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The problem of delay-range-dependent stability for T-S fuzzy system with interval time-varying
delay is investigated. The constraint on the derivative of the time-varying delay is not required,
which allows the time delay to be a fast time-varying function. By developing delay decomposition
approach, integral inequalities approach (IIA), and Leibniz-Newton formula, the information
of the delayed plant states can be taken into full consideration, and new delay-dependent
sufficient stability criteria are obtained in terms of linear matrix inequalities (LMIs) which can
be easily solved by various optimization algorithms. Simulation examples show resulting criteria
outperform all existing ones in the literature. It is worth pointing out that our criteria are carried
out more efficiently for computation and less conservatism of the proposed criteria.

1. Introduction

It is well known that time delay often appears in the dynamic systems, which is an important
source of instability and degradation in the control performance. Fuzzy system in the
form of Takagi-Sugeno (T-S) model has been paid considerable attention in the past two
decades [1, 2]. It has been shown that the T-S model method gives an effective way to
represent complex nonlinear systems by some simple local linear dynamic systems, and
some analysis methods in the linear systems can be effectively extended to the T-S fuzzy
systems. However, all the aforementioned criteria aim at time delay free T-S fuzzy systems.
In practice, time delay, one of the instability sources in dynamical systems, is a common
and complex phenomenon in many industrial and engineering systems such as chemical
process, metallurgical processes, biological systems, rollingmill systems, and communication
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networks. As a result, stability analysis for T-S fuzzy systems with time delay is of great
significance both in theory and in practice. Some approaches developed for general delay
systems have been borrowed to deal with fuzzy systems with time delay. In recent years, the
problems of stability and stabilization of the T-S fuzzy systems with time delay have attracted
rapidly growing interests [3–21]. Among these references, great efforts have been focused
on effective reduction of the conservation of the delayed T-S fuzzy model. Many effective
methods, such as new bounding technique for cross-terms [7, 9], augmented Lyapunov
functional method [7], and free-weighing matrix method [6, 10, 17–20], have been proposed.
We can see that the free-weighting matrix approach is used as a main tool to make the
criteria less conservative in the literature, and only the lower and upper bounds of delay
function h(t) are considered. When stability analysis of delayed systems is concerned, a
very effective strategy is to apply the Gu’s Lyapunov-Krasovskii functional discretization
technique [22]. However, this discretization technique has been developed for linear systems
subject to constant time delay. Besides, it is very hard to extend the stability analysis
conditions obtained via this technique to control design since several products between
decision variables will be generated, leading to nonconvex formulations. Therefore, less-
conservative conditions for stability and control of T-S fuzzy systems subject to uncertain
time delay are proposed based on a fuzzy weighting-dependent Lyapunov function, the
Gu discretization technique [22], and extra strategies to introduce slack matrix variables
by [13, 23]. However, these results have conservatism to some extent, which exist room for
further improvement.

The delay varying in an interval has strong application background, which commonly
exists in many practical systems. The investigation for the systems with interval time-varying
delay has caused considerable attention, see [13, 18, 24–26] and the references therein. In [15],
Lyapunov-Krasovskii function and augmented Lyapunov-Krasovskii function to construct
uncorrelated augmented matrix (UAM) and to deal with cross terms in the UAM through
improved Jessen’s inequality. An improved delay-dependent criterion is derived in [18]
by constructing a new Lyapunov functional and using free-weighting matrices. In [24], a
weighting delay method is used to deal with the stability of system with time varying delay.
In [25, 26], by developing a delay decomposition approach, the integral interval [t − h, t] is
decomposed into [t − h, t − αh] and [t − αh, t]. Since a tuning parameter α is introduced, the
information about x(t − αh) can be taken into full consideration; thus, the upper bound of∫ t
t−h ẋ

T (s)Rẋ(s)ds can be estimated more exactly no matter the delay derivative exists or not.
However, it has been realized that too many free variables introduced in the free-weighting
matrix method will complicate the system synthesis and consequently lead to a significant
computational demand [7]. The problem of improving system performance while reducing
the computational demand will be addressed in this paper.

The main contributions of this paper are highlighted as follows. (1) delay-dependent
stability criteria are developed, which are an improvement over the latest results available
from the open literature [3, 5–7, 9, 10, 12, 13, 15, 17–21, 23, 27]; (2) theoretical proof is
provided to show that the results in [6] are a special case of the results derived in this
paper. The approach developed in this work uses the least number of unknown variables and
consequently is the least mathematically complex and most computationally efficient. This
implies that some redundant variables in the existing stability criteria can be removed while
maintaining the efficiency of the stability conditions. With the present stability conditions,
the computational burden is largely reduced; (3) since the delay decomposition approach
is introduced in delay interval, it is clear that the stability results are based on the delay
decomposition approach. When the positions of delay decomposition are varied, the stability
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results of the proposed criteria are also different. In order to obtain the optimal delay
decomposition sequence, we proposed an implementation based on optimization methods.

Motivated by the above discussions, we propose new stability criteria for T-S fuzzy
system with interval time-varying delay. By developing a delay decomposition approach,
the information of the delayed plant states can be taken into full consideration, and new
delay-dependent sufficient stability criteria are obtained in terms of linear matrix inequalities
(LMIs)which can be easily solved by various optimization algorithms. Since the delay terms
are concerned more exactly, less conservative results are presented. Moreover, the restriction
on the change rate of time-varying delays is relaxed in the proposed criteria. The proposed
stability conditions are much less conservative and are more general than some existing
results. Numerical examples are given to illustrate the effectiveness of our theoretical results.

2. Stability Analysis

Consider a T-S fuzzy system with a time-varying delay, which is represented by a T-S fuzzy
model, composed of a set of fuzzy implications, and each implication is expressed by a linear
system model. The ith rule of this T-S fuzzy model is of the following form:

Plant rule i : if z1(t) isMi1, and . . ., and zp(t) isMip then

ẋ(t) = Aix(t) +Adix(t − h(t)), (2.1a)

x(t) = φ(t), t ∈ [−h, 0], i = 1, 2, ..., r, (2.1b)

where z1(t), z2(t), ..., zp(t) are the premise variables; Mij, i = 1, 2, ..., r, j = 1, 2, ..., p are the
fuzzy sets; x(t) ∈ Rn is the state; φ(t) is a vector-valued initial condition; Ai and Adi are
constant real matrices with appropriate dimensions; the scalars ris the number of if-then rules;
time delay, h(t), is a time-varying delay.Wewill consider the following two cases for the time-
varying delay.

Case 1. h(t) is a differentiable function satisfying

0 ≤ h1 ≤ h(t) ≤ h2,
∣∣ḣ(t)

∣∣ ≤ hd, ∀t ≥ 0. (2.2)

Case 2. h(t) is a differentiable function satisfying

0 ≤ h1 ≤ h(t) ≤ h2, (2.3)

where h1 and h2 are the lower and upper delay bounds, respectively; h1, h2, and hd are
constants. Here h1 the lower bound of delay may not be equal to 0, and when hd = 0 we
have h1 = h2. Both Cases 1 and 2 have considered the upper and nonzero lower delay bounds
of the interval time-varying delay. Case 1 is a special case of Case 2. If the time-varying delay
is differentiable and hd < 1, one can obtain a less conservative result using Case 1 than that
using Case 2.
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By fuzzy blending, the overall fuzzy model is inferred as follows:

ẋ(t) =
∑r

i=1 wi(z(t))[Aix(t) +Adix(t − h(t))]
∑r

i=1 wi(z(t))

=
r∑

i=1

θi(z(t))[Aix(t) +Adix(t − h(t))]

= Ax(t) +Adx(t − h(t))

x(t) =
r∑

i=1

θi(z(t))φi(t), t ∈ [−h, 0],

(2.4)

where z = [z1, z2, ..., zp]; wi : Rp → [0, 1], i = 1, 2, ..., r, is the membership function
of the system with respect to the plant rule i; θi(z(t)) = wi(z(t))/

∑r
i=1 wi(z(t)); A =∑r

i=1 θi(z(t))Ai, Ad =
∑r

i=1 θi(z(t))Adi, and It is assumed that wi(z(t)) ≥ 0, i =
1, 2,...,r,

∑r
i=1 wi(z(t)) ≥ 0 for all t, so we have θi(z(t)) ≥ 0,

∑r
i=1 θi(z(t)) = 1.

In the following, we will develop some practically computable stability criteria for the
system described (2.1a). The following lemmas are useful in deriving the criteria. First, we
introduce the following technical Lemma 2.1 of integral inequality approach (IIA).

Lemma 2.1 (see [11]). For any positive semidefinite matrices

X =

⎡

⎢⎢⎢⎢
⎣

X11 X12 X13

XT
12 X22 X23

XT
13 XT

23 X33

⎤

⎥⎥⎥⎥
⎦

≥ 0. (2.5)

Then, one obtains

−
∫ t

t−h
ẋT (s)X33ẋ(s)ds ≤

∫ t

t−h

[
xT (t) xT (t − h) ẋT (s)

]
⎡

⎣
X11 X12 X13

XT
12 X22 X23

XT
13 XT

23 0

⎤

⎦

⎡

⎣
x(t)

x(t − h)
ẋ(s)

⎤

⎦ds. (2.6)

Lemma 2.2 (see [28]). The following matrix inequality

[
Q(x) S(x)
ST (x) R(x)

]
< 0, (2.7)

where Q(x) = QT (x), R(x) = RT (x) and S(x) depend on affine on x is equivalent to

R(x) < 0,

Q(x) < 0,

Q(x) − S(x)R−1(x)ST (x) < 0.

(2.8)
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In this paper, a new Lyapunov functional is constructed, which contains the informa-
tion of the lower bound of delay h1 and upper bound h2.The following Theorem 2.3 presents
a delay-range-dependent result in terms of LMIs and expresses the relationships between the
terms of the Leibniz-Newton formula.

Theorem 2.3. Under Case 1, for given scalars h1, h2, hd, and α(0 < α < 1), System (2.4) subject to
(2.2) is asymptotically stable if there exist symmetry positive-definite matrices P = PT > 0, Q1 =
QT

1 > 0, Q2 = QT
2 > 0, Q3 = QT

3 > 0, R1 = RT
1 > 0, R2 = RT

2 > 0, and positive semidefinite matrices

X =

⎡

⎣
X11 X12 X13

XT
12 X22 X23

XT
13 XT

23 X33

⎤

⎦ ≥ 0, Y =

⎡

⎣
Y11 Y12 Y13

YT
12 Y22 Y23

YT
13 YT

23 Y33

⎤

⎦ ≥ 0, Z =

⎡

⎣
Z11 Z12 Z13

ZT
12 Z22 Z23

ZT
13 ZT

23 Z33

⎤

⎦ ≥ 0 (2.9)

such that the following LMIs hold:

Ξi =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

Ξ11 Ξ12 0 Ξ14 Ξ15 Ξ16

ΞT
12 Ξ22 Ξ23 Ξ24 Ξ25 Ξ26

0 ΞT
23 Ξ33 0 0 0

ΞT
14 ΞT

24 0 Ξ44 0 0
ΞT
15 ΞT

25 0 0 Ξ55 0
ΞT
16 ΞT

26 0 0 0 Ξ66

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

< 0, (2.10a)

R1 −X33 ≥ 0, (2.10b)

R2 − Y33 ≥ 0, (2.10c)

R2 − Z33 ≥ 0, (2.10d)

where

Ξ11 = AT
i P + PAi +Q1 +Q2 +Q3 + αδX11 +X13 +XT

13,

Ξ12 = PAdi, Ξ14 = αδX12 −X13 +XT
23,

Ξ15 = αδAT
i R1, Ξ16 = (h2 − αδ)AT

i R2,

Ξ22 = −(1 − hd)Q2 + (h2 − αδ)Y22 − Y23 − YT
23 + (h2 − αδ)Z11 + Z13 + ZT

13,

Ξ23 = (h2 − αδ)Z12 − Z13 + ZT
23, Ξ24 = (h2 − αδ)YT

12 − YT
13 + Y23, Ξ25 = αδAT

diR1,

Ξ26 = (h2 − αδ)AT
diR2, Ξ33 = −Q3 + (h2 − αδ)Z22 − Z23 − ZT

23,

Ξ44 = −Q1 + (h2 − αδ)Y11 + Y13 + YT
13 + αδX22 −X23 −XT

23,

Ξ55 = −δR1, Ξ66 = −(h2 − αδ)R2.

(2.11)

Proof. If we can proof that Theorem 2.3 holds for two cases, that is, αδ ≤ h(t) ≤ h2 and
h1 ≤ h(t) ≤ αδ, where αδ = (h2 + h1)/2, then Theorem 2.3 is true.
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Case 1. When αδ ≤ h(t) ≤ h2.

Construct a Lyapunov-Krasovskii functional candidate as

V (xt) = xT (t)Px(t) +
∫ t

t−αδ
xT (s)Q1x(s)ds +

∫ t

t−h(t)
xT (s)Q2x(s)ds +

∫ t

t−h2

xT (s)Q3x(s)ds

+
∫0

−αδ

∫ t

t+θ
ẋT (s)R1ẋ(s)dsdθ +

∫−αδ

−h2

∫ t

t+θ
ẋT (s)R2ẋ(s)dsdθ.

(2.12)

Calculating the derivative of (2.12)with respect to t > 0 along the trajectories of (2.1a)
and (2.1b) leads to

V̇ (xt) = xT (t)
(
PA +ATP

)
x(t) + xT (t)PAdx(t − h(t)) + xT (t − h(t))AT

dPx(t)

+ xT (t)(Q1 +Q2 +Q3)x(t) − xT (t − αδ)Q1x(t − αδ)

− xT (t − h(t))
(
1 − ḣ(t)

)
Q2x(t − h(t)) − xT (t − h2)Q3x(t − h2)+ẋT (t)αδR1ẋ(t)

+ẋT (t)(h2 − αδ)R2ẋ(t) −
∫ t

t−δ
ẋT (s)R1ẋ(s)ds −

∫ t−δ

t−h2

ẋT (s)R2ẋ(s)ds

≤ xT (t)
(
PA +ATP

)
x(t) + xT (t)PAdx(t − h(t)) + xT (t − h(t))AT

dPx(t)

+ xT (t)(Q1 +Q2 +Q3)x(t) − xT (t − αδ)Q1x(t − αδ)

− xT (t − h(t))(1 − hd)Q2x(t − h(t)) − xT (t − h2)Q3x(t − h2)

+ẋT (t)[αδR1 + (h2 − αδ)R2]ẋ(t) −
∫ t

t−αδ
ẋT (s)R1ẋ(s)ds −

∫ t−αδ

t−h2

ẋT (s)R2ẋ(s)ds,

(2.13)

with the operator for the term ẋT (t)[αδR1 + (h2 − αδ)R2]ẋ(t) as follows:

ẋT (t)[αδR1 + (h2 − αδ)R2]ẋ(t)

= [Ax(t) +Adx(t − h(t))]T [αδR1 + (h2 − αδ)R2][Ax(t) +Adx(t − h(t))]

= xT (t)AT [αδR1 + (h2 − αδ)R2]Ax(t) + xT (t)AT [αδR1 + (h2 − αδ)R2]Adx(t − h(t))

+ xT (t − h(t))AT
d[αδR1 + (h2 − αδ)R2]Ax(t)

+ xT (t − h(t))AT
d[αδR1 + (h2 − αδ)R2]Adx(t − h(t)).

(2.14)
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Alternatively, the following equations are true:

−
∫ t

t−αδ
ẋT (s)R1ẋ(s)ds −

∫ t−αδ

t−h2

ẋT (s)R2ẋ(s)ds

= −
∫ t

t−αδ
ẋT (s)R1ẋ(s)ds −

∫ t−αδ

t−h(t)
ẋT (s)R2ẋ(s)ds −

∫ t−h(t)

t−h2

ẋT (s)R2ẋ(s)ds

= −
∫ t

t−αδ
ẋT (s)(R1 −X33)ẋ(s)ds −

∫ t−αδ

t−h(t)
ẋT (s)(R2 − Y33)ẋ(s)ds

−
∫ t−h(t)

t−h2

ẋT (s)(R2 − Z33)ẋ(s)ds −
∫ t

t−αδ
ẋT (s)X33ẋ(s)ds

−
∫ t−αδ

t−h(t)
ẋT (s)Y33ẋ(s)ds −

∫ t−h(t)

t−h2

ẋT (s)Z33 ẋ(s)ds.

(2.15)

By utilizing Lemma 2.1 and the Leibniz-Newton formula, we have

−
∫ t

t−αδ
ẋT (s)X33ẋ(s)ds

≤
∫ t

t−αδ

[
xT (t) xT (t − αδ) ẋT (s)

]
⎡

⎣
X11 X12 X13

XT
12 X22 X23

XT
13 XT

23 0

⎤

⎦

⎡

⎣
x(t)

x(t − αδ)
ẋ(s)

⎤

⎦ds

≤ xT (t)αδX11x(t) + xT (t)αδX12x(t − αδ) + xT (t − αδ)αδXT
12x(t)

+ xT (t − αδ)αδX22x(t − αδ) + xT (t)XT
13

∫ t

t−αδ
ẋ(s)ds + xT (t − αδ)XT

23

∫ t

t−αδ
ẋ(s)ds

+
∫ t

t−αδ
ẋT (s)dsX13x(t) +

∫ t

t−αδ
ẋT (s)dsX23x(t − αδ)

= xT (t)
[
αδX11 +XT

13 +X13

]
x(t) + xT (t)

[
αδX12 −X13 +XT

23

]
x(t − αδ)

+ xT (t − αδ)
[
δXT

12 +X23 −XT
13

]
x(t) + xT (t − αδ)

[
αδX22 −X23 −XT

23

]
x(t − αδ).

(2.16)
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Similarly, we obtain

−
∫ t−αδ

t−h(t)
ẋT (s)Y33ẋ(s)ds

≤ xT (t − αδ)
[
(h2 − αδ)Y11 + YT

13 + Y13

]
x(t − αδ)

+ xT (t − αδ)
[
(h2 − αδ)Y12 − Y13 + YT

23

]
x(t − h(t))

+ xT (t − h(t))
[
(h2 − αδ)YT

12 − YT
13 + Y23

]
x(t − αδ)

+ xT (t − h(t))
[
(h2 − αδ)Y22 − Y23 − YT

23

]
x(t − h(t)),

(2.17)

−
∫ t−h(t)

t−h2

ẋT (s)Z33ẋ(s)ds

≤ xT (t − h(t))
[
(h2 − αδ)Z11 + Z13 + ZT

13

]
x(t − h(t))

+ xT (t − h(t))
[
(h2 − αδ)Z12 − Z13 + ZT

23

]
x(t − h2)

+ xT (t − h2)
[
(h2 − αδ)ZT

12 − ZT
13 + Z23

]
x(t − h(t))

+ xT (t − h2)
[
(h2 − αδ)Z22 − Z23 − ZT

23

]
x(t − h2).

(2.18)

Substituting the above equations (2.14)–(2.18) into (2.13), we obtain

V̇ (xt) ≤ ξT (t)Ωξ(t) −
∫ t

t−αδ
ẋT (s)(R1 −X33)ẋ(s)ds −

∫ t−αδ

t−h(t)
ẋT (s)(R2 − Y33)ẋ(s)ds

−
∫ t−h(t)

t−h2

ẋT (s)(R2 − Z33)ẋ(s)ds,

(2.19)

where ξT (t) = [xT (t) xT (t − h(t)) xT (t − h2) xT (t − αδ)] and

Ω =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Ω11 Ω12 0 Ω14

ΩT
12 Ω22 Ω23 Ω24

0 ΩT
23 Ω33 0

ΩT
14 ΩT

24 0 Ω44

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, (2.20)
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where

Ω11 = ATP + PA +Q1 +Q2 +Q3 + αδX11 +X13 +XT
13 +AT [αδR1 + (h2 − αδ)R2]A,

Ω12 = PAd +AT [αδR1 + (h2 − αδ)R2]Ad,

Ω14 = αδX12 −X13 +XT
23,

Ω22 = −(1 − hd)Q2 + (h2 − αδ)Z11 + Z13 + ZT
13 + (h2 − αδ)Y22 − Y23 − YT

23

+AT
d[αδR1 + (h2 − αδ)R2]Ad,

Ω23 = (h2 − αδ)Z12 − Z13 + ZT
23,

Ω24 = (h2 − αδ)YT
12 − YT

13 + Y23,

Ω33 = −Q3 + (h2 − αδ)Z22 − Z23 − ZT
23,

Ω44 = −Q1 + (h2 − αδ)Y11 + Y13 + YT
13 + αδX22 −X23 −XT

23.

(2.21)

If Ω < 0, R1 − X33 ≥ 0, R2 − Y33 ≥ 0, and R2 − Z33 ≥ 0, then V̇ (xt) < −ε‖x(t)‖2 for a
sufficiently small ε > 0. By the Schur complement of Lemma 2.2, Ω < 0 is equivalent to the
following inequality and is true:

Ψ =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

Ψ11 Ψ12 0 Ψ14 Ψ15 Ψ16

ΨT
12 Ψ22 Ψ23 Ψ24 Ψ25 Ψ26

0 ΨT
23 Ψ33 0 0 0

ΨT
14 ΨT

24 0 Ψ44 0 0
ΨT

15 ΨT
25 0 0 Ψ55 0

ΨT
16 ΨT

26 0 0 0 Ψ66

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

< 0, (2.22)

where

Ψ11 = ATP + PA +Q1 +Q2 +Q3 + αδX11 +X13 +XT
13, Ψ12 = PAd,

Ψ14 = αδX12 −X13 +XT
23, Ψ15 = αδATR1, Ψ16 = (h2 − αδ)ATR2,

Ψ22 = −(1 − hd)Q2 + (h2 − αδ)Y22 − Y23 − YT
23 + (h2 − αδ)Z11 + Z13 + ZT

13,

Ψ23 = (h2 − αδ)Z12 − Z13 + ZT
23, Ψ24 = (h2 − αδ)YT

12 − YT
13 + Y23, Ψ25 = αδAT

dR1,

Ψ26 = (h2 − αδ)AT
dR2, Ψ33 = −Q3 + (h2 − αδ)Z22 − Z23 − ZT

23,

Ψ44 = −Q1 + (h2 − αδ)Y11 + Y13 + YT
13 + αδX22 −X23 −XT

23,

Ψ55 = −αδR1, Ψ66 = −(h2 − αδ)R2.

(2.23)

That is to say, ifΨ < 0, R1−X33 ≥ 0, R2−Y33 ≥ 0, and R2−Z33 ≥ 0, then V̇ (t) < −ε‖x(t)‖2
for a sufficiently small ε > 0. Furthermore, (2.10a) implies

∑r
i=1 θi(z(t))Ωi < 0, which is
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equivalent to (2.22). Therefore, if LMIs (2.10a) are feasible, the system (2.4) is asymptotically
stable.

Case 2. When h1 ≤ h(t) ≤ αδ.

For this case, the Lyapunov-Krasovskii functional candidate is chosen

V (xt) = xT (t)Px(t) +
∫ t

t−αδ
xT (s)Q1x(s)ds +

∫ t

t−h(t)
xT (s)Q2x(s)ds +

∫ t

t−h1

xT (s)Q3x(s)ds

+
∫0

−αδ

∫ t

t+θ
ẋT (s)R1ẋ(s)dsdθ +

∫−h1

−αδ

∫ t

t+θ
ẋT (s)R2ẋ(s)dsdθ,

(2.24)

where P > 0, R1 > 0, R2 > 0, Qi > 0 (i = 1, 2, 3).
Choosing ξT (t) = [xT (t) xT (t − h(t)) xT (t − h1) xT (t − αδ)] and then using a proof

process similar to that for Case 1, we derive the same condition (2.10a), (2.10b), (2.10c), and
(2.10d) as that for Case 1. This completes the proof.

When the information of the time derivative of delay is unknown, by eliminatingQ2we
have the following result from Theorem 2.3.

Corollary 2.4. For given scalars h1, h2, and α(0 < α < 1), the system (2.4) is asymptotically stable
if there exist positive-definite matrices P = PT > 0, Q1 = QT

1 > 0, Q3 = QT
3 > 0, R1 = RT

1 > 0,
R2 = RT

2 > 0 and positive semidefinite matrices

X =

⎡

⎢⎢⎢⎢
⎣

X11 X12 X13

XT
12 X22 X23

XT
13 XT

23 X33

⎤

⎥⎥⎥⎥
⎦

≥ 0, Y =

⎡

⎢⎢⎢⎢
⎣

Y11 Y12 Y13

YT
12 Y22 Y23

YT
13 YT

23 Y33

⎤

⎥⎥⎥⎥
⎦

≥ 0, Z =

⎡

⎢⎢⎢⎢
⎣

Z11 Z12 Z13

ZT
12 Z22 Z23

ZT
13 ZT

23 Z33

⎤

⎥⎥⎥⎥
⎦

≥ 0, (2.25)

such that the following LMIs hold:

Ξi =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Ξ11 Ξ12 0 Ξ14 Ξ15 Ξ16

ΞT
12 Ξ22 Ξ23 Ξ24 Ξ25 Ξ26

0 ΞT
23 Ξ33 0 0 0

ΞT
14 ΞT

24 0 Ξ44 0 0

ΞT
15 ΞT

25 0 0 Ξ55 0

ΞT
16 ΞT

26 0 0 0 Ξ66

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

< 0, (2.26a)

R1 −X33 ≥ 0, (2.26b)
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R2 − Y33 ≥ 0, (2.26c)

R2 − Z33 ≥ 0, (2.26d)

where Ξij (i, j = 1, 2, ..., 6) are defined in (8) and

Ξ11 = ATP + PA +Q1 +Q3 + αδX11 +X13 +XT
13,

Ξ22 = (h2 − αδ)Y22 − Y23 − YT
23 + (h2 − αδ)Z11 + Z13 + ZT

13.
(2.27)

Proof. If the matrixQ2 = 0 is selected in (2.10a), (2.10b), (2.10c), and (2.10d), this proof can be
completed in a similar formulation to Theorem 2.3.

When h1 = 0, Theorem 2.3 reduces to the following Corollary 2.5.

Corollary 2.5. For given scalars h, hd, and α (0 < α < 1), the system (2.4) is asymptotically stable if
there exist symmetry positive-definite matrices P = PT > 0, Q1 = QT

1 > 0, Q2 = QT
2 > 0,R = RT > 0,

and positive semidefinite matrices

X =

⎡

⎣
X11 X12 X13

XT
12 X22 X23

XT
13 XT

23 X33

⎤

⎦ ≥ 0, Y =

⎡

⎣
Y11 Y12 Y13

YT
12 Y22 Y23

YT
13 YT

23 Y33

⎤

⎦ ≥ 0, (2.28)

such that the following LMIs hold for i = 1, 2, ..., r,

Σi =

⎡

⎢⎢
⎣

Σ11 Σ12 0 Σ14

ΣT
12 Σ22 Σ23 Σ24

0 ΣT
23 Σ33 0

ΣT
14 ΣT

24 0 Σ44

⎤

⎥⎥
⎦ < 0,

R −X33 ≥ 0,

R − Y33 ≥ 0,

(2.29)

where

Σ11 = AT
i P + PAi +Q1 +Q2 + αhX11 +X13 +XT

13, Σ12 = PAdi + αhX12 −X13 +XT
23,

Σ14 = αhAT
i R, Σ22 = −(1 − hd)Q2 + αhX22 −X23 −XT

23 + hY11 + Y13 + YT
13,

Σ23 = αhY12 − Y13 + YT
23, Σ24 = αhAT

diR,

Σ33 = −Q1 + αhY22 − Y23 − YT
23, Ω44 = −αhR.

(2.30)

Proof. Choose the following fuzzy Lyapunov-Krasovskii functional candidate to be

V (t) = V1(t) + V2(t) + V3(t) + V4(t), (2.31)
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where

V1(t) = xT (t)Px(t)

V2(t) =
∫ t

t−αh
xT (s)Q1x(s)ds

V3(t) =
∫ t

t−h(t)
xT (s)Q2x(s)ds

V4(t) =
∫0

−αh

∫ t

t+θ
ẋT (s)Rẋ(s)dsdθ.

(2.32)

Then, taking the time derivative of V (t) with respect to t along the system (2.4) yield

V̇ (t) = V̇1(t) + V̇2(t) + V̇3(t) + V̇4(t). (2.33)

Then the proof follows a linear similar to the proof of Theorem 2.3 and thus is omitted
here.

Remark 2.6. In our Theorems 2.3, hd can be any value or unknown due to Ξ22 = −(1 − hd)Q2 +
(h2−αδ)Y22−Y23−YT

23+(h2−αδ)Z11+Z13+ZT
13. Therefore, Theorem 2.3 is applicable to both cases

of fast and slow time varying delay. We will show the other characteristic of Theorem 2.3.
When the distance between h1 and h2 is sufficiently small, the upper bound h2 of delay for
unknown hd will be very close to the upper bound for hd = 0. This characteristic is not
included in previous Lyapunov functional based work where the upper bound of delay for
hd /= 0 is always less than that for hd = 0.

Remark 2.7. It is seen from the proof of Theorem 2.3 and Corollary 2.4 that the main
characteristics of the method developed in this paper can be generalized as the following two
steps. (i) Construct a Lyapunov function to integrated both lower and upper delay bounds,
for example, αδ = (h2 + h1)/2 in (2.12) and (2.24). (ii) Employ Lemma 2.1 to deal with
cross-product terms, for example, those in (2.15)–(2.18). It is also seen from the proof that
neither model transformation nor free-weighting matrices have been employed to deal with
the cross-product terms. Therefore, the stability criteria derived in this paper are expected to
be less conservative. This will be demonstrated later through numerical examples. It is noted
that although it has been observed that using αδ = (h2 + h1)/2 in the constructed Lyapunov
function can improve stability performance for many examples, theoretical evidence has not
been found so far to explain the observations.

Based on that, a convex optimization problem is formulated to find the bound on the
allowable delay time 0 ≤ h1 ≤ h(t) ≤ h2 which maintains the delay-dependent stability of the
time delay system (2.4).

Remark 2.8. It is interesting to note that h1, h2 appears linearly in (2.10a) and (2.26a). Thus,
a generalized eigenvalue problem (GEVP) as defined in Boyd et al. [28] can be formulated
to solve the minimum acceptable 1/h1 (or 1/h2) and, therefore, the maximum h1 (or h2) to
maintain robust stability as judged by these conditions.
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In this way, our optimization problem becomes a standard generalized eigenvalue
problem, which can be then solved using GEVP technique. From this discussion, we have
the following Remark 2.9.

Remark 2.9. Theorem 2.3 provides delay-dependent asymptotic stability criteria for the T-S
fuzzy systems with an interval time-varying delay (2.4) in terms of solvability of LMIs [28].
Based on them, we can obtain the maximum allowable delay bound (MADB) 0 ≤ h1 ≤ h(t) ≤
h2 such that (2.4) is stable by solving the following convex optimization problem:

Maximize h2

Subject to Theorem 2.3
(
Corollary 2.4

) (2.34)

Inequality (2.34) is a convex optimization problem and can be obtained efficiently
using the MATLAB LMI Toolbox.

About how to seek an appropriate α satisfying 0 < α < 1, such that the upper bound h
of delay h(t) subjecting to (2.29) is maximal, we give an algorithm as follows.

Algorithm 2.10 ((Maximizing h > 0)). Step 1: For given hd, choose an upper bound on h
satisfying (2.29), and then select this upper bound as the initial value h0 of h.

Step 2: Set appropriate step lengths, hstep and αstep, for h and α, respectively. Set k as a
counter, and choose k = 1. Meanwhile, let h = h0 + hstep and the initial value α0 of α equals to
αstep.

Step 3: Let α = kαstep, if inequality (2.29) is feasible, go to Step 4; otherwise, go to Step
5.

Step 4: Let h0 = h, α0 = α, k = 1 and h = h0 + hstep, go to step 3.
Step 5: Let k = k + 1. If kαstep < 1, then go to step 3; otherwise, stop.

Remark 2.11. For Algorithm 2.10, the final h0 is the desired maximum of the upper bound of
delay h(t) satisfying (2.29) and α0 is the corresponding value of α.

3. Illustrative Examples

To illustrate the usefulness of our results, this section will provide numerical examples. It
will be shown that the proposed results can provide less conservative results that recent ones
have given [3, 5–7, 9, 10, 12, 13, 15, 17–21, 23, 27]. It is worth pointing out that our criteria
carried out more efficiently for computation.

Example 3.1. Consider a time-delayed fuzzy system without controlling input. The T-S fuzzy
model of this fuzzy system is of the following form.

Plant rules:

Rule 1: If x1(t) is M1, then

ẋ(t) = A1x(t) +Ad1x(t − h(t)). (3.1)
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Rule 2: If x1(t) is M2, then

ẋ(t) = A2x(t) +Ad2x(t − h(t)), (3.2)

and the membership functions for rule 1 and rule 2 are

M1(x1(t)) =
(
1 − 1

1 + e−5(x1(t)−(π/6))

)
1

1 + e−5(x1(t)−(π/6)) , M2(x1(t)) = 1 −M1(x1(t)),

(3.3)

where

A1 =
[−2 0
0 −0.9

]
, Ad1 =

[−1 0
−1 −1

]
, A2 =

[−1.5 1
0 −0.75

]
, Ad2 =

[−1 0
1 −0.85

]
. (3.4)

Solution 3.2. For system (3.1) and (3.2), by taking the parameter hd = 0 and α = 0.6, we get
the Corollary 2.5 which remains feasible for any delay time h ≤ 2.2459. In case of maximum
allowable delay bound (MADB) h = 2.2459, solving Corollary 2.5 yields the following set of
feasible solutions:

P =
[
33.2342 7.9992
7.9992 28.4879

]
, Q1 =

[
0.0039 −0.0007
−0.0007 0.0029

]
, Q2 =

[
78.8437 −2.5471
−2.5471 22.8291

]
,

R =
[
1.6280 4.5093
4.5093 13.7942

]
, X11 =

[
1.8933 1.5877
1.5877 8.4013

]
, X12 =

[
0.1663 −3.3981
−3.4381 −6.7700

]
,

X13 =
[−1.2051 −3.3469
−3.3454 −10.2327

]
, X22 =

[
2.0259 1.5108
1.5108 8.4337

]
, X23 =

[
1.2030 3.3488
3.3473 10.2310

]
,

X33 =
[
1.6246 4.5097
4.5097 13.7915

]
, Y11 =

[
5.1299 0.4116
0.4116 5.9858

]
, Y12 =

[−0.1102 −0.1624
−0.1588 −0.5302

]
,

Y13 =
[
0.1971 0.5872
0.5915 1.7945

]
, Y22 =

[
0.2962 0.6522
0.6522 2.0458

]
, Y23 =

[
0.3456 0.8055
0.8058 2.5092

]
,

Y33 =
[
0.8093 2.1141
2.1141 6.4977

]
.

(3.5)

Applying the criteria in [9, 10, 12, 17] and in this paper, the maximum values of h
for the stability of system under considerations are listed in Table 1. It is easy to see that
the stability criterion in this paper gives a much less conservative result than the ones in
[9, 10, 12, 17].

Furthermore, by taking the various h1 (hd = 0.5), and from Theorem 2.3, we obtain the
maximum allowable delay bound (MADB) h2 as shown in Table 2. From the above results of
Table 2, if the h1 increases, the delay time length increases.
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Table 1: Computation MADB h for varying hd in Example 3.1.

hd 0.2 0.4 0.6 0.8 0.9 ≥1
Li et al. [9] 1.0078 0.8164 0.6042 0.3356 0.1509 Fail
Liu [12] 1.0655 0.9247 0.8040 0.7306 0.7232 0.7232
Lien [10] 1.2052 1.0766 0.9589 0.8468 0.7968 0.7843
Tian et al. [17] 1.2682 1.2071 1.1565 1.1415 1.1415 1.1415
Corollary 2.5 (α = 0.6) 2.0087 1.7944 1.5981 1.4114 1.3280 1.3071

Table 2:MADB h2 (hd = 0.5) for various h1 in Example 3.1.

h1 0.1 0.3 0.5 0.7 0.9 1.0 2.0
Theorem 2.3 (α = 0.6) 1.3451 1.4016 1.4598 1.5208 1.5903 1.6357 2.1182

Remark 3.3. Similar to Algorithm 2.10, an algorithm for seeking an appropriate α such that the
upper bound of delay 0 ≤ h1 ≤ h(t) ≤ h2, subjecting to (2.10a), (2.10b), (2.10c), and (2.10d) is
maximal can be easily obtained.

Example 3.4. Consider a T-S fuzzy system with time-varying delay. The T-S fuzzy model of
this fuzzy system is of the following form:

Rule 1: If x1(t) is M1, then

ẋ(t) = A1x(t) +Ad1x(t − h(t)). (3.6)

Rule 2: If x1(t) is M2, then

ẋ(t) = A2x(t) +Ad2x(t − h(t)), (3.7)

and the membership functions for rule 1 and rule 2 are

M1(z(t)) =
1

1 + exp(−2x1(t))
, M2(x1(t)) = 1 −M1(z(t)), (3.8)

where

A1 =
[−3.2 0.6

0 −2.1
]
, Ad1 =

[
1 0.9
0 2

]
, A2 =

[−1 0
1 −3

]
, Ad2 =

[
0.9 0
1 1.6

]
. (3.9)

Solution 3.5. By taking the parameter hd = 0, using Corollary 2.5, the maximum value of delay
time for the System (3.6) and (3.7) to be asymptotically stable is h ≤ 1.0245. By the criteria
in [9, 16], the system (3.6) and (3.7) is asymptotically stable for h ≤ 0.58 and h ≤ 0.6148,
respectively. Hence, for this example, the criteria proposed here significantly improve the
estimate of the stability limit compared with the result of [9, 16]. Employing the LMIs in [18–
21] and those in Corollary 2.5 yields upper bounds on h2 that guarantee the stability of system
(3.6) and (3.7) for various hd, which are listed in Table 3, in which “–” means that the results
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Table 3: MADB h for various hd in Example 3.4.

hd 0.1 0.5 0.9 ≥1
Tian and Peng [18] 0.3950 0.3950 0.3950 —
Zuo and Wang [21] 0.4808 0.4746 0.4454 —
Wu and Li [19] 0.4809 0.472 0.4455 —
Z. Yang and Y. P. Yang [20] 0.5030 0.4995 0.4988 —
Kwon et al. [8] 0.7236 0.7154 0.7014 —
Corollary 2.5 (α = 0.6) 0.8014 0.7908 0.7418 0.7402

are not applicable to the corresponding cases. It can be seen from Table 3 that Corollary 2.5
in this paper yields the least conservative stability test than other approaches, showing the
advantage of the stability result in this paper.

Example 3.6. Consider a T-S fuzzy system with time-varying delay is of the following form:
Plant rules.

Rule 1: If x1(t) is M1, then

ẋ(t) = A1x(t) +Ad1x(t − h(t)). (3.10)

Rule 2: If x1(t) is M2, then

ẋ(t) = A2x(t) +Ad2x(t − h(t)), (3.11)

and the membership functions for rule 1 and rule 2 are

M1(z(t)) =
1

1 + exp(−2x1(t))
, M2(x1(t)) = 1 −M1(z(t)), (3.12)

where

A1 =
[
0.1 1
0 0.2

]
, Ad1 =

[−0.3 2
0 −0.5

]
, A2 =

[
0.1 2
0 −0.2

]
, Ad2 =

[−0.34 2
0.01 −0.4

]
.

(3.13)

Solution 3.7. By using Corollary 2.4, the maximum allowable delay bound (MADB) can
be calculated as h2 = 2.3725. The results for stability conditions in different methods are
compared in Table 4. It can be seen that the delay-dependent stability condition in this
paper is less conservative than earlier reported ones in the literature [5, 7, 10, 15, 18, 27].
Compared with Guan and chen [7] who used 5 LMI variables, Yoneyama [27] employed 20
LMI variables to get better stability results. To obtain improved stability results than those in
[15, 18, 27], we need 8 variables in Corollary 2.4 the same as [5, 10]. It is also seen from Table 4
that the larger r is the more unknown LMI variables are required in [18, 27]. However, the
unknown number of LMI variables is independent of r in the results of this paper. It can be
shown that the delay-dependent stability condition in this paper is the best performance.
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Table 4: MADB h2 for unknown hd (h1 = 0) in Example 3.6 for different methods (Number of variables:
Nv; Number of fuzzy rules: r).

Method h2 Nv

Guan and Chen [7] 1,2214 5
Yoneyama [27] 1.8294 8 + 6r
Tian andPeng [18] 1.9187 8 + 8r
Lien [10] 1.9187 8
Chen et al. [5] 1.9187 8
Peng et al. [15] 2.2812 15
Corollary 2.4 (α = 0.6) 2.3725 8

Remark 3.8. Similar to Algorithm 2.10, we can also find an appropriate scalar α, such that the
upper bound of delay 0 ≤ h1 ≤ h(t) ≤ h2, subjecting to (2.26a), (2.26b), (2.26c), and (2.26d)
reaches the maximum.

Example 3.9. Consider a nominal time-delay fuzzy system. The T-S fuzzy model of this fuzzy
system is of the following form.

Rule 1: If x1(t) is M1, then

ẋ(t) = A1x(t) +Ad1x(t − h(t)). (3.14a)

Rule 2: If x1(t) is M2, then

ẋ(t) = A2x(t) +Ad2x(t − h(t)), (3.14b)

and the membership function for rules 1 and 2 are

M1(z(t)) =
1

1 + exp(−2x1(t))
, M2(x1(t)) = 1 −M1(z(t)), (3.15)

where

A1 =
[−2.1 0.1
−0.2 −0.9

]
, Ad1 =

[−1.1 0.1
−0.8 −0.9

]
, A2 =

[−1.9 0
−1.1 −1.1

]
, Ad2 =

[−0.9 0
−1.1 −1.2

]
.

(3.16)

Solution 3.10. The objective is to determine the maximum value of constant time-delay h =
h2(h1 = 0)for which the system is stable. Table 5 compares works based on common quadratic
functionals [7, 18–20, 23] with the fuzzy functional of Corollary 2.4. It is clear by inspecting
Table 5 that Corollary 2.4 provides the largest time delays. For comparison, Table 6 also lists
the maximum allowable delay bound (MADB) h obtained from the criterion [3]. It is clear
that Corollary 2.5 gives much better results than those obtained by [3]. It is illustrated that the
proposed stability criteria are effective in comparison to earlier and newly published results
existing in the literature.
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Table 5:MADB h = h2 (h1 = 0) for different methods in Example 3.9.

Method [7] [18] [19] [20] [23] Corollary 2.4 (α = 0.6)
h 1.25 1.85 3.37 3.85 4.61 5.4873

Table 6: MADB h for different hd for Example 3.9.

hd 0.1 0.3 0.5 0.7 1.1
An and Wen [3] 3.036 2.240 1.747 1.523 1.497
Corollary 2.5 (α = 0.6) 4.4274 3.2378 2.5016 1.9494 1.5926

Example 3.11. Consider a nominal time-delay fuzzy system. The T-S fuzzymodel of this fuzzy
system is of the following form.

Rule 1: If x1(t) is M1, then

ẋ(t) = A1x(t) +Ad1x(t − h(t)). (3.17)

Rule 2: If x1(t) is M2, then

ẋ(t) = A2x(t) +Ad2x(t − h(t)), (3.18)

and the membership functions for rule 1 and rule 2 are

M1(z(t)) = sin2(x1(t)), M2(x1(t)) = cos2(x1(t)), (3.19)

where

A1 =
[
0 1
−8 −6

]
, A2 =

[
0 1
−8 0

]
, Ad1 = Ad2 =

[
0 0
1 −2

]
. (3.20)

Solution 3.12. Considering a constant time delay, by using Corollary 2.4, the maximum
allowable delay bound (MADB) can be calculated as h2 = 0.4130(h1 = 0, α = 0.5). By the
criteria in [13, 23], the systems (3.17) and (3.18) is asymptotically stable for any h that satisfies
h ≤ 0.322 and h ≤ 0.4060, respectively. Hence, for this example, the criteria proposed here
significantly improve the estimate of the stability limit compared with the result of [13, 23].

4. Conclusion

In this paper, we have dealt with the stability problem for T-S fuzzy systems with interval
time-varying delay. By constructing a Lyapunov-Krasovskii functional, the supplementary
requirement that the time derivative of time-varying delays must be smaller than one is
released in the proposed delay-range-dependent stability criterion. By developing a delay
decomposition approach, the information of the delayed plant states can be taken into full
consideration, and new delay-range-dependent sufficient stability criteria are obtained in
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terms of linear matrix inequalities (LMIs)which can be easily solved by various optimization
algorithms. Since the delay term is concerned more exactly, it is less conservative and more
computationally efficient than those obtained from existing methods. Thus, the present
method could largely reduce the computational burden in solving LMIs. Both theoretical
and numerical comparisons have been provided to show the effectiveness and efficiency
of the present method. Numerical examples are given to illustrate the effectiveness of our
theoretical results.
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