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We provide a family of ordinary and delay differential equations to model the dynamics of tumor-
growth and immunotherapy interactions. We explore the effects of adoptive cellular immuno-
therapy on the model and describe under what circumstances the tumor can be eliminated. The
possibility of clearing the tumor, with a strategy, is based on two parameters in the model: the rate
of influx of the effector cells and the rate of influx of IL-2. The critical tumor-growth rate, below
which endemic tumor does not exist, has been found. One can use the model to make predictions
about tumor dormancy.

1. Introduction

Cancer is one of the most difficult diseases to be treated clinically, and one of the main causes
of death. It is the second fatal disease after the cardiovascular diseases. The World Health
Organization estimates that the annual cancer-induced mortality number exceeds six million
people. Accordingly, the fight against cancer is of major public health interest. For this and
other economy-related reasons, a great research effort is being devoted to understand the
dynamics of cancer and to predict the impact of any changes on the system reactors. Hence,
mathematical models are required to help design therapeutic strategies.

In cancer modeling, we have to care about the scaling problem, where the class of
equations, used to describe the model, are to be determined. Indeed, there are three natural
scales, which are connected to the different stages of the disease and have to be identified.
The first is the subcellular (or molecular) scale, where we focus on studying the alterations
in the genetic expressions of the genes contained in the nucleus of a cell, as a result of some
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special signals, which are received by the receptors on the cell surface and transmitted to
the cell nucleus. The second is the cellular scale, which is an intermediate level between
the molecular and the macroscopic scale. The third is the macroscopic scale, where we deal
with heterogeneous tissues. In the heterogeneous tissues, some of the layers (the external
proliferating layer, the intermediate layer, and the inner zone with necrotic cells) constituting
the tumor may occur as islands, leading to a tumor comprised of multiple regions of necrosis,
engulfed by tumor cells in a quiescent or proliferative state [1]. In case of macroscopic scale,
we focus on the interaction between the tumor and normal cells (e.g., immune cells and blood
vessels) in each of the three layers. For more details about description of the scaling problem
and the passage from each scale to another, we refer to Bellomo et al. [1, 2].

A great research effort is being devoted to understand the interaction between the
tumor cells and the immune system. Mathematical models, using ordinary, partial, and delay
differential equations [3], play an important role in understanding the dynamics and tracking
tumor and immune populations over time. Although the theoretical study of tumor immune
dynamics has a long history [4, 5], the multifaceted nature of cancer requires sophisticated,
nonlinear mathematical models to capture more realistic growth dynamics.

Many mathematical models have been proposed to model the interactions of cytotoxic
T lymphocyte (CTL) response and the growth of an immunogenic tumor (see, e.g., [6–11]).
The model by Kuznetsov et al. [7] takes into account the penetration of the tumor cells by
the effector cells, which simultaneously causes the inactivation of effector cells. However,
the model of Matzavinos et al. [9] describes the growth of a solid tumor in the presence of
an immune system response, with special focus on the attack of tumor cells by the tumor-
infiltrating cytotoxic lymphocytes (TICLs) in a small, multicellular tumor, without necrosis
and at some stages prior to angiogenesis. The analysis shows that the TICLs can play an
important role in the control of cancer dormancy.

The treatment of cancer is then one of the most challenging problems of modern
medicine. The treatment should satisfy two basic conditions: first, it should destroy cancer
cells in the entire body. Second, it should distinguish between cancerous and healthy cells.
Other treatments such as surgery and/or chemoand radiotherapies have played key roles in
treatment [12], but in many cases they do not represent a cure. Immunotherapy seems to be
the method that best fulfils both of these requirements [7, 13, 14].

Numerous research papers have been made to explore the effects of the immune
system in eliminating the tumor cells in the host, by stimulating the host’s own immune
response to kill cancer cells [15]. When tumor cells appear in a body, the immune system tries
to identify and then eliminate them. Immunotherapy refers to the use of cytokines usually
together with Adoptive Cellular Immunotherapy (ACI). Cytokines are protein hormones that
mediate both natural and specific immunity. They are produced mainly by activated T cells
(lymphocytes) during cellular-mediated immunity. Interleukin-2 (IL-2) is the main cytokine
responsible for lymphocyte activation, growth, and differentiation. IL-2 has been shown to
enhance Cytotoxic T Cells (CTL) activity at different disease stages. However, ACI refers
to the injection of cultured immune cells that have antitumor reactivity into tumor bearing
host. This interaction is analyzed and studied in various levels of biomathematical researches.
They commonly focused on the models on ODEs over time. For example, in 1985, DeBoer et
al. [4] suggested a mathematical model which contains eleven ordinary differential equations
with five algebraic equations to describe antitumor response with IL-2 taken into account. A
simple version of this model is proposed by Kirschner and Panetta [14]. The model is only
based on three differential equations. Further analysis by several authors has also been done;
see [5, 6, 16–18].
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Immunotherapy models and their predictions have been extensively studied in [9, 14,
19]. In [14], Kirschner et al. explored the role of cytokine in the disease dynamics and stud-
ied the long-term tumor recurrence and short-term tumor oscillations. However, in [19]
Kuznetsov and Knott presented a mathematical model for the growth and suppression of
the tumor. They showed that the model can describe the regrowth of a dormant tumor by
two distinct mechanisms. One explanation for the tumor regrowth is based on a single clone
model, while the other is based on a two-clone model. They fitted their ODE models to the
data and obtained several curves for the tumor regrowth. They compared their predicted
results with clinical and experimental observations, where both results confirm that intensive
limited-term immunotherapy does not provide complete tumor elimination. The simulations
show that medium-term control of cancer is exhibited when long-life immune memory cells
are activated, but long-term control results from reducing the cancer growth rate.

In this paper, we investigate mathematical models for the dynamics between tumor
cells, immune-effector cells, and the cytokine interleukin-2 (IL-2). It is worth stressing that we
operate at a supermacroscopic scale, namely, by ordinary differential equations. However, the
link to lower cellular scale is represented by the delay. The delay differential equations have
long been used in modeling cancer phenomena [20–26]. It should be noted that the hetero-
geneity, mutations, and link with the lower molecular scale are neglected. These topics are
documented in [17, 27, 28].

The organization of this paper is as follows: in Section 2, we provide different models,
using ODEs and DDEs, with interaction functions in the Lotka-Volterra form to describe the
response of the effector cells to the growth of tumor cells. In Section 3, we study the local
stability of the steady states for tumor-free and endemic persistence. Bifurcation analysis for
a three-equations model and finding regions of existence of the equilibria are discussed in
Section 4. In Section 5, we discuss the conditions that ensure tumor-clearance possibilities
and conclude in Section 6.

2. The Model

The model of Kuznetsov et al. [7] describes the response of the effector cells (ECs) to the
growth of tumor cells (TCs). In this model, it has been taken into account the penetration
of TCs by ECs, which simultaneously causes the inactivation of ECs. It is assumed that
interactions between ECs and TCs are in vitro such that E, T , C, E∗, and T ∗ denote the local
concentrations of ECs, TCs, EC-TC conjugates, inactivated effector cells, and “lethally hit”
TCs, respectively. The rate of binding of ECs to TCs and the rate of separation of ECs from
TCs without damaging them are denoted by k1 and k−1, respectively. The rate at which EC-
TC integrations program for lysis is denoted by k2, while the rate at which EC-TC interaction
inactivate ECs is denoted by k3. The model takes the form

dE

dt
= s + F(C, T) − d1E − k1ET + (k−1 + k2)C,

dT

dt
= aT(1 − bT) − k1ET + (k−1 + k3)C,

dC

dt
= k1ET − (k−1 + k2 + k3)C,
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dE∗

dt
= ak3C − d3E∗,

dT ∗

dt
= k2C − d3T ∗.

(2.1)

Here, the parameter s represents the normal rate (not increased by the presence of the tumor)
of the flow of adult ECs into the tumor site and F(C, T) describes the accumulation of ECs
in the tumor site, while d1, d2, and d3 are the coefficients of the processes of destruction and
migration of E, E∗, and T ∗, respectively. The maximal growth of tumor is represented by the
coefficient a, and b is the environment capacity. It was suggested in [7] that the function F
takes the form

F(C, T) = F(E, T) =
pET

r + T
, (2.2)

where p and r are positive constants. This term is the Michaelis-Menten form to indicate the
saturated effects of the immune response.

The idea in this paper is to simplify the above model and reduce it into a two- or three-
equation model to describe the interactions of three types of cell populations: the activated
immune-system cells, E(t) (or effector cells such as cytotoxic T-cells, macrophages, and
natural killer cells that are cytotoxic to the tumor cells); the tumor cells, T(t); the concentration
of IL-2 in the single tumor-site compartment, IL(t). The above model can then be governed
by the following three equations (see [14]):

dE

dt
= cT − μ1E + θ1EIL + s1,

dT

dt
= r2T

(
1 − bT

)
− αET,

dIL
dt

= θ2ET − μ2IL + s2,

(2.3)

with initial conditions E(0) = E0, T(0) = T0, IL(0) = IL0 , where c is the antigenicity rate
of the tumor, s1 is the external source of the effector cells, with rate of death μ1, whereas
the parameter r2 incorporates both multiplication and death of tumor cells. The maximal

carrying capacity of the biological environment for tumor cell is b
−1
, θ1 is considered as the

cooperation rate of effector cells with Interleukin-2 parameter, α is the rate of tumor cells, and
θ2 is the competition rate between the effector cells and the tumor cells. External input of IL-2
into the system is s2, and the rate loss parameter of effector cells is μ2.

2.1. Nondimensionalization

System (2.3) is an example of stiff (One definition of the stiffness is that the global accuracy
of the numerical solution is determined by stability rather than local error and implicit
methods are more appropriate for it.) model, in the sense that it has properties that make
it slow and expensive to solve using explicit numerical methods. Stiffness often appear due
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to the differences in speed between the fastest and slowest components of the solutions, and
stability constraints. The efficient use of reliable numerical methods, that is based in general
on implicit formulae, for dealing with stiff problems involves a degree of sophistication not
necessarily available to nonspecialists [29]. In addition, the state variables of these types of
models are very sensitive to small perturbations (or changes) in the parameters occuring
in the model. Consequently, the parameter estimates are also sensitive to the noisy data
and observations. To ease the analysis and stability of the steady states with meaningful
parameters and less sensitive (or rubus) model, we nondimensionalize the bilinear model
(2.3), by taking the following rescaling:

x =
E

E0
, y =

T

T0
, z =

IL
IL0

, θ1 =
θ1IL0

ts
, θ2 =

θ2E0T0
tsIL0

,

μ1 =
μ1

ts
, μ2 =

μ2

ts
, b = bT0, c =

cT0
tsE0

, α =
αE0

ts
,

τ = tst, r2 =
r2
ts
, s1 =

s1
tsE0

, s2 =
s2
tsIL0

.

(2.4)

Therefore, after the above substitution into (2.3) and replacing τ by t, the model becomes

dx

dt
= cy − μ1x + θ1xz + s1,

dy

dt
= r2y

(
1 − by) − αxy,

dz

dt
= θ1xy − μ2z + s2,

(2.5)

with initial conditions x(0) = x0, y(0) = y0, and z(0) = z0. Here x(t), y(t), and z(t) denote
the dimensionless density of ECs, TCs, and LI-2, respectively. In model (2.5), there are four
possible cases of treatments, according the values of s1 and s2: (i) notreatment case (s1 = s2 =
0), (ii) adoptive cellular immunotherapy case (s1 > 0, s2 = 0), (iii) interleukin-2 case (s1 = 0,
s2 > 0), (iv) and immunotherapy with both adoptive cellular immunotherapy (ACI) and IL-2
(s1 > 0, s2 > 0).

Yafia [10] considered system (2.5) in the absence of immunotherapy with IL-2,

dx

dt
= ωxy − μx + s,

dy

dt
= ry

(
1 − by) − xy,

(2.6)

where ω is immune response to the appearance of the TCs, s has the same meaning of s1, r
has the meaning of r2, and μ has the meaning of μ1 in the above model. If we consider a time
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Table 1: The nondimensionalization parameters of bilinear model (2.5).

c = 5/18 μ1 = 1/6 θ1 = 1/18000000
r2 = 1 b = 1/1000
μ2 = 500/9 θ2 = 250/9
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Figure 1: Solution of the DDEs (2.7) when ω = 0.01184, μ = 0.3747, s = 0.1181, r = 1.636, b = 0.002, and
τ = 0.8. This shows an unstable endemic equilibrium.

delay τ > 0 in (2.6) due to the time-lag in the interaction between ECs and TCs, the model
takes the form

dx

dt
= ωx(t)y(t − τ) − μx(t) + s,

dy

dt
= ry(t − τ)(1 − by(t)) − x(t)y(t).

(2.7)

In this model, we only consider the time delay in the dependent variable y (representing
tumor) of the nonlinear term. Of course other models assume time delays in both variables
x and y [6]. Further models that consider time delays when modeling tumor growth are
discussed in [30–32]. To solve model (2.7), we should provide an initial function with initial
function y(t) = ψ(t), t ∈ [−τ, 0] instead of the initial value y(0) at t = 0 (see [3]). It has been
shown that model (2.7) has visible and bounded solution (see [6, 11]). When the time delay
is included in the simplified model (2.6), the state of returning tumor cells can be observed,
as DDE models have richer dynamics than do ODE models; see the graphs displayed in
Figures 1, 2, and 3. We next study the stability of the steady states of the above models,
according the values of the parameters given in Table 1.
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Figure 2: Solution of the DDEs (2.7) when ω = 0.01184, μ = 0.3747, s = 0.2181, r = 1.636, b = 0.002 and
τ = 0.8. This shows a stable endemic equilibrium.
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Figure 3: Solution of the DDEs (2.7) when ω = 0.04184, μ = 0.03747 (a), and μ = 0.3747 (b), s = 0.2181,
r = 1.636, b = 0.002, and τ = 0.8. The tumor-free equilibrium is asymptotically stable in the left banner and
unstable in the right banner.

3. Steady States and Stability

The solutions of practical interest should have nonnegative population x, y, and z. However,
it is hard to find a closed analytical solution for the above nonlinear models, instated we can
study their qualitative behavior by studying the stability of the steady states. We then assume
that the parameters occuring in the models are also nonnegative.



8 Journal of Applied Mathematics

3.1. Tumor-Free Equilibrium and Its Stability

To ease the analysis, we start with the 2-population model (2.6). The steady states of the
reduced model (2.6) are the intersection of the null-clines dx/dt = 0 and dy/dt = 0. If y = 0,
the free tumor equilibrium is at (x, y) = (s/μ, 0). This steady state always exists, since s/μ >
0. It is clear that the tumor-free equilibrium E0 = (x∗, y∗) = (s/μ, 0) of the model (2.6) is
asymptotically stable if rμ < s and unstable if rμ > s. Whoever, when we consider the DDEs
model, the characteristic equation of the linearized model of (2.7) at E0 = (s/μ, 0) takes the
form

(λ + r)
(
λ − e−λτ + s

μ

)
= 0. (3.1)

When τ = 0, it is clear that E0 is asymptotically stable when rμ < s and unstable otherwise.
However, if τ > 0, (3.1) has a negative real root λ = −r and roots of

λ − e−λτ + s

μ
= 0. (3.2)

Puting λ = ξi in (3.2) and separating real and imaginary parts yields

ξ2 =

[
r2 −

(
s

μ

)2
]
. (3.3)

Therefore, when |rμ| < |s| there are no positive real root ξ. This shows that all the roots of
(3.1) have negative real parts and E0 is asymptotically stable.

In case of the three-equation model (2.5), and at the equilibrium points, we have

0 = cy − μ1x + θ1xz + s1, 0 = r2y
(
1 − by) − αxy,

0 = θ2xy − μ2z + s2.
(3.4)

Putting y = 0 yields the tumor-free equilibrium, namely,

E0 =
[

s1μ2

μ1μ2 − θ1s2 , 0,
s2
μ2

]
. (3.5)

It is clear that the infection-free equilibrium E0 exists if and only if s2 < μ1μ2/θ1. Therefore,
we restrict our analysis to the case where s2 < μ1μ2/θ1. To study its stability, we consider the
corresponding Jacobian matrix

JE0 =

⎡
⎣
−μ1 + θ1s2/μ2 c θ1s1μ2/

(
μ1μ2 − θ1s2

)
0 r2 − αs1μ2/

(
μ1μ2 − θ1s2

)
0

0 θ2s1μ2/
(
μ1μ2 − θ1s2

) −μ2

⎤
⎦. (3.6)
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It has the eigenvalues −μ1 +θ1s2/μ2, r2 −αs1μ2/(μ1μ2 −θ1s2), and −μ2. Therefore, E0 is locally
asymptotically stable if and only if r2 < αs1μ2/(μ1μ2 − θ1s2), while otherwise it is an unstable
saddlepoint.

3.2. Endemic Equilibrium and Its Stability

Consider again the two-equation model (2.6). If y /= 0, the steady states are obtained by
solvingωrby2−r(ω+μb)y+μr−s = 0. In this case, we have two endemic equilibria P1 = (x1, y1)
and P2 = (x2, y2), where

x1 =
−r(bμ −ω) − √

Δ
2ω

, y1 =
r
(
bμ +ω

)
+
√
Δ

2rbω
,

x2 =
−r(bμ −ω) +√

Δ
2ω

, y2 =
r
(
bμ +ω

) − √
Δ

2rbω
,

(3.7)

with Δ = r2(bμ −ω)2 + 4ωrbμ > 0. The Jacobian matrix of the system (2.6) at the endemic
equilibrium P1 is

Jendemic =
[
ωy1 − μ ωx1
−y1 r − 2bry1 − x1

]
. (3.8)

Proposition 3.1. If the endemic equilibrium P1 exists and has nonnegative coordinates, then
tr(Jendemic) > 0 and P1 is unstable.

Proof. Since

tr(Jendemic) =
ω2 −ω(rb + bμ) − rb2μ

2bω
+
ω − rb
2rbω

√
r2
(
bμ +ω

)2 − 4rbω
(
rμ − s), (3.9)

then inequality tr(Jendemic) > 0 is true if

r
[
ω2 −ω(rb + bμ) − rb2μ

]
> (rb −ω)

√
r2
(
bμ +ω

)2 − 4rbω
(
rμ − s). (3.10)

Therefore, when rμ < s andω < −bμ, we haveω2−ωb(r+μ)−rμb2 > 0 and hence both sides of
the inequality are positive. Therefore, if the point P1 exists and has nonnegative coordinates,
then tr(Jendemic) > 0 and the point P1 is unstable whenever ω < −bμ and rμ < s.

Similarly, it is easy to prove the following proportion.

Proposition 3.2. If the point P2 exists and has nonnegative coordinates, then it is asymptotically
stable.
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We extend the above analysis to the case of the three-equation model (2.5). The tumor-
persistent solutions are obtained by putting y /= 0 and omitting x and z in (3.4) to get a scalar
equation in the variable y which reads

F
(
r2, y

)
= C3y

3 + C2y
2 + C1y + C0 = 0, (3.11)

where

C3 = θ1θ2r22b
2 > 0,

C2 = −2θ1θ2br22 < 0,

C1 = r22θ1θ2 + r2b
(
μ1μ2 − s2θ1

)
α + cμ2α

2,

C0 = α
[
r2
(
θ1s2 − μ1μ2

)
+ μ2s1α

]
.

(3.12)

Since s2 < μ1μ2/θ1, then the coefficient C1 is always positive, while the coefficient C0 can take
positive and negative values depending on the values of the model parameters. Also, (3.11) is
welldefined for all y ∈ [0, 1/b]. Its left-hand side is a polynomial of degree three, and its zeros
are not easy to be obtained in a closed-form. However, some conditions in the parameters
occur in the model to ensure the existence of its solutions could be deduced. Equation (3.11)
can also be seen as a bifurcation equation in r2 and y, where we keep all other parameters
fixed. Once a solution y > 0 of this equation has been obtained, we could find positive x and
z from the other equations in (3.4). Therefore, there is a one-to-one correspondence between
the solutions of (3.11) and the endemic stationary solutions. For more insights, we next study
the bifurcation analysis.

4. Bifurcation Analysis of Model (2.5)

The bifurcation analysis gives a deeper analysis about the model. It answers the query that
“how does the behavior of the solutions change as parameters change.” We restrict ourselves
to only study the bifurcation analysis of ODEs models rather than DDEs models.

4.1. Bifurcation Points for the Parameter r2

In this subsection, we then analyze the bifurcation so that the tumor growth rate r2 acts as a
bifurcation parameter. Therefore, to find the bifurcation point(s), we put y = 0 in (3.11) to get
r2 = αμ2s1/(μ1μ2 − θ1s2) := r2. Hence, there is only one transcritical bifurcation point at

(
r2, y

)
=
(

αμ2s1
μ1μ2 − θ1s2 , 0

)
. (4.1)

Now, we compute the direction of bifurcation at (r2, 0) so that

dy

dr2

∣∣∣∣
(r2,0)

= −Fr2
Fy

∣∣∣∣∣
(r2,0)

, (4.2)
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where

Fr2 |(r2,0) = −α(μ1μ2 − θ1s2
)
< 0, Fy

∣∣
(r2,0)

=

(
c + bs1 +

θ1θ2μ2s
2
1(

μ1μ2 − θ1s2
)2
)
μ2α

2 > 0. (4.3)

Hence, the bifurcation at the point (r2, 0) is forward, irrespective of the values of the model-
parameters. We notice that the model we consider here has only one bifurcation point (r2, 0)
at which the bifurcation is forward.

4.2. Bifurcation Diagrams for the Parameter ∝
The parameter α is very important in the model that plays an effective role to define cancer
behavior. We investigate numerically, in this subsection, the bifurcation of the model for the
parameter α. We consider the four cases: no treatment case (s1 = s2 = 0), adoptive cellular
immunotherapy case (s1 > 0, s2 = 0), interleukin-2 case (s1 = 0, s2 > 0), and immunotherapy
with both ACI and IL-2 case (s1 > 0, s2 > 0).

If we solve F(y, α) = F(α, y) = 0 in α, we have

α+ =
r2b
(
y − 1/b

)

2μ2
(
cy + s1

)
[(
θ1s2 − μ1μ2

)
+
√(

μ1μ2 − s2θ1
)2 − 4θ1θ2μ2y

(
cy + s1

)]
,

α− =
r2b
(
y − 1/b

)

2μ2
(
cy + s1

)
[(
θ1s2 − μ1μ2

) −
√(

μ1μ2 − s2θ1
)2 − 4θ1θ2μ2y

(
cy + s1

)]
.

(4.4)

To plot (α, y) in the interval 0 < y < 1/b, under the conditions that

(
μ1μ2 − s2θ1

)2 − 4θ1θ2μ2y
(
cy + s1

)
> 0,

− 4θ1θ2cμ2y
2 − 4θ1θ2μ2s1y +

(
μ1μ2 − s2θ1

)2
> 0,

(4.5)

we have

y2 +
s1
c
y −
(
μ1μ2 − s2θ1

)2
4θ1θ2cμ2

< 0. (4.6)

Then

1
2

⎡
⎢⎣ −s1

c
−

√√√√(s1
c

)2

+

(
μ1μ2 − s2θ1

)2
θ1θ2cμ2

⎤
⎥⎦ < y <

1
2

⎡
⎢⎣ −s1

c
+

√√√√(s1
c

)2

+

(
μ1μ2 − s2θ1

)2
θ1θ2cμ2

⎤
⎥⎦. (4.7)

For 0 < y < y+, where

y+ =
1
2

⎡
⎢⎣−s1

c
+

√√√√(s1
c

)2

+

(
μ1μ2 − s2θ1

)2
θ1θ2cμ2

⎤
⎥⎦, (4.8)
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we have two cases y+ < 1/b or y+ > 1/b. The graphs in Figure 4, which are obtained
numerically, display the bifurcation diagrams for different cases, where (i) s1 = s2 = 0, (ii)
s1 = 10, s2 = 0, (iii) s1 = 0, s2 = 40, and (vi) s1 = 10, s2 = 40.

Given the threshold point (α, y) = (α∗, 0), the tumor clearance condition is α > α∗,
where

α∗ =

(
μ1μ2 − θ1s2

)
r2

μ2s1
. (4.9)

Therefore, when s1 > 0, then α∗ > 0 and α ∝ 1/s1. Thus, we can arrive to tumor clearance
quickly when the value of s1 increases. We notice from Figure 4 that the locations of saddle
node bifurcation points A and B bridge the one-positive equilibrium to the three-positive
equilibria. The supercritical Hopf bifurcation point C joints between existence of stable limit
cycles and nonexistence of limit cycles. The transcritical bifurcation pointD at (α, y) = (α∗, 0)
bridges the one-positive equilibrium and no positive equilibria.

4.3. Regions of Existence of the Equilibria

In addition to the tumor-free equilibrium, (3.11) may have one to three persistent-tumor
equilibria, depending on the values of the model-parameters. However, before we proceed
we provide the following proposition, which is helpful in the analysis.

Proposition 4.1. Equation (3.11) does not have two persistent-tumor equilibria if r2 < r2, where r2
is given in (4.1).

Proof. Since the bifurcation direction at the point (r2, 0) is always forward, then (3.11) has two
positive roots, for r2 < r2, if and only if F(r2, y) = y(c3y2 + C2y + C1) = 0 has two positive
zeros, where

C2 =
−2
b
C3 = −2bθ1θ2

(
μ2s1α

μ1μ2 − θ1s2

)2

,

C1 = θ1θ2
(

μ2s1α

μ1μ2 − θ1s2

)2

+ μ2α
2(bs1 + cμ2

)
.

(4.10)

However, C2
2 − 4C1C3 = −4C3μ2α

2(bs1 + cμ2) < 0. Therefore, the proof is complete.

Now, to find the conditions, on the model parameters, being required for the existence
of the persistent equilibria, we make the use of both Descant’s rule of signs and the
Sturm sequence [33]. In (3.11), it is clear that the coefficients C3, C2, and C1 have fixed
signs, while the coefficient C0 can take positive or negative values. Hence, the number of
feasible tumor-persistent equilibria (on the interval y ∈ [0, 1/b]) depends on the difference
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(b) Interleukin-2 Case s1 = 0, s2 = 10
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(f) Small interval of α for immunotherapy with both
ACI and IL-2 case, s1 = 40, s2 = 10

Figure 4: shows the bifurcation diagrams for the bilinear model (2.5) for the parameter α: [—] represents
the stable equilibrium, [- - -] represents the unstable equilibrium, [· · · ] is the stable limit cycles, while [◦] is
the saddle node bifurcation. [•] is the transcritical bifurcation and [�] the supercritical Hopf bifurcation.
The values of parameters are given in Table 1.
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Table 2: The number of positive steady states (SS) is determined by the signs of the coefficients (3.11) and
the signs of the quantities R, S, and T from the Sturm sequence. Blank entries correspond to coefficients
which may take positive, negative, or zero values.

SS C0 R S T

0 + − −
1 − −
3 − + − +

between the number of sign changes at y = 0 and at y = 1/b in the Sturm sequence
{P0(y), P1(y), P2(y), P3(y)}, such that

P0
(
y
)
= F
(
y
)
= C3y

3 + C2y
2 + C1y + C0,

P1
(
y
)
= F ′(y) = 3C3y

2 + 2C2y + C1,

P2
(
y
)
=

2
9
Ry +

1
9
S, P3

(
y
)
= T, where R =

(
C2

2 − 3C1C3

)
/C3,

S = (C2C1 − 9C0C3)/C3, T =
R

3
− 3C3

(
S

2R
− C2

3C3

)2

.

(4.11)

Hence the number of sign changes depends on the sign of the coefficient C0 and the remain-
ders R, S, and T . Table 2 shows the conditions required for the existence of persistent-tumor
equilibria as well as their numbers, where we take into account that C0 > 0 implies S < 0.

We may note that the tumor-persistent equilibria do not exist for C0 > 0, while one
or three equilibria exist depending on the other relevant quantities. The interest is to find
the area where the tumor-free equilibrium is a global attractor. Based on Proposition 4.1 and
Table 2, this area is determined by C0 > 0 that is equivalent to

r2 <
μ2s1α

μ1μ2 − θ1s2 := r	2 , (4.12)

where r	2 is the critical growth rate of the tumor cell population, separating between nonexistence
and existence of positive endemic equilibria.

If we consider the general case of immunotherapy with both ACI and IL-2 treatments,
then according to the conditions given in Table 2 and data displayed in Figure 4, then Figure 5
displays six stability regions in terms of the two parameters α, r2 (according to the number of
positive equilibria and the limit cycles). However, Figure 6 shows phase spaces for different
equilibria where there are stable steady states, unstable steady states, stable manifold,
unstable manifold and initial conditions. For example, Figure 6(f) shows the trajectories
where there are three tumor-persistent equilibria for which two of them are locally stable and
one, lying in between, for tumor-free equilibrium, is unstable (that correspond to region 3.b in
Figure 5). Figure 6(e) shows the trajectories where there are three tumor-persistent equilibria
for which one of them is locally stable, one is stable limit cycles, and one, lying in between,
for tumor-free equilibrium is unstable (that correspond to region 3.a in Figure 5).

5. Tumor-Clearance Possibilities

Let us introduce the following definition to facilitate the analysis.
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Figure 5: The two-dimensional transition structure as a function of α (the tumor cell is predated by effector
cells rate) and r2 (themaximal growth rate of the tumor cells population): sd is the saddle node bifurcation,
ts is the transcritical bifurcation, and hf is the supercritical Hopf bifurcation. (Immunotherapy with both
ACI and IL-2 Case; see Table 1 and s1 = 40, s2 = 10.).

Definition 5.1. The threshold parameter R0 (the minimum tumor-clearance parameter) is the
parameter that has the property that if R0 < 1, then the endemic tumor does not exist, while
if R0 > 1 the tumor persists (see [34]).

The parameter R0 can then be expressed in terms of the ratio between the tumor-
growth rate and the critical tumor-growth rate separating between nonexistence and exis-
tence of endemic tumor. Now, for the three-equationsmodel, the tumor-free equilibrium is the
unique equilibrium if and only if r2 < r	2 , where it is also locally asymptotically stable. There-
fore, the minimum tumor-clearance parameter is R0 = r2/r

	
2 and clearing the tumor requires

the achievement of the inequality R0 < 1. It is equivalent to the following set of inequalities:

s1 >
μ1μ2 − θ1s2

μ2α
r2 := s	1, s2 <

μ1μ2

θ1
:= s	2. (5.1)

Hence clearing the tumor depends mainly on the concentration of treatments: the external
source of effector cells s1 and the treatment s2, which represents the external input of IL-2.
If s2 = 0, then the tumor can be cleared by treatment with adoptive cellular immunotherapy
alone, s1 > (μ1/α)r2. However, for s1 = 0, then the inequality r2 < r	2 cannot be held and
therefore, it is impossible to treat cancer by IL-2 alone. However, a strategy based on using
both adoptive immunotherapy and IL-2 with concentrations s2 < s	2 and s1 > s	1 could be
used to clear the tumor; see Figure 7. We arrive to the following corollary.

Corollary 5.2. In the tumor-clearance problem, we have the following three cases:

(i) if s1 = 0, the tumor could never be cleared,
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Figure 6: The phase spaces at different equilibria where stable steady states [•], unstable steady states [©],
stable manifold [- - -], unstable manifold [· · · ], and initial conditions [+], exist. (with immunotherapy with
both ACI and IL-2, see Table 1 and s1 = 40, s2 = 10.).



Journal of Applied Mathematics 17

0 2 4 6 8 10
0

1

2

3

 

0.5

1.5

2.5

r2

s 1

s2 = 0
s2 = 5∗106

s2 = 107

s2 = 108

Tumor-free
region

Tumor-endemicity
region

s2 = 1.5∗108

Figure 7: The critical s	1 as a function of r2 for several levels of s2. For values of s1 above the threshold s	1,
the tumor cells do not exist (with α = 0.5556), see Table 1.

(ii) if s2 = 0, the tumor could be cleared by adding an external source of effector cells with con-
centration slightly above s	1 = (μ1/α)r2,

(iii) if s1 /= 0 and s2 /= 0, then the tumor could be cleared with concentrations s2 < μ1μ2/θ1 and
s1 > ((μ1μ2 − θ1s2)/μ2α)r2.

6. Summary and Conclusion

In this paper, we introduced a family of differential models (ODEs and DDEs) to describe
the dynamics of cancer. The ODEs models model cancer at supermacroscopic, in the sense
that they describe the interaction between the tumor cells and the normal (immune) cells
[1]. However, the DDEs models link it with the lower cellular scale. The qualitative and
evolution of the models have been displayed with different values of the parameters α (the
rate of tumor cells predated by the effector cells) and r2 (the maximal growth rate of the
tumor cells population). Although the underlying models are simple, they display very rich
dynamics and give a good picture for the phenomena of real interaction of tumor growth and
immunotherapy. The minimum tumor-clearance parameter R0 has been expressed in terms
of the ratio between the tumor-growth rate and the critical tumor-growth rate. The cases
at which the tumor can be cleared are summarized in Corollary 5.2. The obtained results
can help to gain a better understanding of interaction mechanisms and make predictions,
determine and evaluate control strategies, and convey more general insight to biologists.

The numerical simulations (have been obtained by semi-implicit RK methods [29])
demonstrate that the system with time delay exhibits richer complex dynamics, such as
quasiperiodic and chaotic patterns, compared with models without memory or after-effect.
The steady states of DDEs models are similar to the steady states of ODEs models. We shall
extend this work to investigate the qualitative behavior and bifurcation analysis of more
sophisticated models of DDEs in modeling tumor-immune interactions with immunotherapy
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and control functionals to maximize the effector cells and interleukin-2 concentration and to
minimize the tumor cells.
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