫ t−d1

t−d(t)
Eẋ(s)ds

]
.

(3.10)

On the other hand, the following equation is also true:

−
∫ t−d1

t−d2

(Eẋ(s))Teα(s−t)Zi2(Eẋ(s))ds

= −
∫ t−d(t)

t−d2

(Eẋ(s))Teα(s−t)Zi2(Eẋ(s))ds −
∫ t−d1

t−d(t)
(Eẋ(s))Teα(s−t)Zi2(Eẋ(s))ds.

(3.11)

By (3.8)–(3.11), we have

V̇i(xt) + αVi(xt)

≤ ηT (t)
[
Φi + ÃT

i (d1Zi1 + d12Zi2)Ãi + c1ÑiZ
−1
i1 Ñ

T
i + c12S̃iZ

−1
i2 S̃

T
i + c12M̃iZ

−1
i2 M̃

T
i

]
η(t)

−
∫ t

t−d1

[
ηT (t)Ñi + (Eẋ(s))Teα(s−t)Zi1

]
eα(t−s)Z−1

i1

[
ηT (t)Ñi + (Eẋ(s))Teα(s−t)Zi1

]T
ds

−
∫ t−d(t)

t−d2

[
ηT (t)S̃i + (Eẋ(s))Teα(s−t)Zi2

]
eα(t−s)Z−1

i2

[
ηT (t)S̃i + (Eẋ(s))Teα(s−t)Zi2

]T
ds

−
∫ t−d1

t−d(t)

[
ηT (t)M̃i + (Eẋ(s))Teα(s−t)Zi2

]
eα(t−s)Z−1

i2

[
ηT (t)M̃i + (Eẋ(s))Teα(s−t)Zi2

]T
ds,

(3.12)

where η(t) = [xT (t) xT (t − d(t)) xT (t − d1) xT (t − d2)]
T , Ãi = [Ai Adi 0 0], and

Φi =

⎡
⎢⎢⎣
Φi11 Φi12 Φi13 −Si1E
∗ Φi22 Φi23 −Si2E
∗ ∗ Φi33 0
∗ ∗ ∗ Φi44

⎤
⎥⎥⎦, Ñi =

⎡
⎢⎢⎣
Ni1

Ni2

0
0

⎤
⎥⎥⎦, M̃i =

⎡
⎢⎢⎣
Mi1

Mi2

0
0

⎤
⎥⎥⎦, S̃i =

⎡
⎢⎢⎣
Si1

Si2

0
0

⎤
⎥⎥⎦. (3.13)

By Schur complement, LMI (3.2) implies

Φi + ÃT
i (d1Zi1 + d12Zi2)Ãi + c1ÑiZ

−1
i1 Ñ

T
i + c12S̃iZ

−1
i2 S̃

T
i + c12M̃iZ

−1
i2 M̃

T
i < 0. (3.14)

Notice that the last three parts in (3.12) are all less than 0. So, if (3.14) holds, then

V̇i(xt) + αVi(xt) < 0. (3.15)
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For an arbitrary piecewise constant switching signal σ(t), and for any t > 0, we let 0 = t0 <
t1 < · · · < tk < · · · , k = 1, 2, · · · , denote the switching points of σ(t) over the interval (0, t). As
mentioned earlier, the ikth subsystem is activated when t ∈ [tk, tk+1). Integrating (3.15) from
tk to tk+1 gives

V (xt) = Vσ(t)(xt) ≤ e−α(t−tk)Vσ(tk)(xtk), t ∈ [tk, tk+1). (3.16)

Let x(t) =
[
x1(t)
x2(t)

]
, where x1(t) ∈ Rr and x2(t) ∈ Rn−r . From (2.4) and (3.1), it can be deduced

that for each σ(t) = i, i ∈ I

xT (t)ETPix(t) = xT
1 (t)Pi11x1(t). (3.17)

In view of this, and using (3.4) and (3.8), at switching instant ti, we have

Vσ(ti)(xti) ≤ βVσ(t−i )

(
xt−i

)
, i = 1, 2, . . . , (3.18)

where t−i denotes the left limitation of ti. Therefore, it follows from (3.16), (3.18), and the
relation k = Nσ(t0, t) ≤ (t − t0)/Ta that

Vσ(t)(xt) ≤ e−α(t−tk)βVσ(t−i )

(
xt−i

)

≤ · · · ≤ e−α(t−t0)βkVσ(t0)(t0)

≤ e−(α−(ln β)/Ta)(t−t0)Vσ(t0)(xt0).

(3.19)

According to (3.8) and (3.19), we obtain

λ1‖x1(t)‖2 ≤ Vσ(t)(t), Vσ(t0)(xt0) ≤ λ2‖xt0‖2c, (3.20)

where

λ1 = min
∀i∈I

λmin(Pi11),

λ2 = max
∀i∈I

λmax(Pi11) +
1
α

(
1 − e−αd1

)
max
∀i∈I

λmax(Qi1) +
1
α

(
1 − e−αd2

)
max
∀i∈I

(λmax(Qi2) + λmax(Qi3))

+
1
α2

(
αd1 − 1 + e−αd1

)
max
∀i∈I

(2λmax(Zi1)(‖Ai‖ + ‖Adi‖))

+
αd12 − e−αd1 + e−αd2

α2
max
∀i∈I

(2λmax(Zi2)(‖Ai‖ + ‖Adi‖)).
(3.21)
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Considering (3.19) and (3.20) yields

‖x1(t)‖2 ≤ 1
λ1

Vσ(t)(xt) ≤ λ2
λ1

e−(α−(ln β)/Ta)(t−t0)‖xt0‖2c (3.22)

which implies

‖x1(t)‖ ≤
√

λ2
λ1

e−(1/2)(α−(ln β)/Ta)(t−t0)‖xt0‖c. (3.23)

(iii) Exponential stability of algebraic subsystem. Since Ai22, i ∈ I, is nonsingular, we
choose

Gi =
[
Ir −Ai12A

−1
i22

0 A−1
i22

]
, H =

[
Ir 0
0 In−r

]
. (3.24)

Then, it is easy to get

Ê := GiEH =
[
Ir 0
0 0

]
, Âi := GiAiH =

[
Âi11 0
Âi21 In−r

]
, P̂i := G−T

i PiH =

[
P̂i11 0
P̂i21 P̂i22

]
,

(3.25)

where Âi11 = Ai11 − Ai12A
−1
i22Ai21, Âi21 = A−1

i22Ai21, P̂i11 = Pi11, P̂i21 = AT
i12Pi11 + AT

i22Pi21, and
P̂i21 = AT

i22Pi22. According to (3.25), denote

Âdi := GiAdiH =

[
Âdi11 Âdi12

Âdi21 Âdi22

]
, Q̂il := HTQilH =

[
Q̂il11 Q̂il12

Q̂il21 Q̂il22

]
,

Ẑiv := G−T
i ZivG

−1
i =

[
Ẑiv11 Ẑiv12

Ẑiv21 Ẑiv22

]
, M̂iv := HTMivG

−1
i =

[
M̂iv11 M̂iv12

M̂iv21 M̂iv22

]
,

N̂iv := HTNivG
−1
i =

[
N̂iv11 N̂iv12

N̂iv21 N̂iv22

]
, Ŝiv := HTSivG

−1
i =

[
Ŝiv11 Ŝiv12

Ŝiv21 Ŝiv22

]
,

l = 1, 2, 3, v = 1, 2

(3.26)

and let

ξ(t) =
[
ξ1(t)
ξ2(t)

]
:= H−1x(t) = x(t), (3.27)
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where ξ1(t) ∈ Rr and ξ2(t) ∈ Rn−r . Then, for any σ(t) = i, i ∈ I, system (2.5) is a restricted
system equivalent (r.s.e.) to

ξ̇1(t) = Âi11ξ1(t) + Âdi11ξ1(t − d(t)) + Âdi12ξ2(t − d(t)),

−ξ2(t) = Âi21ξ1(t) + Âdi21ξ1(t − d(t)) + Âdi22ξ2(t − d(t)).
(3.28)

By (3.2) and Schur complement, we have

[
Φi11 Φi12

∗ Φi22

]
< 0. (3.29)

Pre- and postmultiplying this inequality by diag{HT,HT} and diag{H,H}, respectively,
noting the expressions in (3.25) and (3.26), and using Schur complement, we have

⎡
⎢⎣P̂ T

i22 + P̂i22 +
3∑
l=1
Q̂il22 P̂ T

i22Â
T
di22

∗ −(
1 − μ

)
e−αd2Q̂i322

⎤
⎥⎦ < 0. (3.30)

Pre- and postmultiplying this inequality by [−ÂT
di22 I] and its transpose, respectively, and

noting Q̂i122 > 0, Q̂i222 > 0, and μ ≥ 0, we obtain

(
e(1/2)αd2Âdi22

)T
Q̂i322

(
e(1/2)αd2Âdi22

)
− Q̂i322 < 0. (3.31)

Then, according to Lemma 5 in Kharitonov et al. [37], we can deduce that there exist constants
�i > 1 and ηi ∈ (0, 1) such that

∥∥∥∥
(
e(1/2)αd2Âdi22

)l
∥∥∥∥ ≤ �ie

−ηil, l = 0, 1, . . . . (3.32)

Define

t0 = t, tj = tj−1 − d
(
tj−1

)
, j = 1, 2, . . . ,

∥∥∥Â21

∥∥∥ = max
∀i∈I

∥∥∥Âi21

∥∥∥, ∥∥∥Âd21

∥∥∥ = max
∀i∈I

∥∥∥Âdi21

∥∥∥, ∥∥∥Âd22

∥∥∥ = max
∀i∈I

∥∥∥Âdi22

∥∥∥, ∀i ∈ I.
(3.33)

Now, following similar line as in Part 3 in Theorem 1 of Lin and Fei [31], it can easily
be obtained that

‖ξ2(t)‖ ≤ (
χ1 + χ2 + χ3 + χ4 + χ5

)
e−(1/2)(α−(ln β)/Ta)(t−t0)‖xt0‖c, (3.34)
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where

χ1 =
k∏
j=0

�ij e
−ηij Tij ,

χ2 = �ik Â21

√
λ2
λ1

eηik

eηik − 1
,

χ3 = �ik e
(1/2)αd2Âd21

√
λ2
λ1

eηik

eηik − 1
,

χ4 = Â21

√
λ2
λ1

k∑
p=1

{
�ip−1

[
k∏

q=p
�iqe

−ηiq Tiq
]

e
ηip−1

e
ηip−1 − 1

}
,

χ5 = e(1/2)αd2Âd21

√
λ2
λ1

k∑
p=1

{
�ip−1

[
k∏

q=p
�iqe

−ηiq Tiq
]

e
ηip−1

e
ηip−1 − 1

}
.

(3.35)

Tik , Tik−1 , . . . , Ti0 are positive finite integers, respectively, satisfying

tTik ∈ (tk−1, tk], tTik −→ tk,

tTik+Tik−1 ∈ (tk−2, tk−1], tTik+Tik−1 −→ tk−1,

...

tTik+···+Ti0 ∈ (−d2, t0], tTik+···+Ti0 −→ t0.

(3.36)

Combining (3.27), (3.23) and (3.34) yields that system (2.5) is exponentially stable for any
switching sequenceSwith average dwell time Ta ≥ T ∗

a = ln β/α. This completes the proof.

Remark 3.2. Theorem 3.1 provides a sufficient condition of the exponential admissibility for
the switched singular time-delay system (2.5). Note that due to the existence of algebraic
constraints in system states, the stability analysis of switched singular time-delay systems
is much more complicated than that for switched state-space time-delay systems [21–
23, 25, 38]. Note also that the condition established in Theorem 3.1 is not only delay-range-
dependent but also decay-rate-dependent. The delay-range-dependence makes the result less
conservative, while the decay-rate-dependence enables one to control the transient process of
differential and algebraic subsystems with a unified performance specification.

Remark 3.3. Different from the integral inequality method used in our previous work [31], the
free-weightingmatrix method [39] is adopted when deriving Theorem 3.1, and thus no three-
product terms, for example, AT

i ZivAi, AT
diZivAdi, and so forth, are involved, which greatly

facilitates the SF and SOF controllers design, as seen in Section 4.

Remark 3.4. If β = 1 in Ta ≥ T ∗
a = (ln β)/α, which leads to Pi11 ≡ Pj11, Qil ≡ Qjl, Ziv ≡ Zjv,

l = 1, 2, 3, v = 1, 2, for all i, j ∈ I, and T ∗
a = 0, then system (2.5) possesses a common Lyapunov

function, and the switching signals can be arbitrary.
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Now, the following theorem presents a sufficient condition on exponential admissibil-
ity with a weighted H∞ performance of the switched singular time-delay system (2.1) with
u(t) = 0.

Theorem 3.5. For prescribed scalars α > 0, γ > 0, 0 ≤ d1 ≤ d2, and 0 < μ < 1, if for each i ∈ I, there
exist matrices Qil > 0, l = 1, 2, 3, Ziv > 0, Miv,Niv, Siv, v = 1, 2, and Pi with the form of (3.1) such
that

Φi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ̃i11 Φ̃i12 Φi13 −Si1E Φ̃i15 CT
i c1Ni1 c12Si1 c12Mi1

∗ Φ̃i22 Φi23 −Si2E Φ̃i25 CT
di c1Ni2 c12Si2 c12Mi2

∗ ∗ Φi33 0 0 0 0 0 0

∗ ∗ ∗ Φi44 0 0 0 0 0

∗ ∗ ∗ ∗ Φ̃i55 DT
wi 0 0 0

∗ ∗ ∗ ∗ ∗ −I 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −c1Zi1 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −c12Zi2 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −c12Zi2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (3.37)

where

Φ̃i11 = Φi11 +AT
i UiAi, Φ̃i12 = Φi12 +AT

i UiAdi, Φ̃i15 = PT
i Bwi +AT

i UiBwi,

Φ̃i22 = Φi22 +AT
diUiAdi, Φ̃i25 = AT

diUiBwi, Φ̃i55 = −γ2I + BT
wiUiBwi,

(3.38)

and Φi11, Φi12, Φi13, Φi22, Φi23, Φi33, Φi44, and Ui are defined in (3.2). Then, system (2.1) with
u(t) = 0 is exponentially admissible with a weightedH∞ performance γ for any switching sequence S
with average dwell time Ta ≥ T ∗

a = (ln β)/α, where β ≥ 1 satisfying (3.4).

Proof. Choose the piecewise Lyapunov function defined by (3.8). Since (3.37) implies (3.2),
system (2.1) with u(t) = 0 and w(t) = 0 is exponentially admissible by Theorem 3.1. On the
other hand, similar to the proof of Theorem 3.1, from (3.37), we have that for t ∈ [tk, tk+1),

V̇ik(xt) + αVik(xt) + Γ(t) ≤ 0, (3.39)

where Γ(t) = zT (t)z(t) − γ2wT(t)w(t). This implies that

Vik(xt) ≤ e−α(t−tk)Vik(xtk) −
∫ t

tk

e−α(t−s)Γ(s)ds. (3.40)
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By induction, we have

Vik(xt) ≤ βe−α(t−tk)Vik−1(xtk) −
∫ t

tk

e−α(t−s)Γ(s)ds

...

≤ βke−αtVi0(x0) −
∫ t

tk

e−α(t−s)Γ(s)ds −
k−p∑
p=1

βk−p
∫ tp+1

tp

e−α(t−s)Γ(s)ds

= e−αt+Nα(0,t) ln βVi0(x0) −
∫ t

0
e−α(t−s)+Nα(s,t) ln βΓ(s)ds.

(3.41)

Under zero initial condition, (3.41) gives

0 ≤ −
∫ t

0
e−α(t−s)+Nα(s,t) ln βΓ(s)ds. (3.42)

Multiplying both sides of (3.42) by e−Nα(0,t) ln β yields

∫ t

0
e−α(t−s)−Nα(0,s) ln βzT (s)z(s)ds ≤ γ2

∫ t

0
e−α(t−s)−Nα(0,s) ln βwT(s)w(s)ds. (3.43)

Noting that Nα(0, s) ≤ s/Ta and Ta ≥ T ∗
a = (ln β)/α, we get Nα(0, s) ln β ≤ αs. Then, it

follows from (3.43) that
∫ t
0 e

−α(t−s)−αszT (s)z(s)ds ≤ γ2
∫ t
0 e

−α(t−s)wT (s)w(s)ds. Integrating both
sides of this inequality from t = 0 to ∞ leads to inequality (2.7). This completes the proof of
Theorem 3.5.

Remark 3.6. Note that when β = 1, which is a trivial case, system (2.1) with u(t) = 0 achieves
the normal H∞ performance γ under arbitrary switching.

4. Controller Design

In this section, based on the results of the previous section, we are to deal with the design
problems of both SF and SOF controllers for the switched singular time-delay system (2.1).

4.1. SF Controller Design

Applying the SF controller (2.8) to system (2.1) gives the following closed-loop system:

Eẋ(t) = Aσ(t)x(t) +Adσ(t)x(t − d(t)) + Bwσ(t)w(t),

z(t) = Cσ(t)x(t) + Cdσ(t)x(t − d(t)) +Dwσ(t)w(t),

x(θ) = φ(θ), θ ∈ [−d2, 0],

(4.1)



Journal of Applied Mathematics 15

where

Aσ(t) = Aσ(t) + Bσ(t)Kσ(t), Cσ(t) = Cσ(t) +Dσ(t)Kσ(t). (4.2)

The following theorem presents a sufficient condition for solvability of the SF controller
design problem for system (2.1).

Theorem 4.1. For prescribed scalars α > 0, γ > 0, 0 ≤ d1 ≤ d2, and 0 < μ < 1, if for each i ∈ I, and
given scalars εif , f = 1, 2, . . . , 6, εi7 > 0, and εi8 > 0, there exist matrices Ril > 0, l = 1, 2, 3, Ziv > 0,
Ti, and Xi of the following form:

Xi =
[
Xi11 0
Xi21 Xi22

]
, (4.3)

with Xi11 ∈ Rr , Xi11 > 0, and Xi22 being invertible, such that

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ψi11 Ψi12 Ψi13 Ψi14 Bwi Ψi16 Ψi17 c12εi5I c12εi3I Ψi110 Ψi111 Ξi

∗ Ψi22 Ψi23 Ψi24 0 Ψi26 Ψi27 c12εi6I c12εi4I Ψi210 Ψi211 0
∗ ∗ Ψi33 0 0 0 0 0 0 0 0 0
∗ ∗ ∗ Ψi44 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ −γ2I DT

wi 0 0 0 d1B
T
wi d12B

T
wi 0

∗ ∗ ∗ ∗ ∗ −I 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −c1Zi1 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −c12Zi2 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −c12Zi2 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ψi1010 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ψi1111 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −Γi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (4.4)

where

Ψi11 = Sym {AiXi + BiTi + εi1EXi} + αXT
i E

T ,

Ψi12 = AdiRi3 + εi2X
T
i E

T + εi5ERi3 − εi3ERi3,

Ψi13 = εi3ERi1 − εi1ERi1, Ψi14 = −εi5ERi2,

Ψi16 = TT
i D

T
i +XT

i C
T
i , Ψi17 = c1εi1I,

Ψi110 = d1T
T
i B

T
i + d1X

T
i A

T
i , Ψi111 = d12T

T
i B

T
i + d12X

T
i A

T
i ,

Ψi22 = −(
1 − μ

)
e−αd2Ri3 + Sym {εi6ERi3 − εi4ERi3},
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Ψi23 = εi4ERi1 − εi2ERi1, Ψi24 = −εi6ERi2,

Ψi26 = Ri3C
T
di, Ψi27 = c1εi2I, Ψi210 = d1Ri3A

T
di,

Ψi211 = d12Ri3A
T
di, Ψi33 = −e−αd1Ri1, Ψi44 = −e−αd2Ri2,

Ψi1010 = −2d1εi7I + d1ε
2
i7Zi1, Ψi1111 = −2d12εi8I + d12ε

2
i8Zi2,

Ξi =
[
XT

i XT
i XT

i

]
, Γi = diag{Ri1, Ri2, Ri3}.

(4.5)

Then, there exists an SF controller (2.8) such that the closed-loop system (4.1) with d(t) satisfying
(2.2) is exponentially admissible with a weighted H∞ performance γ for any switching sequence S
with average dwell time Ta ≥ T ∗

a = ln β/α, where β ≥ 1 satisfies

Xi11 ≥ β−1Xj11, Ril ≥ β−1Rjl, Ziv ≤ βZjv, l = 1, 2, 3, v = 1, 2, ∀i, j ∈ I. (4.6)

Moreover, the feedback gain of the controller is

Ki = TiX
−1
i , i ∈ I. (4.7)

Proof. According to Theorem 3.5, the closed-loop system (4.1) is exponentially admissible
with a weighted H∞ performance γ if for each i ∈ I, there exist matrices Qil > 0, l = 1, 2, 3,
Ziv > 0, Miv, Niv, Siv, v = 1, 2, and Pi with the form of (3.1) such that inequality (3.37) holds
with Ai and Ci instead of Ai and Ci, respectively. By Schur complement, (3.37) is equivalent
to

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ′
i11 Φi12 Φi13 −Si1E PT

i Bwi C
T

i c1Ni1 c12Si1 c12Mi1 d1A
T

i d12A
T

i

∗ Φi22 Φi23 −Si2E 0 CT
di

c1Ni2 c12Si2 c12Mi2 d1A
T
di

d12A
T
di

∗ ∗ Φi33 0 0 0 0 0 0 0 0
∗ ∗ ∗ Φi44 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ −γ2I DT

wi 0 0 0 d1B
T
wi d12B

T
wi

∗ ∗ ∗ ∗ ∗ −I 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −c1Zi1 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −c12Zi2 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −c12Zi2 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −d1Z

−1
i1 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −d12Z
−1
i2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (4.8)

where Φi12, Φi13, Φi22, Φi23, Φi33, and Φi44 are defined in (3.2), and

Φ′
i11 = Sym

{
PT
i Ai +Ni1E

}
+

3∑
l=1

Qil + αETPi. (4.9)
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Since Pi11 > 0 and Pi22 is invertible, then Pi is invertible. Let

Xi = P−1
i , Ri1 = Q−1

i1 , Ri2 = Q−1
i2 , Ri3 = Q−1

i3 . (4.10)

By (3.1), Xi has the form of (4.3). Pre- and postmultiplying (4.8) by diag{XT
i , Ri3,

Ri1, Ri2, I, I, I, I, I, I, I} and its transpose, respectively, and noting (4.10), we obtain

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ′′
i11 Φ′′

i12 Φ′′
i13 Φ′′

i14 Bwi Φ′′
i16 Φ′′

i17 Φ′′
i18 Φ′′

i19 Φ′′
i110 Φ′′

i111
∗ Φ′′

i22 Φ′′
i23 Φ′′

i24 0 Φ′′
i26 Φ′′

i27 Φ′′
i28 Φ′′

i29 Ψi210 Ψi211

∗ ∗ Ψi33 0 0 0 0 0 0 0 0
∗ ∗ ∗ Ψi44 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ −γ2I DT

wi 0 0 0 d1B
T
wi d12B

T
wi

∗ ∗ ∗ ∗ ∗ −I 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −c1Zi1 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −c12Zi2 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −c12Zi2 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −d1Z

−1
i1 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −d12Z
−1
i2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (4.11)

where

Φ′′
i11 = Sym

{
AiXi +XT

i Ni1EXi

}
+XT

i

3∑
l=1

QilXi + αXT
i E

T ,

Φ′′
i12 = AdiRi3 +XT

i (Ni2E)TRi3 +XT
i Si1ERi3 −XT

i Mi1ERi3,

Φ′′
i13 = XT

i (Mi1E −Ni1E)Ri1, Φ′′
i14 = −XT

i Si1ERi2,

Φ′′
i16 = XT

i C
T

i , Φ′′
i17 = c1X

T
i Ni1, Φ′′

i18 = c12X
T
i Si1,

Φ′′
i19 = c12X

T
i Mi1, Φ′′

i110 = d1X
T
i A

T

i , Φ′′
i111 = d12X

T
i A

T

i ,

Φ′′
i22 = −(

1 − μ
)
e−αd2Ri3 + Sym{Ri3Si2ERi3 − Ri3Mi2ERi3},

Φ′′
i23 = Ri3(Mi2E −Ni2E)Ri1, Φ′′

i24 = −Ri3Si2ERi2,

Φ′′
i26 = Ri3C

T
di, Φ′′

i27 = c1Ri3Ni2, Φ′′
i28 = c12Ri3Si2, Φ′′

i29 = c12Ri3Mi2.

(4.12)

Now, introducing change of variables

Ni1 = εi1X
−T
i , Ni2 = εi2R

−1
i3 , Mi1 = εi3X

−T
i , Mi2 = εi4R

−1
i3 ,

Si1 = εi5X
−T
i , Si2 = εi6R

−1
i3 , Ti = KiXi,

(4.13)

where εif , f = 1, 2, . . . , 6 are scalars, noting the fact that

−Z−1
i1 ≤ −2εi7I + ε2i7Zi1, −Z−1

i2 ≤ −2εi8I + ε2i8Zi2, (4.14)
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where εi7 and εi8 are positive scalars, and using Schur complement on (4.11), we can easy
obtain (4.4). In addition, by (3.4) and (4.10), it is easily to verify that the condition (4.6) is
equivalent to (3.4). This completes the proof.

Remark 4.2. Scalars εih, h = 1, 2, . . . , 8, i ∈ I, in Theorem 4.1 are tuning parameters which
need to be specified first; such tuning parameters are frequently encountered when dealing
with the SF control problem of singular time-delay systems; see, for example, Ma et al. [27],
Shu and Lam [40], and Wu et al. [38]. A simple way to choose these tuning parameters is
using the trial-and-error method. In fact, (4.4) for fixed εih, is bilinear matrix inequality (BMI)
regarding these tuning parameters. Therefore, if one can accept more computation burden,
better results can be obtained by directly applying some existing optimization algorithms,
such as the program fminsearch in the optimization toolbox of MATLAB, the branch-and-
band algorithm [41], and the branch-and-cut algorithm [42].

4.2. SOF Controller Design

Connecting the SOF controller (2.9) to system (2.1) yields the closed-loop system

Eẋ(t) = A
′
σ(t)x(t) +Adσ(t)x(t − d(t)) + Bwσ(t)w(t),

z(t) = C
′
σ(t)x(t) + Cdσ(t)x(t − d(t)) +Dwσ(t)w(t),

(4.15)

where

A
′
σ(t) = Aσ(t) + Bσ(t)Fσ(t)Lσ(t), C

′
σ(t) = Cσ(t) +Dσ(t)Fσ(t)Lσ(t). (4.16)

The following theorem presents a sufficient condition for solvability of the SOF controller
design problem for system (2.1).

Theorem 4.3. For prescribed scalars α > 0, γ > 0, 0 ≤ d1 ≤ d2, and 0 < μ < 1, if for each i ∈ I, and
a given matrix Ji, there exist matrices Qil > 0, l = 1, 2, 3, Ziv > 0, and Pi of the form (3.2) such that

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Λi11 Λi12 Λi13 Λi14 −Si1E JTi Bwi C
′
i

T
c1Ni1 c12Si1 c12Mi1

∗ Λi22 Λi23 0 0 JTi Bwi 0 0 0 0
∗ ∗ Λi33 Λi34 −Si2E 0 CT

di
c1Ni2 c12Si2 c12Mi2

∗ ∗ ∗ Λi44 0 0 0 0 0 0
∗ ∗ ∗ ∗ Λi55 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ −γ2I DT

wi 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −I 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −c1Zi1 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −c12Zi2 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −c12Zi2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (4.17)
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where c1, c12, and Ui are defined in (3.2), and

Λi11 = Sym
{
JiA

′
i +Ni1E

}
+

3∑
l=1

Qil + αETPi,

Λi12 = −Ji +A
′
i

T
JTi + PT

i , Λi13 = JiAdi + ETNT
i2 + Si1E −Mi1E,

Λi14 = Mi1E −Ni1E, Λi22 = −JTi − Ji +Ui, Λi23 = JiAdi,

Λi33 = −(
1 − μ

)
e−αd2Qi3 + Sym {Si2E −Mi2E},

Λi34 = Mi2E −Ni2E, Λi44 = −e−αd1Qi1, Λi55 = −e−αd2Qi2.

(4.18)

Then, there exists an SOF controller (2.9) such that the closed-loop system (4.15) with d(t) satisfying
(2.2) is exponentially admissible with a weighted H∞ performance γ for any switching sequence S
with average dwell time Ta ≥ T ∗

a = ln β/α, where β ≥ 1 satisfying (3.4).

Proof. From Theorem 3.5, we know that system (4.15) is exponentially admissible with a
weighted H∞ performance γ for any switching sequence S with average dwell time Ta ≥
T ∗
a = (ln β)/α, where β ≥ 1 satisfying (3.4), if for each i ∈ I, there exist matrices Qil > 0,

l = 1, 2, 3, Ziv > 0,Miv,Niv, Siv, v = 1, 2, and Pi with the form of (3.1) such that the inequality
(4.10) with Ai and Ci instead of A

′
i and C

′
i, respectively, holds. By decomposing Φi in (4.10),

we obtain that for each i ∈ I,

Φi = Π(i)ΛiΠT
i < 0, (4.19)

where Λi is exactly the left half of the inequality (4.17), and

Π(i) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I A
′T
i 0 0 0 0 0 0 0 0

0 AT
di I 0 0 0 0 0 0 0

0 0 0 I 0 0 0 0 0 0
0 0 0 0 I 0 0 0 0 0
0 BT

wi 0 0 0 I 0 0 0 0
0 0 0 0 0 0 I 0 0 0
0 0 0 0 0 0 0 I 0 0
0 0 0 0 0 0 0 0 I 0
0 0 0 0 0 0 0 0 0 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.20)

Hence, the condition (4.17) implies Φi < 0. This completes the proof.

Remark 4.4. Note that there exist product terms between the Lyapunov and system matrices
in inequality (3.37) of Theorem 3.5, which will bring some difficulties in solving the SOF
controller design problem. To resolve this problem, in the proof of Theorem 4.3, we have
made a decoupling between the Lyapunov and systemmatrices by introducing a slack matrix
variable Ji and then obtained a new inequality (4.17). It should be pointed that in Haidar et
al. [32], a sufficient condition for solvability of the SOF controller design problem for the
deterministic singular time-delay system has been proposed. However, the controller gain
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Figure 1: The state trajectories of the open-loop subsystem 1.
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Figure 2: The state trajectories of the open-loop subsystem 2.

was computed by using an iterative LMI algorithm, which was complex. Although the new
inequality (4.17) may be conservative mainly due to the introduction of matrix variable Ji,
the introduced decoupling technique enables us to obtain a more easily tractable condition
for the synthesis of SOF controller.

Remark 4.5. Matrices Ji, i ∈ I, in Theorem 4.3 can be specified by the algorithm stated in
Remark 3.6.
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Remark 4.6. In this paper, we have only discussed a special case of the derivative matrix
E having no switching modes. If E also has switching modes, then E is changed to Ei,
i ∈ I. In this case, the transformation matrices P and Q should become Pi and Qi, and
we have PiEiQi = diag{Iri , 0}. Accordingly, the state of the transformed system becomes

x̃(t) = [x̃T
i1(t) x̃T

i2(t)]
T with x̃T

i1(t) ∈ Rri , which means that there does not exist one common
state space coordinate basis for all subsystems, and thus it is complicated to discuss the
transformed system. Hence, some assumptions for the matrices Ei (e.g., Ei, i ∈ I, have the
same right zero subspace [43]) should be given so that the matrices Qi remain the same;
in this case, the method presented here is also valid. However, the general case of E with
switching modes is an interesting problem for future investigation via other methods.

5. Numerical Examples

In this section, we present two illustrative examples to demonstrate the applicability and
effectiveness of the proposed approach.

Example 5.1. Consider the switched system (2.5) with I = 2 (i.e., there are two subsystems)
and the related parameters are given as follows:

E =
[
1 0
0 0

]
,

A1 =
[
0.73 0
0 −1

]
, Ad1 =

[−1.1 1
0 0.5

]
,

A2 =
[
0.4 0
−0.1 −1

]
, Ad2 =

[−1 0.1
0 0.1

]
(5.1)

and d1 = 0.1, d2 = 0.3, μ = 0.4, and α = 0.5. It can be checked that the previous two subsystems
are both stable independently. Consider the quadratic approach (see Remark 3.3, β = 1, and
we know that it requires a common Lyapunov functional for all subsystems); by simulation,
it can be found that there is no feasible solution to this case, that is to say, there is no common
Lyapunov functional for all subsystems. Now, we consider the average dwell time scheme,
and set β = 1.25, and solving the LMIs (3.2) gives the following solutions:

P1 = 103 ×
[
0.0354 0
0.0256 1.3047

]
, Q11 =

[
1.2978 −1.6836
−1.6836 78.9994

]
,

Q12 =
[
0.4821 −1.6749
−1.6749 78.5452

]
, Q13 = 103 ×

[
0.0002 0.0093
0.0093 1.8512

]
,
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Z11 =
[
128.9500 2.7682
2.7682 308.4441

]
, Z12 =

[
128.1143 4.4005
4.4005 323.5358

]
,

M11 =
[−81.4620 −2.8201
11.2329 0.2679

]
, M12 =

[
59.2544 2.0497
−62.6780 −1.9627

]
,

N11 =
[−82.1186 −1.7810
11.3273 0.1165

]
, N12 =

[
58.7098 1.2698
−62.8565 −1.1401

]
,

S11 =
[−0.1540 0.0183
0.0297 0.2129

]
, S12 =

[−0.2125 −0.0163
−0.0270 −0.3559

]
,

P2 =
[
43.6700 0
−66.4319 953.1992

]
, Q21 =

[
1.3435 −0.9553
−0.9553 76.7387

]
,

Q22 =
[
0.4965 −1.3638
−1.3638 76.0801

]
, Q23 = 103 ×

[
0.0002 0.0078
0.0078 1.5081

]
,

Z21 =
[
116.4480 2.3702
2.3702 308.2446

]
, Z22 =

[
110.6046 3.6134
3.6134 323.0948

]
,

M21 =
[−73.9202 −2.4255

7.4257 0.2466

]
, M22 =

[
52.5267 1.7299
−2.7859 −0.1158

]
,

N21 =
[−74.6177 −1.5240

7.4918 0.1543

]
, N22 =

[
51.9573 1.0641
−2.7465 −0.0661

]
,

S21 =
[−0.1625 −0.0042
0.0150 0.0002

]
, S22 =

[−0.2236 −0.0085
0.0150 0.0022

]
,

(5.2)

which means that the aforementioned switched system is exponentially admissible.
Moreover, by further analysis, we find that the allowable minimum of β is βmin = 1.046 when
α = 0.5 is fixed; in this case, T ∗

a = (ln βmin)/α = 0.0899. By the previous analysis, we know
that the average dwell time approach proposed in this paper is less conservative than the
quadratic approach.

Example 5.2. Consider the switched system (2.1)with I = 2 and

E =
[
1 0
0 0

]
, A1 =

[
0.9 0
1 −5

]
,

Ad1 =
[
0.5 0.1
1 0.1

]
, B1 =

[−3
−1

]
, Bw1 =

[
0.5
0.03

]
,

C1 =
[
0.1 0.3

]
, Cd1 =

[
0.1 0.1

]
, D1 = 1.1, Dw1 = 0.15
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A2 =
[
0.5 0.1
5 −2

]
, Ad2 =

[
0.2 0.5
1.5 0.1

]
, B2 =

[−4
−1

]
, Bw2 =

[
0.3
0.03

]
,

C2 =
[
0.1 0.3

]
, Cd2 =

[
0.1 0.1

]
, D2 = 1, Dw2 = 0.1,

(5.3)

and d(t) = 0.3 + 0.2 sin(1.5t). A straightforward calculation gives d1 = 0.1, d2 = 0.5, and
μ = 0.3. By simulation, it can be checked that the previous two subsystems with u(t) = 0 are
both unstable, and the state responses of the corresponding open-loop systems are shown in
Figures 1 and 2, respectively, with the initial condition given by φ(t) = [1 2]T , t ∈ [−0.5, 0]. In
view of this, our goal is to design an SF control u(t) in the form of (2.8) and an SOF control
u(t) in the form of (2.9), such that the closed-loop system is exponentially admissible with a
weighted H∞ performance γ = 1.5.

For SF control law, set α = 0.4, β = 1.05 (thus Ta ≥ T ∗
a = (ln β)/α = 0.122), and choose

ε11 = 0.2, ε12 = 0.1, ε13 = 0.1, ε14 = 0.02, ε15 = 0.004, ε16 = 0.03, ε17 = 1.9, ε18 = 1, ε21 = 0.06,
ε22 = 0.1, ε23 = 0.14, ε24 = 0.17, ε25 = 0.1, ε26 = 0.1, ε27 = 0.4, and ε28 = 0.1. Solving the LMIs
(4.4), we obtain the following solutions:

X1 =
[
0.0930 0
−0.0297 0.2059

]
, R11 =

[
1.0444 0.0008
0.0008 191.0844

]
, R12 =

[
0.4461 0.0009
0.0009 200.5541

]
,

R13 =
[
0.0889 −0.1241
−0.1241 0.8811

]
, Z11 =

[
0.8979 0.0010
0.0010 0.8617

]
, Z12 =

[
1.7609 0.0194
0.0194 1.4794

]
,

X2 =
[
0.0932 0
0.0208 0.0847

]
, R21 =

[
1.0397 0.0008
0.0008 191.0844

]
, R22 =

[
0.4442 0.0009
0.0009 200.5541

]
,

R23 =
[
0.0900 −0.1233
−0.1233 0.8771

]
, Z21 =

[
0.9017 0.0011
0.0011 0.8640

]
, Z22 =

[
1.7882 0.0220
0.0220 1.4824

]
,

T1 =
[−0.2000 0.0046

]
, T2 =

[−1.6983 −0.0889].

(5.4)

Therefore, from (4.7), the gain matrices of an SF controller can be obtained as

K1 =
[−2.1437 0.0221

]
, K2 =

[
2.4825 0.1243

]
. (5.5)

For SOF control law, let α, β be the same as in the SF control case, and choose

J1 = diag{1.08, 3.07}, J2 = diag{3.95, 1.58}. (5.6)
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Figure 3: Switching signal with the average dwell time Ta > 0.13.

By solving the LMIs (4.17), we obtain the following solutions:

P1 =
[
0.1155 0
−5.8842 17.7617

]
, Q11 =

[
3.3116 0.5239
0.5239 2.1174

]
, Q12 =

[
1.5055 0.5231
0.5231 2.1194

]
,

Q13 =
[
1.1241 1.3009
1.3009 3.5238

]
, Z11 =

[
5.9711 −0.2713
−0.2713 10.1082

]
, Z12 =

[
4.0344 −0.1822
−0.1822 7.5545

]
,

M11 =
[−13.1122 0.5931

0.1486 −0.0065
]
, M12 =

[
13.8147 −0.6248
−0.0015 0.0001

]
, N11 =

[−15.3140 0.6970
0.1666 −0.0070

]
,

N12 =
[
13.1090 −0.5965
−0.0014 0.0001

]
, S11 =

[−0.0092 0.0004
−0.0028 0.0006

]
, S12 =

[−1.1016 0.0500
0.0002 0.0001

]
,

P2 =
[

0.1153 0
−10.1494 4.3434

]
, Q21 =

[
3.3132 0.5242
0.5242 2.1163

]
, Q22 =

[
1.5061 0.5231
0.5231 2.1182

]
,

Q23 =
[
1.1243 1.3007
1.3007 3.5222

]
, Z21 =

[
5.9744 −0.2714
−0.2714 10.1049

]
, Z22 =

[
4.0385 −0.1824
−0.1824 7.5509

]
,

M21 =
[−13.2335 0.5985

0.0221 −0.0010
]
, M22 =

[
13.9337 −0.6301
−0.0086 0.0004

]
, N21 =

[−15.4420 0.7025
0.0237 −0.0011

]
,

N22 =
[
13.2333 −0.6018
−0.0102 0.0003

]
, S21 =

[−0.0038 0.0002
−0.0007 0.0000

]
, S22 =

[−1.1076 0.0501
−0.0001 −0.0000

]
,

K1 = 15.1634, F2 = 1.6543.
(5.7)



Journal of Applied Mathematics 25

0 2 4 6 8 10
−1

−0.5

0

0.5

1

1.5

2

2.5

Sy
st

em
 s

ta
te

x1

x2

Time (s)

Figure 4: The state trajectories of the closed-loop system under SF control.
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Figure 5: The state trajectories of the closed-loop system under SOF control.

To show the effectiveness of the designed SF and SOF controllers, giving a random switching
signal with the average dwell time Ta ≥ 0.13 as shown in Figure 3, we get the state responses
using the SF and SOF controllers for the system as shown in Figures 4 and 5, respectively,
for the given initial condition φ(t) = [1 2]T , t ∈ [−0.5, 0]. It is obvious that the designed
controllers are feasible and ensure the stability of the closed-loop systems despite the interval
time-varying delays.



26 Journal of Applied Mathematics

6. Conclusions

In this paper, the problems of exponential admissibility and H∞ control for a class of
continuous-time switched singular systems with interval time-varying delay have been
investigated. A class of switching signals specified by the average dwell time has been
identified for the unforced systems to be exponentially admissible with a weighted H∞
performance. The state feedback and static output feedback controllers have been designed,
and their corresponding solvability conditions have been established by using the LMI
technique. Simulation results have demonstrated the effectiveness of the proposed design
method.
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