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This paper studies the information content of the chromosomes of twenty-three species. Several
statistics considering different number of bases for alphabet character encoding are derived. Based
on the resulting histograms, word delimiters and character relative frequencies are identified.
The knowledge of this data allows moving along each chromosome while evaluating the flow of
characters and words. The resulting flux of information is captured by means of Shannon entropy.
The results are explored in the perspective of power law relationships allowing a quantitative
evaluation of the DNA of the species.

1. Introduction

During the last years the genome sequencing project produced a large volume of data that is
presently available for computational processing [1–14]. Researchers have been tackling the
information content of the deoxyribonucleic acid (DNA), but interesting questions remain
still open [15–21].

This paper addresses the information flow along each DNA strand. For this purpose
several statistics are developed, and the relative frequencies of distinct types of symbol
associations are evaluated. The concepts of character, word, word delimiter, and phrase are
defined, and the information content of each chromosome message is quantified. Power
law (PL) relationships emerge in the information locus. PL distributions, often known as
heavy tail distributions, Pareto laws, Zipf laws, or others, have been largely reported in the
modeling of distinct real phenomena [22–31]. It was recognized [11, 32–34] that DNA has
an information structure that reveals long range behavior, somehow in the line of thought
of systems with dynamics described by the tools of Fractional Calculus (FC) [35–37]. It is
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Figure 1: Amplitude of the Fourier transform versus frequency ω for chromosome 1 of the human being
(solid line) and PL approximation (dashed line).

known the existence of a strong relationship between FC and PL; nevertheless, up to the
present state of knowledge, no formal demonstration supported that observation based on
empirical and experimental measurements. Therefore, it is not a surprise that both FC and PL
descriptions emerge when analyzing DNA with distinct mathematical tools. In the present
study PL descriptions are applied for condensing the charts characterizing the chromosomes
of twenty-three species.

Having these ideas in mind, this paper is organized as follows. Section 2 presents the
DNA sequence decoding concepts, the mathematical tools and formulates the algorithm that
computes the information for each chromosome and species. Section 3 analyzes the DNA
information dynamical content of 463 chromosomes corresponding to a set of twenty-three
species. Finally, Section 4 outlines the main conclusions.

2. Preliminary Notes on the DNA Information

In the DNA double helix there are four distinct nitrogenous bases, namely, thymine, cytosine,
adenine, and guanine, denoted by the symbols {T,C,A,G}. Each type of base on one strand
connects with only one type of base on the other strand, forming the base pairing A − T and
G − C. Besides the four symbols {T,C,A,G}, the available chromosome data includes a fifth
symbol “N” which is believed to have no practical meaning for the DNA decoding.

For processing the DNA information a possible technique is to convert the symbols
into a numerical value. In previous papers was adopted the direct symbol translation = 1+ i0,
C = −1+i0, T = 0+i,G = 0−i,N = 0+i0, where i =

√−1.We canmove along the DNA strip, one
symbol (base) at a time. The resulting values form a “signal” x(t)where “t” can be interpreted
as a pseudotime. The signal can be treated by the Fourier transform F{x(t)} =

∫+∞
−∞ x(t)e−iωdt,

where ω represents the angular frequency.
Figure 1 shows one example with the amplitude of the Fourier transform for

chromosome 1 of the human being. The frequency interval 10−7 ≤ ω ≤ 100 is adopted and
a PL approximation is superimposed revealing a strong correlation.
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AC TA CGTT GG GT TC AG AAA CC

Figure 2: Example of a message when considering n = 2, {TT, AA} ≡ “spaces”, {TC, TA, TG, CT, CC, CA,
CG, AT, AC, AG, GT, GC, GA, GG} ≡ “word characters.” Multiple consecutive spaces are considered as a
single space.

This technique has, however, one drawback which is the initial assignment of numeri-
cal values to the DNA symbols. Therefore, it is important to design an alternative method of
analysis avoiding that problem, but, on the other hand, capable of revealing fractional order
phenomena. Bearing this strategy in mind, in this paper is adopted an approach based on the
histograms of symbol alignment, information theory, and PL approximations.

This study focuses over twenty-three species yielding a space of 463 chromosomes.
Therefore, denoting by Nj the number of chromosomes of species j = 1, . . . , 23, we con-
sider the {Species,Tag,Nj}j given by {Mosquito (Anopheles gambiae), Ag, 5}1, {Honeybee,
(Apis mellifera), Am, 16}2, {Caenorhabditis briggsae, Cb, 6}3, {Caenorhabditis elegans, Ce, 6}4,
{Chimpanzee, Ch, 25}5, {Dog, Dg, 39}6, {Drosophila simulans, Ds, 6}7, {Drosophila yakuba, Dy,
10}8, {Horse, Eq, 32}9, {Chicken, Ga, 31}10, {Human, Ho, 24}11, {Medaka, Me, 24}12, {Mouse,
Mm, 21}13, {Opossum, Op, 9}14, {Orangutan, Or, 24}15, {Cow, Ox, 30}16, {Pig, Po, 19}17, {Rat,
Rn, 21}18, {Yeast (Saccharomyces cerevisiae), Sc, 16}19, {Stickleback, St, 21}20, {Zebra Finch, Tg,
32}21, {Tetraodon, Tn, 21}22 and {Zebrafish, Zf, 25}23.

The DNA information decoding is addressed in this paper, and we start by defining
the underlying concepts. The fundamental unit is the “symbol” that, in our case, consists in
one of the four possibilities {T,C,A,G}, while “N” is simply disregarded. Each “character” is
represented by an n-tuple association (n = 1, 2, . . .) of the 4 symbols, resulting in a total of 4n

possible symbols per character. For example, with n = 2 we get a maximum of 42 characters
represented by the 16 two-symbol sequences {TT, TC, TA, TG, CT, CC, CA, CG, AT, AC,
AA, AG, GT, GC, GA, GG}. The sequences are obtained when moving sequentially along
the DNA. The characters may have different significance and are divided into two classes,
namely, characters with relevant information, to be denoted in the sequel as “word char-
acters,” and delimiters denoted as “spaces.” Therefore, joining consecutive “word charac-
ters” yields a “word,” that ends in the presence of one or more consecutive “spaces” (i.e.,
multiple spaces are considered as a single space). When the complete association of con-
secutive words is fulfilled, we obtain a “message.”

Figure 2 depicts a simple example of a message with 21 symbols and 3 words. The
message {ACTACGTTGGGTTCAGAAACC} is processed according to the proposed scheme
for n = 2 and considering the 2 sequences {TT, AA} as spaces, and the 14 sequences {TC, TA,
TG, CT, CC, CA, CG, AT, AC, AG, GT, GC, GA, GG} as characters. Therefore, the resulting
words are {AC TA CG}, {GG GT TC AG} and {CC}.

We verify that we may have words with different lengths and that it is considered as a
single space any repetition of spaces. The message finishes when the end of the DNA strand
is attained, and, therefore, it is not considered the case of multiple messages for each chromo-
some.



4 Abstract and Applied Analysis

After defining the concepts for symbol, character (with the categories of word cha-
racter and space), and message, we need to establish the numerical value to be adopted by
n and the method for measuring the information. In what concerns n no a priori optimal
value is considered. Therefore, in the experiments is analyzed the influence when going from
n = 1 up to n = 12, or, correspondingly, when going from 41 up to 412 symbols per cha-
racter. This evaluation is performed for one chromosome. Based on this first assessment,
given the huge computational load required by high values of n, the set of twenty-three
species, totalizing 463 chromosomes, is analyzed for n = {1, . . . , 8}. In what concerns the infor-
mationmeasurement it is adopted the Shannon information [38–49] Ii = − ln(pi)where Ii rep-
resents the quantity of information of event i that has a probability pi. In this topic we can refer
to [50] calculating also the Shannon information for short DNA words of differing lengths,
where the authors find that genomes share universal statistical properties. It is also worth
mentioning that other entropies, such as the Rényi, Tsallis, and Ubriaco definitions [51, 52]
were tested. Nevertheless, experiments with these expressions and distinct numerical values
of the parameters did not reveal any significant conceptual difference. Therefore, for simpli-
city in the sequel it is adopted merely the Shannon definition.

In our case, for a n-tuple symbol encoding, the occurrence of the ith character within
the 4n set has probability pi

char,n leading to information − ln(pichar,n), and, therefore, the total
information content of a word Iword,n yields

Iword,n = −
m∑

i=1

ln
(
pi

char,n
)
, (2.1)

where m represents the total number of word characters including the first space. In fact, it
was numerically evaluated the effect of including, or not, the space information but, due to
its low importance, the final effect is negligible. Therefore, it is considered the inclusion of
one space as the information for delimiting the word, while further consecutive repetitions
of spaces are disregarded.

The message information is the sum of all word information:

Imes,n =
r∑

i=1

Ii
word,n, (2.2)

where r denotes the total number of words included in the message (i.e., the chromosome).
The information measurement requires the knowledge of pichar,n. While we can expect

an equilibrium of probabilities for n = 1, that may be not true for larger values of n. Therefore,
in the sequel it is adopted a numerical procedure that starts by reading the chromosome mes-
sage based on the n-tuple character setup leading to the construction of one histogram per
chromosome. In the set of 4n bins are chosen, by inspection, those that are more frequent (and
have smaller information content) for the role of spaces. In a second phase, the relative fre-
quencies, which are adopted as approximants to the probabilities, and the information values
(2.1) and (2.2) are calculated numerically while traveling along the DNA strand.

This strategy does not consider some a priori optimal value of n. Therefore, as
mentioned previously, several distinct values of nwill be studied before establishing any con-
clusions.
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Figure 3: Histograms for Ho12 and n = {1, 2, 3, 4}.

3. Capturing the DNA Information

We start by considering Human chromosome 12 (Ho12) and n = {1, . . . , 12}. This chromo-
some is represented by a medium size file (130 Mbytes) and may be considered a good com-
promise between length and computational load.

Figure 3 depicts the histograms for n = {1, 2, 3, 4} where, for simplifying the visua-
lization, the characters are ordered by decreasing magnitude of relative frequency. For the
histograms construction two counting methods were envisaged: (i) counting with disjoint
set of n symbols and (ii) counting the sets while sliding one symbol at a time. At first sight
it seems that (i) is the most straightforward, but if we consider that we do not have reliable
information for starting and synchronizing the counting, thenmethod (ii) is more robust and,
therefore, is adopted in the sequel.

Figure 4 shows the word information dynamics when travelling along the Ho12 strand
for n = {1, 2, 3, 4}. We observe the existence of quantum information levels that somehow
vanish when n increases. This is due to finite number of quantifying levels of information that
occur before a space terminates a word. The number of quantum levels increases with nwhile
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Figure 4: Word information versus length for the Ho12 and n = {1, 2, 3, 4}.

the length of each word increases. Besides this interesting effect, we also note a considerable
randomness and a uniform behavior along all length of the strand.

The total chromosome information, the number of words Nw, and the average word
information Iav versus n are depicted in Figures 5(a) and 5(b). We verify a maximum of the
total chromosome information for n = 3. For larger values of n the information decreases
slightly due to the effect of dropping out repeated consecutive spaces. Therefore, we can
say that large values of n seem to lead to a slightly better estimate of the total information
content, while the cases of n = 1 or n = 2 lead to an inferior measurement process. We also
observe that the number of words decreases with n but its average information varies in
the opposite way. Therefore, it is relevant to plot one variable against the other, with n as
parameter (Figure 5(c)). A PL trendline approximation demonstrates that the two quantities
are inversely proportional. In fact, we get numerically Iav = aNw

b with a = 2.07 108,
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Figure 5: Chromosome Ho12: (a) total information versus n, (b) average word information and number of
words versus n, (c) average word information versus number of words.

b = −1.02. For the rest of the chromosomes it was observed a similar type of behavior, but
with different numerical values for the parameters.

For other values of n the resulting histograms reveal identical characteristics, namely,
two characters with a very large relative frequency (depicted at the left part of the histograms
of Figure 3). Furthermore, experiments with other chromosomes lead to similar results. The
two characters are simply a succession of symbols A or T and the corresponding n-tuples
(i.e., A · · ·A and T · · · T) are adopted in the sequel as “spaces.”

Figure 6 shows the total information, that is, the information resulting from summing
the information of all the chromosomes of each species versus the corresponding number of
chromosomes, for character encoding with n = 8. We observe a weak correlation between
both variables.

Figure 7 shows the length of each chromosome Li
crom versus its information content

Ii
crom,n, i = 1, . . . , 463, estimated by the proposed method with n = 8. In this case we observe
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Figure 7: Chromosome length Li
crom versus its information content Iicrom,8, i = 1, . . . , 463, n = 8.

a strong correlation between both variables, meaning that the implementation of the DNA
code has a large similarity between all species. In fact, we can calculate a PL trendline over
the 463 chromosomes yielding the relationship Ii

crom,8 = 0.79(Li
crom)1.03.

Bearing these ideas in mind it was decided to explore the PL behavior, that is, the rela-
tion Iav = aNw

b, a > 0, b < 0, of the average word information Iav versus the number of words
Nw (with n as parameter) per chromosome. The extensive evaluation of the 463 chromo-
somes for n = {1, . . . , 8} leads to the locus (a, b) of the PL trendline depicted in Figure 8. The
point for chromosome DyYh is not included to allow a better visualization of the remaining
set of points. Moreover, the individual chromosome labels are not included to make the plot
more readable.

We verify that the map produces clear patterns, not only by grouping the
chromosomes of each species but also by the relative positioning of the different species.
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Figure 8: Locus (a, b) of the power law parameters for the 463 chromosomes and n = {1, . . . , 8}.

Nevertheless, the large number of points complicates the visualization. Therefore, it was
decided to represent each species by a single point having for coordinates the geometric and
arithmetic averages of parameters a and b, respectively. Figure 9 depicts the resulting locus
where is now easier to analyze the previously mentioned relations. The microchromosomes
Ga32 and Tg16, which have a very small base pair counting, were not included in the
calculations because they significantly disturb the results.

We verify the emergence of clusters that are in reasonable accordance with phylo-
genetics, going from the less “complex” species at left up to the most “complex” species at the
right. The cluster of mammals is at the right and includes the subcluster of primates {Ho, Ch,
Or}, with Ch closer to Hu than Or. In the rest of mammals it is interesting to see Po close to
the primates and the position of the marsupial Op relatively distant from the placental mam-
mals. In what concerns the rest of the points we notice Cb close to Ce and, in a middle posi-
tion, the clusters of birds {Ga, Tg}, fishes {Tn, St, Me, Zf}, and insects {Dy, Ds, Am, Ag}.

In conclusion, the proposed informationmeasure leads to an assertive and quantitative
classification of chromosomes and species. Furthermore, it can be further explored for
decoding in more detail other aspects of the DNA code in association with the FC tools.

4. Conclusions

Chromosomes have a code based on a four-symbol alphabet, and it can be analyzed with
methods usually adopted in information processing. The information structure has resem-
blances to those occurring in systems characterized by fractional dynamics. Nevertheless,
schemes based on assigning numerical values to the DNA symbols may deform the informa-
tion, and alternative methods that avoid such problem need to be implemented. In this paper
it was proposed a scheme based on the Shannon information theory. Bearing these ideas in
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Figure 9: Locus of geometric average of a versus the arithmetic average of b for the twenty-three species.

mind, the chromosomes were processed in the perspective of a PL relationship between the
average information and the total number of words, for distinct values of character encoding.
For condensing the information an averaging of the PL parameters was also adopted. The
resulting locus revealed the emergence of clearly interpretable patterns in accordance with
current knowledge in phylogenetics. The proposed methodology opens new directions of
research for DNA information processing and supports the recent discoveries that fractional
phenomena are present in this biological structure.
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