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We discuss the positive definite solutions for the system of nonlinear matrix equations X −
A∗Y−nA = I and Y − B∗X−mB = I, where n, m are two positive integers. Some properties of
solutions are studied, and the necessary and sufficient conditions for the existence of positive
definite solutions are given. An iterative algorithm for obtaining positive definite solutions of the
system is proposed. Moreover, the error estimations are found. Finally, some numerical examples
are given to show the efficiency of the proposed iterative algorithm.

1. Introduction

In this paper, we consider the system of nonlinear matrix equations that can be expressed in
the form

X −A∗Y−nA = I,

Y − B∗X−mB = I,
(1.1)

where n,m are two positive integers, X,Y are r × r unknown matrices, I is the r × r identity
matrix, and A,B are given nonsingular matrices. All matrices are defined over the complex
field.

System of nonlinear matrix equations of the form of (1.1) is a special case of the system
of algebraic discrete-type Riccati equations of the form

Xi = V ∗
i XiVi +Qi −

(
V ∗
i XiBi +Ai

)(
Ri + B∗

i XiBi

)−1(
B∗
i XiVi +A∗

i

)
, (1.2)
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where i = 1, 2, . . . , k [1, 2], when m = n = 1. It is well known that the algebraic Riccati
equations often arise in control theory, stability theory, communication system, dynamic
programming, signal processing, statistics, and so forth [1–3]. In the recent years, some
special case of the system (1.2) has been studied in many papers [4–14]. For example,
Costa and Marques [5] have studied the maximal and stabilizing hermitian solutions
for discrete-time-coupled algebraic Riccati equations. Czornik and Świerniak [7, 8] have
studied the lower and the upper bounds on the solution of coupled algebraic Riccati
equation. In [13] Mukaidani et al. proposed a numerical algorithm for finding solution
of cross-coupled algebraic Riccati equations. In [4] Aldubiban has studied the properties
of special case of Sys. (1.2) and obtained the sufficient conditions for existence of a
positive definite solution and proposed an iterative algorithm to calculate the solutions.
In [10] Ivanov proposed a method to solve the discrete-time-coupled algebraic Riccati
equations.

This paper is organized as following: in Section 2, we derive the necessary and
sufficient conditions of existence solutions for the Sys. (1.1). In Section 3, we introduce an
iterative algorithm to obtain the positive definite solutions of Sys. (1.1). We discuss the
convergence of the proposed iterative algorithm and study the convergence of the algorithm.
Some numerical examples are given to illustrate the efficiency for suggested algorithm in
Section 4.

The following notations are used throughout the rest of the paper. The notation A ≥
0 (A > 0) means that A is a positive semidefinite (positive definite), A� denotes the complex
conjugate transpose of A, and I is the identity matrix. Moreover, A ≥ B (A > B) is used
as a different notation for A − B ≥ 0 (A − B > 0). We denote by ρ(A) the spectral radius
of A, λr(X), and μr(Y ) mean the eigenvalues of X and Y , respectively. The norm used in
this paper is the spectral norm of the matrix A, that is, ‖A‖ =

√
ρ(AA�) unless otherwise

noted.

2. Conditions for Existence of the Solutions

In this section, we will discuss some properties of the solutions for the Sys. (1.1), and we
obtain the necessary and sufficient conditions for the existence of the solutions of Sys. (1.1).

Theorem 2.1. If λ−, λ+ are the smallest and the largest eigenvalues of a solution X of Sys. (1.1),
respectively, and μ−, μ+ are the smallest and the largest eigenvalues of a solution Y of Sys. (1.1),
respectively, η, ξ are eigenvalues of A,B, then

√
(λ− − 1)μn

− ≤ ∣∣η∣∣ ≤
√
(λ+ − 1)μn

+,

√(
μ− − 1

)
λm− ≤ |ξ| ≤

√(
μ+ − 1

)
λm+ .

(2.1)

Proof. Let ν be an eigenvector corresponding to an eigenvalue η of the matrix A and |ν| = 1,
and letω be an eigenvector corresponding to an eigenvalue ξ of thematrix B and |ω| = 1. Since
the solution (X,Y ) of Sys. (1.1) is a positive definite solution then (λ− − 1)I ≤ X − I ≤ (λ+ − 1)I
and (μ− − 1)I ≤ Y − I ≤ (μ+ − 1)I.
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From the Sys. (1.1), we have

〈Xν, ν〉 − 〈(A∗Y−nA
)
ν, ν
〉
= 〈Iν, ν〉,

〈Xν, ν〉 − 〈Iν, ν〉 =
〈
Y−nAν,Aν

〉
,

〈(X − I)ν, ν〉 =
∣
∣η
∣
∣2〈Y−nν, ν

〉
,

(2.2)

that is

(λ− − 1)μn
− ≤ ∣∣η∣∣2 ≤ (λ+ − 1)μn

+. (2.3)

Hence

√
(λ− − 1)μn

− ≤ ∣∣η∣∣ ≤
√
(λ+ − 1)μn

+. (2.4)

Also, from the Sys. (1.1), we have

〈Yω,ω〉 − 〈(B∗X−mB
)
ω,ω

〉
= 〈Iω,ω〉,

〈Yω,ω〉 − 〈Iω,ω〉 =
〈
X−mBω,Bω

〉
,

〈(Y − I)ω,ω〉 = |ξ|2〈X−mω,ω
〉
,

(2.5)

that is

(
μ− − 1

)
λm− ≤ |ξ|2 ≤ (μ+ − 1

)
λm+ . (2.6)

Hence

√(
μ− − 1

)
λm− ≤ |ξ| ≤

√(
μ+ − 1

)
λm+ . (2.7)

Theorem 2.2. If Sys. (1.1) has a positive definite solution (X,Y ), then

I < X < I +A∗A,

I < Y < I + B∗B.
(2.8)

Proof. Since (X,Y ) is a positive definite solution of Sys. (1.1), then

X > I, A∗Y−nA > 0, Y > I, B∗X−mB > 0. (2.9)
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From the inequality Y−1 < I, we have

A∗Y−nA < A∗A, (2.10)

that is

X = I +A∗Y−nA,

< I +A∗A.
(2.11)

Hence

I < X < I +A∗A. (2.12)

From the inequality X−1 < I, we have

B∗X−mB < B∗B, (2.13)

that is

Y = I + B∗X−mB,

< I + B∗B.
(2.14)

Hence

I < Y < I + B∗B. (2.15)

Theorem 2.3. Sys. (1.1) has a positive definite solution (X,Y ) if and only if the matrices A,B have
the factorization

A = (P ∗P)n/2N, B = (Q∗Q)m/2M, (2.16)

where P,Q are nonsingular matrices satisfying the following system:

Q∗Q −N∗N = I,

P ∗P −M∗M = I.
(2.17)

In this case the solution is (Q∗Q,P ∗P).
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Proof. Let Sys. (1.1) have a positive definite solution (X,Y ); then X = Q∗Q,Y = P ∗P , where
Q,P are nonsingular matrices. Then Sys. (1.1) can be rewritten as

Q∗Q −A∗(P ∗P)−nA = I,

P ∗P − B∗(Q∗Q)−mB = I,

Q∗Q −A∗(P ∗P)−n/2(P ∗P)−n/2A = I,

P ∗P − B∗(Q∗Q)−m/2(Q∗Q)−m/2B = I.

(2.18)

Letting N = (P ∗P)−n/2A, M = (Q∗Q)−m/2B, then A = (P ∗P)n/2N, B = (Q∗Q)m/2M, then the
Sys. (1.1) is an equivalent to Sys. (2.17).

Conversely, if A,B have the factorization (2.16) and satisfy Sys. (2.17), let X =
Q∗Q, Y = P ∗P , then X,Y are positive definite matrices, and we have

X −A∗Y−nA = Q∗Q −A∗(P ∗P)−nA

= Q∗Q −A∗(P ∗P)−n/2(P ∗P)−n/2A

= Q∗Q −N∗N

= I,

(2.19)

Y − B∗X−mB = P ∗P − B∗(Q∗Q)−mB

= P ∗P − B∗(Q∗Q)−m/2(Q∗Q)−m/2B

= P ∗P −M∗M

= I.

(2.20)

Hence Sys. (1.1) has a positive definite solution.

3. Iterative Algorithm for Solving the System

In this section, we will investigate the iterative solution of the Sys. (1.1). From this section
to the end of the paper we will consider that the matrices A,B are normal satisyfing A−1B =
BA−1 and A−1B∗ = B∗A−1.

Let us consider the following iterative algorithm.

Algorithm 3.1. Take X0 = I, Y0 = I.
For s = 0, 1, 2, . . . compute

Xs+1 = I +A∗Y−n
s A,

Ys+1 = I + B∗X−m
s B.

(3.1)
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Lemma 3.2. For the Sys. (1.1), we have

AXs = XsA, BYs = YsB, AY−1
s = Y−1

s A, BX−1
s = X−1

s B, (3.2)

where {Xs}, {Ys}, s = 0, 1, 2, . . ., are determined by Algorithm 3.1.

Proof. Since X0 = Y0 = I, then

AX0 = X0A, BY0 = Y0B, A−1Y0 = Y0A
−1, B−1X0 = X0B

−1. (3.3)

Using the conditions AA∗ = A∗A,BB∗ = B∗B, we obtain

AX1 = A(I +A∗A)

= A +AA∗A

= A +A∗AA

= (I +A∗A)A

= X1A.

(3.4)

Also, we have

BY1 = Y1B. (3.5)

Using the conditions A−1B = BA−1, A−1B∗ = B∗A−1, we obtain

A−1Y1 = A−1(I + B∗B)

= A−1 +A−1B∗B

= A−1 + B∗A−1B

= A−1 + B∗BA−1

= (I + B∗B)A−1

= Y1A
−1.

(3.6)

By the same manner, we get

B−1X1 = X1B
−1. (3.7)

Further, assume that for each k it is satisfied that

AXk−1 = Xk−1A, BYk−1 = Yk−1B, A−1Yk−1 = Yk−1A−1, B−1Xk−1 = Xk−1B−1.
(3.8)
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Now, by induction, we will prove

AXk = XkA, BYk = YkB, A−1Yk = YkA
−1, B−1Xk = XkB

−1. (3.9)

Since the two matrices A,B are normal and using the equalities (3.8), therefor

AXk = A
(
I +A∗Y−n

k−1A
)

= A +AA∗Y−n
k−1A

= A +A∗AY−n
k−1A

= A +A∗Y−n
k−1AA

=
(
I +A∗Y−n

k−1A
)
A

= XkA.

(3.10)

Similarly

BYk = YkB. (3.11)

By using the conditions A−1B = BA−1, A−1B∗ = B∗A−1 and the equalities (3.8), we have

A−1Yk = A−1(I + B∗X−m
k−1B

)

= A−1 +A−1B∗X−m
k−1B

= A−1 + B∗A−1X−m
k−1B

= A−1 + B∗X−m
k−1A

−1B

= A−1 + B∗X−m
k−1BA

−1

=
(
I + B∗X−m

k−1B
)
A−1

= YkA
−1.

(3.12)

Also, we can prove

B−1Xk = XkB
−1. (3.13)

Therefore, the equalities (3.2) are true for all s = 0, 1, 2, . . ..

Corollary 3.3. From Lemma 3.2, we have

AY−n
s = Y−n

s A, BX−m
s = X−m

s B, (3.14)

where {Xs}, {Ys}, s = 0, 1, 2, . . ., are determined by Algorithm 3.1.
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Lemma 3.4. For the Sys. (1.1), we have

XsXs+1 = Xs+1Xs, YsYs+1 = Ys+1Ys, (3.15)

where {Xs}, {Ys}, s = 0, 1, 2, . . ., are determined by Algorithm 3.1.

Proof. Since X0 = Y0 = I, then X0X1 = X1X0, Y0Y1 = Y1Y0.
By using the equalities (3.14), we have

X1X2 = (I +A∗A)
(
I +A∗Y−n

1 A
)

= I +A∗A +A∗Y−n
1 A +A∗AA∗Y−n

1 A

= I +A∗A +A∗Y−n
1 A +A∗AY−n

1 A∗A

= I +A∗A +A∗Y−n
1 A +A∗Y−n

1 AA∗A

=
(
I +A∗Y−n

1 A
)
(I +A∗A)

= X2X1.

(3.16)

Similarly we get

Y1Y2 = Y2Y1. (3.17)

Further, assume that for each k it is satisfied that

Xk−1Xk = XkXk−1, Yk−1Yk = YkYk−1. (3.18)

Now, we will prove

XkXk+1 = Xk+1Xk, YkYk+1 = Yk+1Yk. (3.19)

From the equalities (3.18), we have

X−m
k−1X

−m
k = X−m

k X−m
k−1, Y−n

k−1Y
−n
k = Y−n

k Y−n
k−1. (3.20)
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By using the equalities (3.14) and (3.20), we have

XkXk+1 =
(
I +A∗Y−n

k−1A
)(
I +A∗Y−n

k A
)

= I +A∗Y−n
k−1A +A∗Y−n

k A +A∗Y−n
k−1AA∗Y−n

k A

= I +A∗Y−n
k−1A +A∗Y−n

k A +A∗AY−n
k−1Y

−n
k A∗A

= I +A∗Y−n
k−1A +A∗Y−n

k A +A∗AY−n
k Y−n

k−1A
∗A

= I +A∗Y−n
k−1A +A∗Y−n

k A +A∗Y−n
k AA∗Y−n

k−1A

=
(
I +A∗Y−n

k A
)(
I +A∗Y−n

k−1A
)

= Xk+1Xk.

(3.21)

By the same manner, we can prove

YkYk+1 = Yk+1Yk. (3.22)

Therefore, the equalities (3.15) are true for all s = 0, 1, 2, . . . .

Theorem 3.5. If A,B are satisfying the following conditions:

(i) ‖A‖2(1 + ‖A‖2)m−1 < 1/m,

(ii) ‖B‖2(1 + ‖B‖2)n−1 < 1/n,

then the Sys. (1.1) has a positive definite solution (X,Y ), which satisfy

X2s < X < X2s+1, Y2s < Y < Y2s+1, s = 0, 1, 2, . . . ,

max(‖X −X2s‖, ‖X2s+1 −X‖) < qs‖A‖2,

max(‖Y − Y2s‖, ‖Y2s+1 − Y‖) < qs‖B‖2,

(3.23)

where q = nm‖A‖2‖B‖2(1 + ‖A‖2)m−1(1 + ‖B‖2)n−1 < 1, {Xs}, {Ys}, s = 0, 1, 2, . . ., are determined
by Algorithm 3.1.

Proof. For X1, Y1 we have X1 = I +A∗A > X0 and Y1 = I + B∗B > Y0.
Since X1 > X0, Y1 > Y0 then X−m

1 < X−m
0 , Y−n

1 < Y−n
0 and B∗X−m

1 B < B∗X−m
0 B,A∗Y−n

1 A <
A∗Y−n

0 A, hence I = X0 < X2 = I + A∗Y−n
1 A < I + A∗Y−n

0 A = X1, I = Y0 < Y2 = I + B∗X−m
1 B <

I + B∗X−m
0 B = Y1, that is,

X0 < X2 < X1, Y0 < Y2 < Y1. (3.24)

We find the relation between X2, X3, X4, and X5 and the relation between Y2, Y3, Y4, and Y5.
Since X0 < X2, Y0 < Y2, then X3 = I +A∗Y−n

2 A < I +A∗Y−n
0 A = X1, X3 = I +A∗Y−n

2 A >
I +A∗Y−n

1 A = X2, Y3 = I + B∗X−m
2 B < I + B∗X−m

0 B = Y1, Y3 = I + B∗X−m
2 B > I + B∗X−m

1 B = Y2.
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Since X2 < X3 < X1, Y2 < Y3 < Y1, then X4 = I + A∗Y−n
3 A > I + A∗Y−n

1 A = X2,
X4 = I +A∗Y−n

3 A < I +A∗Y−n
2 A = X3, Y4 = I + B∗X−m

3 B > I + B∗X−m
1 B = Y2, Y4 = I + B∗X−m

3 B <
I + B∗X−m

2 B = Y3.
Also since X2 < X4 < X3, Y2 < Y4 < Y3, then X5 = I + A∗Y−n

4 A < I + A∗Y−n
2 A = X3,

X5 = I +A∗Y−n
4 A > I +A∗Y−n

3 A = X4, Y5 = I + B∗X−m
4 B < I + B∗X−m

2 B = Y3, Y5 = I + B∗X−m
4 B >

I + B∗X−m
3 B = Y4.
Thus we get

X0 < X2 < X4 < X5 < X3 < X1, Y0 < Y2 < Y4 < Y5 < Y3 < Y1. (3.25)

So, assume that for each k it is satisfied that

X0 < X2k < X2k+2 < X2k+3 < X2k+1 < X1,

Y0 < Y2k < Y2k+2 < Y2k+3 < Y2k+1 < Y1.
(3.26)

Now, we will prove X2k+2 < X2k+4 < X2k+5 < X2k+3 and Y2k+2 < Y2k+4 < Y2k+5 < Y2k+3.
By using the inequalities (3.26)we have

X2k+4 = I +A∗Y−n
2k+3A > I +A∗Y−n

2k+1A = X2k+2,

X2k+4 = I +A∗Y−n
2k+3A < I +A∗Y−n

2k+2A = X2k+3.
(3.27)

Also we have

Y2k+4 = I + B∗X−m
2k+3B > I + B∗X−m

2k+1B = Y2k+2,

Y2k+4 = I + B∗X−m
2k+3B < I + B∗X−m

2k+2B = Y2k+3.
(3.28)

Similarly

X2k+5 = I +A∗Y−n
2k+4A < I +A∗Y−n

2k+2A = X2k+3,

X2k+5 = I +A∗Y−n
2k+4A > I +A∗Y−n

2k+3A = X2k+4.
(3.29)

Also we have

Y2k+5 = I + B∗X−m
2k+4B < I + B∗X−m

2k+2B = Y2k+3,

Y2k+5 = I + B∗X−m
2k+4B > I + B∗X−m

2k+3B = Y2k+4.
(3.30)

Therefore, the inequalities (3.26) are true for all s = 0, 1, 2, . . .; consequently the subsequences
{X2s}, {X2s+1}, {Y2s}, and {Y2s+1} are monotonic and bounded. therefore they are convergent
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to positive definite matrices. To prove that the sequences {X2s}, {X2s+1} have a common limit,
we have

‖X2s+1 −X2s‖ =
∥
∥A∗Y−n

2s A −A∗Y−n
2s−1A

∥
∥

=
∥
∥A∗(Y−n

2s − Y−n
2s−1
)
A
∥
∥

≤ ‖A‖2∥∥Y−n
2s

(
Yn
2s−1 − Yn

2s

)
Y−n
2s−1
∥
∥

≤ ‖A‖2∥∥Y−n
2s

∥
∥
∥
∥Y−n

2s−1
∥
∥
∥
∥Yn

2s−1 − Yn
2s

∥
∥

= ‖A‖2∥∥Y−n
2s

∥
∥
∥
∥Y−n

2s−1
∥
∥

∥
∥
∥
∥
∥
(Y2s−1 − Y2s)

(
n∑

i=1

Yn−i
2s−1Y

i−1
2s

)∥∥
∥
∥
∥
.

(3.31)

Since I < Ys < I + B∗B, then we have

∥∥Y−n
s

∥∥ < 1, ‖Ys‖ < 1 + ‖B‖2. (3.32)

Consequently

‖X2s+1 −X2s‖ < ‖A‖2‖Y2s−1 − Y2s‖
n∑

i=1

‖Y2s−1‖n−i‖Y2s‖i−1

< n‖A‖2
(
1 + ‖B‖2

)n−1
‖Y2s−1 − Y2s‖.

(3.33)

Also, to prove that the sequences {Y2s}, {Y2s+1} have a common limit, we have

‖Y2s+1 − Y2s‖ =
∥∥B∗X−m

2s B − B∗X−m
2s−1B

∥∥

=
∥∥B∗(X−m

2s −X−m
2s−1
)
B
∥∥

≤ ‖B‖2∥∥X−m
2s

(
Xm

2s−1 −Xm
2s

)
X−m

2s−1
∥∥

≤ ‖B‖2∥∥X−m
2s

∥∥∥∥X−m
2s−1
∥∥∥∥Xm

2s−1 −Xm
2s

∥∥

= ‖B‖2∥∥X−m
2s

∥∥∥∥X−m
2s−1
∥∥
∥∥∥∥∥
(X2s−1 −X2s)

(
m∑

i=1

Xm−i
2s−1X

i−1
2s

)∥∥∥∥∥
.

(3.34)

Since I < Xs < I +A∗A, then we have

∥∥X−m
s

∥∥ < 1, ‖Xs‖ < 1 + ‖A‖2. (3.35)



12 Journal of Applied Mathematics

Consequently

‖Y2s+1 − Y2s‖ < ‖B‖2‖X2s−1 −X2s‖
m∑

i=1

‖X2s−1‖m−i‖X2s‖i−1

< m‖B‖2
(
1 + ‖A‖2

)m−1
‖X2s−1 −X2s‖.

(3.36)

By using (3.36) in (3.33) and (3.33) in (3.36), we have

‖X2s+1 −X2s‖ < nm‖A‖2‖B‖2
(
1 + ‖A‖2

)m−1(
1 + ‖B‖2

)n−1
‖X2s−1 −X2s−2‖,

‖Y2s+1 − Y2s‖ < nm‖A‖2‖B‖2
(
1 + ‖A‖2

)m−1(
1 + ‖B‖2

)n−1
‖Y2s−1 − Y2s−2‖.

(3.37)

Therefore

‖X2s+1 −X2s‖ < q‖X2s−1 −X2s−2‖ < · · · < qs‖X1 −X0‖,
‖Y2s+1 − Y2s‖ < q‖Y2s−1 − Y2s−2‖ < · · · < qs‖Y1 − Y0‖.

(3.38)

Consequently the subsequences {X2s}, {X2s+1} are convergent and have a common pos-
itive definite limit X. Also, the subsequences {Y2s}, {Y2s+1} are convergent and have a
common positive definite limit Y . Therefore (X,Y ) is a positive definite solution of Sys.
(1.1).

4. Numerical Examples

In this section the numerical examples are given to display the flexibility of the method.
The solutions are computed for some different matrices A,B with different orders. In
the following examples we denote by X,Y the solutions which are obtained by iterative
Algorithm 3.1, and ε1(X) = ‖X − Xs‖, ε2(X) = ‖Xs − A∗Y−n

s A − I‖, ε1(Y ) = ‖Y − Ys‖, and
ε2(Y ) = ‖Ys − B∗X−m

s B − I‖.

Example 4.1. Consider Sys. (1.1)with n = 5, m = 5 and matrices

A =

⎛

⎝
0 4 1
0 −1 8
0 1 −2

⎞

⎠, B =

⎛

⎝
0 −1 −1
−1 −2 −6
8 3 −1

⎞

⎠. (4.1)
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Table 1

s ε1(X) ε1(Y ) ε2(X) ε2(Y )

0 51.0729 1.00002 69.0000 65.0000

1 17.9271 65.0000 59.7925 65.0000

2 41.8654 1.91479E − 06 41.8656 35.8160

3 2.71389E − 04 35.8160 42.8061 35.8160

4 42.8058 8.21136E − 11 42.8058 5.46612E − 02

5 1.14466E − 08 5.46612E − 02 6.06199 5.46612E − 02

6 6.06199 4.79780E − 15 6.06199 4.90522E − 05

7 7.60281E − 13 4.90522E − 05 4.26692E − 03 4.90522E − 05

8 4.26692E − 03 2.70627E − 19 4.26692E − 03 1.10251E − 09

9 0 1.10251E − 09 1.51071E − 07 1.10251E − 09

10 1.51071E − 07 0 1.51071E − 07 4.69266E − 14

11 0 4.69266E − 14 7.73070E − 12 4.69266E − 14

By computation, we get

X =

⎛

⎝
1 0 0
0 19 −5.99984
0 −5.99984 52.0729

⎞

⎠,

Y =

⎛

⎝
1 −2.49178 × 10−7 −1.30736 × 10−6

−2.49178 × 10−7 2 1
−1.30736 × 10−6 1 2.00002

⎞

⎠,

λr(X) = {53.1277, 17.9452, 1}, μr(Y ) = {3.00002, 1.00001, 1}.

(4.2)

The results are given in the Table 1.

Example 4.2. Consider Sys. (1.1)with n = 22, m = 12 and matrices

A = −0.1

⎛

⎜⎜
⎝

0 2 1 1
2 4 0 0
1 0 4 2
1 0 2 0

⎞

⎟⎟
⎠, B = −0.1

⎛

⎜⎜
⎝

1 2 1 2
2 0 0 0
1 0 0 1
2 0 1 0

⎞

⎟⎟
⎠. (4.3)
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Table 2

s ε1(X) ε1(Y ) ε2(X) ε2(Y )
0 1.24608E − 01 4.60012E − 02 2.10000E − 01 1.00000E − 01
1 8.55563E − 02 5.39988E − 02 9.70059E − 02 7.95578E − 02
2 1.14496E − 02 2.55590E − 02 2.74686E − 02 3.15318E − 02
3 1.60190E − 02 0.59728E − 02 1.68545E − 02 1.36886E − 02
4 8.35485E − 04 7.71578E − 03 0.28393E − 02 8.14852E − 03
5 2.00382E − 03 4.32737E − 04 2.01636E − 03 1.42354E − 03
6 4.29946E − 05 9.90806E − 04 1.08242E − 04 9.89517E − 04
7 9.56981E − 05 0.19967E − 04 1.00788E − 04 4.57126E − 05
8 1.02495E − 05 4.08207E − 05 0.22025E − 04 4.13549E − 05
9 1.17755E − 05 4.68667E − 06 0.12947E − 04 9.61810E − 06
10 3.60760E − 06 4.93143E − 06 6.08098E − 06 5.52865E − 06
11 2.47338E − 06 1.44559E − 06 3.22091E − 06 2.24954E − 06
12 7.47536E − 07 1.06400E − 06 1.70353E − 06 1.15972E − 06
13 9.55996E − 07 3.31722E − 07 1.01939E − 06 7.40346E − 07
14 6.33981E − 08 4.08624E − 07 2.03521E − 07 4.37652E − 07
15 1.40123E − 07 2.90281E − 08 1.38180E − 07 9.25059E − 08
16 3.56253E − 09 6.34778E − 08 8.08867E − 09 6.24061E − 08

By computation, we get

X =

⎛

⎜⎜
⎝

1.01717 0.0251093 0.008992 0.00481047
0.0251093 1.11444 −0.0619579 −0.0127646
0.008992 −0.0619579 1.12461 0.0523216
0.00481047 −0.0127646 0.0523216 1.02878

⎞

⎟⎟
⎠,

Y =

⎛

⎜⎜
⎝

1.046 0.00730832 0.016761 0.00876669
0.00730832 1.03404 0.0164278 0.0322775
0.016761 0.0164278 1.01605 0.0128431
0.00876669 0.0322775 0.0128431 1.0343

⎞

⎟⎟
⎠,

λr(X) = {1.19574, 1.07941, 1.00868, 1.00118}, μr(Y ) = {1.08177, 1.04193, 1.0064, 1.0003}.
(4.4)

The results are given in the Table 2.

5. Conclusion

In this paper we considered the system of nonlinear matrix equations (1.1)where n,m are two
positive integers. We achieved the general conditions for the existence of a positive definite
solution. Moreover, we discussed an iterative algorithm from which a solution can always be
calculated numerically, whenever the system is solvable. The numerical examples included
in this paper showed the efficiency of the iterative algorithm which is described.



Journal of Applied Mathematics 15

References

[1] P. Lancaster and L. Rodman, Algebraic Riccati Equations, Oxford Science, 1995.
[2] B. Meini, “Matrix equations and structures: effcient solution of special discrete algebraic Riccati

equations,” in Proceedings of the WLSSCOO, 2000.
[3] W. N. Anderson Jr., T. D. Morley, and G. E. Trapp, “Positive solutions to X = A − BX−1B∗,” Linear

Algebra and its Applications, vol. 134, pp. 53–62, 1990.
[4] A. M. Aldubiban, Iterative algorithms for computing the positive definite solutions for nonlinear matrix

equations [Ph.D. thesis], Riyadh University for Girls, Riyadh, Saudi Arabia, 2008.
[5] O. L. V. Costa and R. P. Marques, “Maximal and stabilizing Hermitian solutions for discrete-time

coupled algebraic Riccati equations,” Mathematics of Control, Signals, and Systems, vol. 12, no. 2, pp.
167–195, 1999.

[6] O. L. V. Costa and J. C. C. Aya, “Temporal difference methods for the maximal solution of discrete-
time coupled algebraic Riccati equations,” Journal of Optimization Theory and Applications, vol. 109, no.
2, pp. 289–309, 2001.

[7] A. Czornik and A. Swierniak, “Lower bounds on the solution of coupled algebraic Riccati equation,”
Automatica, vol. 37, no. 4, pp. 619–624, 2001.
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