Research Article

On the Practical Stability of Impulsive Differential Equations with Infinite Delay in Terms of Two Measures

Bo Wu,1,2 Jing Han,3 and Xiushan Cai1

1 College of Mathematics, Physics and Information Technology, Zhejiang Normal University, Jinhua 321004, China
2 Academic Affairs Division, Zhejiang Normal University, Jinhua 321004, China
3 Department of Mathematics, Tongji University, Shanghai 200092, China

Correspondence should be addressed to Bo Wu, wubo_502@163.com

Received 13 April 2012; Accepted 18 May 2012

Academic Editor: Chaitan Gupta

Copyright © 2012 Bo Wu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We consider the practical stability of impulsive differential equations with infinite delay in terms of two measures. New stability criteria are established by employing Lyapunov functions and Razumikhin technique. Moreover, an example is given to illustrate the advantage of the obtained result.

1. Introduction

One of the trends in the stability theory of the solutions of differential equations is the so-called practical stability, which was introduced by LaSalle and Lefschetz [1]. This is very useful in estimating the worst-case transient and steady-state responses and in verifying pointwise in time constraints imposed on the state trajectories. Fundamental results in this direction were obtained in [2]. In recent years the theory of practical stability and stability has been developed very intensively [3–7].

The theory of impulsive differential equations is now being recognized to be not only richer than the corresponding theory of differential equations without impulses, but also represents a more natural framework for mathematical modelling of many real world phenomena. Impulsive differential equations and impulsive functional differential equations have been intensively researched [8–20].

By employing the Razumikhin technique and Lyapunov functions, several stability criteria are established for general impulsive differential equations with finite delay [5–7, 14, 21]. Systems with infinite delay deserve study because they describe a kind of system
present in the real world. For example, it is very useful in a predator-prey system. Therefore, it is an interesting and complicated problem to study the stability of impulsive functional differential systems with infinite delay. Usually, the Lyapunov functions are defined on whole components of system’s state x [12–22]. In this paper, we divided the components of x into several groups and correspondingly, we employ several Lyapunov functions $V_j(t, x^{(i)})$ ($j = 1, 2, \ldots, m$), where $x = (x^{(1)}, \ldots, x^{(m)})^T$ for each $x^{(i)}$. In this way, Lyapunov, functions are easier constructed, and the conditions ensuring the required stability are less restrictive. Furthermore, the stability results on impulsive finite delay differential equations considered in [4, 5] are generalized into the results on impulsive infinite delay differential equations in terms of two measures.

The work is organized as follows. In Section 2, we introduce some preliminary definitions which will be employed throughout the paper. In Section 3, based on Lyapunov functions and Razumikhin method, sufficient conditions for the uniformly practical stability in terms of two measures are given; an example is presented to illustrate the effectiveness of the approach.

2. Preliminaries

Consider the following impulsive infinite delay differential equations:

$$ \dot{x}(t) = f(t, x(s); \alpha \leq s \leq t), \quad t \geq t_*, t \neq \tau_k, $$

$$ \Delta x(t) \triangleq x(t) - x(t^-) = I_k(x(t^-)), \quad t = \tau_k, \; k = 1, 2, \ldots, $$

(2.1)

where $-\infty < \alpha < t_*$, α could be $-\infty$, $t \in R^+$. $f \in C[R^+ \times PC([\alpha, t], R^n), R^n]$ is a Volterra-type function. $PC([\alpha, t], R^n)$ denotes the space of piecewise right continuous functions $\varphi = (\varphi_1, \ldots, \varphi_n) : [\alpha, t] \rightarrow R^n$ with the sup-norm $||\varphi|| = \sup_{\alpha \leq s \leq t} |\varphi(s)|$, $|\varphi(s)| = \max_{1 \leq j \leq n} |\varphi_j(s)|$, $f(t, 0) \equiv 0$, $I_k(0) = 0$, $0 = \tau_0 < \tau_1 < \tau_2 < \cdots < \tau_k < \cdots$, $\tau_k \rightarrow \infty$ for $k \rightarrow \infty$, and $x(t^-) = \lim_{s \rightarrow t^-} x(s)$. The functions $I_k : R^n \rightarrow R^n$, $k = 1, 2, \ldots$, are such that if $||x|| < H$ and $I_k(x) \neq 0$, then $||x + I_k(x)|| < H$, where H is const. > 0.

The initial condition for system (2.1) is given by

$$ x(t) = \varphi(t), \quad t \in [\alpha, t_0], $$

(2.2)

where $\varphi \in PC([\alpha, t_0], R^n)$, for $t_0 \geq t_*$.

We assume that a solution for the initial problem (2.1) and (2.2) does exist and is unique. Since $f(t, 0) = 0$, then $x(t) = 0$ is a solution of (2.1), which is called the zero solution. Let $PC_\varphi(t) = \{ \varphi \in PC([\alpha, t], R^n) | ||\varphi|| < \rho \}$. For convenience, we define $|x| : = \max_{1 \leq j \leq n} |x_j|, x \in R^n; R_\alpha := [\alpha, \infty); S(\rho) := \{ x \in R^n : ||x|| < \rho \}; S^{(i)}(\rho) := \{ x \in R^n : ||x|| < \rho \}; K := \{ W \in C[R^+, R^n]; W(0) = 0; W(s) > 0, s > 0 \}; \Gamma^n := \{ h \in C[R^+ \times R^n, R^n] | \forall t \in R^+, \inf_x h(t, x) = 0 \}; \Gamma^n_\alpha := \{ h \in C[R_\alpha \times R^n, R^n] | \forall t \in R_\alpha, \inf_x h(t, x) = 0 \}.

Definition 2.1. A continuous function $w : R^+ \rightarrow R^+$ is called a wedge function if $w(0) = 0$ and $w(s)$ is (strictly) increasing.
Definition 2.2. For $h_0 \in \Gamma_n^{a}$, $x_t(s) := x(s), \ s \in [\alpha, t]$ and $x_t \in PC([\alpha, t], R^n)$, for any $t \in R^+$, we define

$$\tilde{h}_0(t, x_t) = \sup_{\alpha \leq \theta \leq t} h_0(\theta, x(\theta)).$$

(2.3)

Definition 2.3 (see[22]). Let $h_0 \in \Gamma_n^{a}$, $h \in \Gamma^n$. The impulsive functional differential $1 \ (2.1), \ (2.2)$ is said to be

(S1) (\tilde{h}_0, h) practically stable, if given (u, v) with $0 < u < v$, we have $\tilde{h}_0(t_0, x_{t_0}) < u$ implies $h(t, x) < v, \ t \geq t_0$ for some $t_0 \in R^+$;

(S2) (\tilde{h}_0, h) uniformly practically stable if (S1) holds for every $t_0 \in R^+$.

In what follows, we will split $\varphi = \in PC(\rho)$ into several vectors, such that $\Sigma_{i=1}^{n} n_i = n$ and $\varphi = (\varphi_i^{(1)}, \ldots, \varphi_i^{(1)}; \varphi_i^{(2)}, \ldots, \varphi_i^{(2)}; \varphi_i^{(m)}, \ldots, \varphi_i^{(m)})$. For convenience, we define $\varphi^{(i)} = (\varphi_1^{(i)}, \varphi_2^{(i)}, \ldots, \varphi_i^{(i)}), \ j = 1, 2, \ldots, m,$ and $\varphi = (\varphi^{(1)}, \varphi^{(2)}, \ldots, \varphi^{(m)}) \in R^n$, we adopt notation as for φ. Similarly, let $||\varphi^{(i)}|| = ||\varphi^{(i)}||_{[\alpha, t]} = \sup_{\alpha \leq s \leq t} |\varphi^{(i)}|, \ PC^{(i)}(t) = \{|\varphi^{(i)}| : [\alpha, t] \to R^n, \ varphi^{(i)} \ is \ piecewise \ continuous \ and \ bounded\},$ and $S^{(i)}(\rho) = \{x \in R^n \ | \ ||x|| < \rho\}, \ PC^{(i)}(t) = \{|\varphi^{(i)}| \in PC^{(i)}(t) \ | \ ||\varphi^{(i)}|| < \rho\}$.

3. Main Results

In the sequence, we assume that f is defined on $R_n \times PC(t)$ for some $H > 0$. For simplicity, denote $V_i(t, x^{(i)}), \ h^{(i)}(t, x^{(i)}), \ h^{(i)}_0(t, x^{(i)})$ by $V_i(t), \ h^{(i)}(t), \ h^{(i)}_0(t)$, respectively, $1 \leq i \leq m$. Now we start with the case of $m = 2$. $V(t)$ be the right-hand derivative of $V(t)$.

Theorem 3.1. For $j = 1, 2$, let $\Phi_j : R^+ \to R^+$ be continuous, $\Phi_j \in L^1[0, \infty), \ \Phi_j(t) \leq K_j$ for $t \geq 0$ with some constants $K_j > 0$, and let $W_{ij} \ (i = 1, 2, 3, 4)$ be wedge functions. If there exist Lyapunov functions $V_j : R_n \times S^{(i)}(H) \to R^+ \ (j = 1, 2)$ such that

(i) $W_{1j}(h^{(i)}_0(t)) \leq V_1(t) \leq W_{2j}(h^{(i)}_0(t)) + W_{3j}([\int_{0}^{t} \Phi_j(t-s)W_{4j}(h^{(i)}_0(t))ds], \ h^{(i)}_0 \in \Gamma_n^{a}, \ h^{(i)} \in \Gamma^n)$;

(ii) when $V_1(t) \geq V_2(t)$, there holds $V_1(t) \leq 0$ if $V_1(s) < V_1(t)$ for $s \in [\alpha, t]$; when $V_2(t) \geq V_1(t)$, there holds $V_2(t) \leq 0$ if $V_2(s) < V_2(t)$ for $s \in [\alpha, t]$;

(iii) $V_j(\tau_k) \leq (1 + b_k)V_j(\tau_k), \ k = 1, 2, \ldots, b_k > 0$, and $\sum_{k=1}^{\infty} b_k < \infty$;

(iv) $0 < u < v$ are given, $\psi^{(i)}(u) < v$; when $\tilde{h}_0^{(i)}(t, x^{(i)}_0) < u$, there holds $h^{(i)}(t) \leq \psi^{(i)}(\tilde{h}_0^{(i)}(t, x^{(i)}_0)), \psi^{(i)}$ are wedge functions, and $x(t) = (x^{(1)}(t), x^{(2)}(t))$ is a solution of (2.1) and (2.2).

Then the zero solution of (2.1) and (2.2) is (\tilde{h}_0, h) uniformly practically stable with respect to (u, v).

Proof. Since $b_k > 0$, and $\sum_{k=1}^{\infty} b_k < \infty$, it follows that there exists some $M > 0$, such that $\prod_{k=1}^{\infty} (1 + b_k) = M$ and $1 \leq M < \infty$. Define a function $V(t)$ for all $t \geq \alpha$

$$V(t) = V_1(t) \ if \ V_1(t) \geq V_2(t); \ V(t) = V_2(t) \ if \ V_2(t) \geq V_1(t).$$

(3.1)
We claim first that for any $t \geq \alpha$

$$\frac{[W_{11}(h^{(1)}(t)) + W_{12}(h^{(2)}(t))]}{2} \leq V(t) \leq W_{21}(h^{(1)}_0(t)) + W_{22}(h^{(2)}_0(t)) + W_{31} \int_{\alpha}^{t} \Phi_1(t-s)W_{41}(h^{(1)}_0(t))ds$$

$$+ W_{32} \int_{\alpha}^{t} \Phi_2(t-s)W_{42}(h^{(2)}_0(t))ds. \quad (3.2)$$

In fact, if $V_1(t) \geq V_2(t)$, then by (3.1) and condition (i), $V(t) = V_1(t) \geq [V_1(t) + V_2(t)]/2 \geq [W_{11}(h^{(1)}(t)) + W_{12}(h^{(2)}(t))]/2$; whereas, if $V_2(t) \geq V_1(t)$, it also holds. On the other hand, the right-hand inequality in (3.2) is trivially valid.

Step 1. We aim to show that for each $t \geq t_0$,

$$V'(t) \leq 0, \quad \text{if } V(s) \leq V(t), \quad s \in [\alpha, t], \quad t \neq \tau_k,$$

$$V(\tau_k) \leq (1 + b_k)V(\tau_k^-), \quad k = 1, 2, \ldots \quad (3.3)$$

Indeed, suppose $V_1(t_0) \geq V_2(t_0)$ and there exists some $t_1 > t_0$ such that for $t \in [t_0, t_1]$, $V_1(t) \geq V_2(t)$. Then by (3.1), $V(t) = V_1(t)$, $t \in [t_0, t_1]$. \hfill \square

Case 1. If $t = \tau_j$ for some $j \in Z^+$, then by (iii) $V(\tau) = V_1(\tau) \leq (1 + b_j)V_1(\tau^-) = (1 + b_j)V(\tau^-)$.

Case 2. $t \neq \tau_j$ for any $j \in Z^+$, and $V(s) \leq V(t)$, $s \in [\alpha, t]$. Then if $V_1(s) \leq V_2(s)$ we have $V(s) = V_2(s)$. Clearly, $V(s) \leq V(t)$ implies $V_1(s) \leq V_2(s) = V(s) \leq V(t) = V_1(t)$. If $V_1(s) \geq V_2(s)$ we have $V(s) = V_1(s)$.

Case 3. $V(t) = V_1(t)$ for $t \in [t_0, t_1]$. When $t_1 = \tau_i$ for some $i \in Z^+$ we have $V_1(\tau_i^-) \geq V_2(\tau_i^-)$ and $V_1(\tau_i) \leq V_2(\tau_i)$. In this case, by (iii) we have $V(\tau) = V_2(\tau) \leq (1 + b_i)V(\tau_j)$. When $t \neq \tau_i$ for any $i \in Z^+$, we set $V(t) = V_2(t)$ for $t \in [t_1, t_2]$.

By the similar analysis to Cases 1 and 2, we also have (3.3) when $t, \tau_k \in [t_1, t_2]$.

If $t_2 = \infty$ then (3.3) holds for all $t \geq t_0$. Otherwise, repeat the above argument to arrive at the assertion that (3.3) is valid for all $t \geq t_0$. As for the case of $V_1(t) \leq V_2(t)$ for $t \in [t_0, t_1]$, the process is similar and thus omitted.

For any $t_0 \in R^+$, we assume there is a unique solution of (2.1), (2.2) through (t_0, φ). Furthermore, we denote

$$h(t, x(t)) := \max\{h^{(j)}(t), j = 1, 2\}; \quad \tilde{h}_0(t) := \max\{\tilde{h}_0^{(j)}(t, x_t^{(j)}), j = 1, 2\}. \quad (3.4)$$
If \((t_0, x_{i_0}) \in R^+ \times PC([\alpha, t_0], R^e)\), such that \(\tilde{h}_0(t_0, x_{i_0}) < u\). By condition (iv),

\[
h^{(i)}(t_0) \leq \phi^{(i)}(\tilde{h}_0(t_0)) < \phi^{(i)}(u) < v. \tag{3.5}
\]

From the definition of \(h(t, x(t))\), we have \(h(t_0, x(t_0)) < v\).

Let \(v^* = (1/M) \min\{W_{11}(v), W_{12}(v)\}\), we assume \(W_{2j}(u) < v^*/8\) and \(W_{3j}(J_j \times W_4(u)) < v^*/8\), where \(J_j = \int_0^\infty \Phi_j(s)ds, j = 1, 2\).

\[\text{Step 2. We aim to prove that } V(t) \leq Mv^*/2, \text{ for all } t \geq t_0.\]

First, for any \(t \in [\alpha, t_0]\), from Definition 2.2 and condition (iv), we know \(\tilde{h}_0^{(i)}(t, x_{i_0}^{(i)}(t)) \leq \tilde{h}_0^{(i)}(t_0, x_{i_0}^{(i)}(t_0)) < u\). Then by (3.2), \(V(t) \leq W_{21}(u) + W_{22}(u) + W_{31}(J_1 \times W_{41}(u)) + W_{32}(J_2 \times W_{42}(u)) < v^*/2\) for \(t \in [\alpha, t_0]\). Hence, \(V(t) \leq v^*/2, t \in [\alpha, t_0]\).

Assume \(\tau_i\) is the first impulse of all \(\tau_i, i \in Z^*\) such that \(t_0 < \tau_i\). Now we claim that

\[
V(t) \leq \frac{v^*}{2} \text{ for } t_0 \leq t < \tau_i. \tag{3.6}
\]

If it does not hold, then there is a \(\tilde{\tau} \in (t_0, \tau_i)\) such that \(V(\tilde{\tau}) > v^*/2\) and \(V'(\tilde{\tau}) > 0, \; V(t) \leq V(\tilde{\tau}) \) for \(t \in [\alpha, \tilde{\tau}]\). From (3.3) we have \(V'(\tilde{\tau}) \leq 0\). It is a contradiction, so (3.6) holds.

Without loss of generality, we assume \(V_1(\tau_i) \leq V_2(\tau_i)\), then \(V(\tau_i) = V_2(\tau_i); \) from inequality (3.6) and condition (iii) we have \(V(\tau_i) = V_2(\tau_i) \leq (1 + b_1)V_2(\tau_i) \leq (1 + b_1)v^*/2\). Thus,

\[
V(\tau_i) \leq (1 + b_1)\frac{v^*}{2}. \tag{3.7}
\]

Similarly, with the process in proving (3.6) and (3.7), we have

\[
V(t) \leq (1 + b_1)\frac{v^*}{2} \text{ for } \tau_i \leq t < \tau_i+1; \quad V(\tau_i+1) \leq (1 + b_{i+1})\frac{v^*}{2}. \tag{3.8}
\]

By simple induction, we can prove that, in general

\[
V(t) \leq (1 + b_{i+1}) \cdots (1 + b_i)\frac{v^*}{2} \text{ for } \tau_{i+i} \leq t \leq \tau_{i+i+1}. \tag{3.9}
\]

Taking this together with (3.2) and \(\prod_{k=1}^\infty (1 + b_k) = M\), we have

\[
\left[\frac{w_{11}(h^{(1)}(t))}{2} + \frac{w_{12}(h^{(2)}(t))}{2}\right] \leq V(t) \leq M\frac{v^*}{2}, \quad \forall t \geq t_0. \tag{3.10}
\]

Since \(Mv^* = \min\{w_{11}(v), w_{12}(v)\}\), we have

\[
w_{1j}(h^{(j)}(t)) \leq w_{1j}(v), \quad \text{that is, } h^{(j)}(t) \leq v, \; j = 1, 2, \forall t \geq t_0. \tag{3.11}
\]

Therefore, by the definition of \(h(t, x)\), we have \(h(t, x) \leq v\). Thus the zero solution of (2.1), (2.2) with respect to \((u, v)\) is \((\tilde{h}_0, h)\)-uniformly practically stable.
Remark 3.2. Since in our result \(\alpha \) may be \(-\infty\) and the upper bound of the Lyapunov functions in our paper is improved by \(w_{3j}, \ j = 1, 2, \) the result we have obtained is more general than that in [4-7, 14] with or without finite delay; furthermore, we have divided the components of \(x \) into several groups, correspondingly, several Lyapunov functions \(V_j(t, x^{(j)}_i) \ (j = 1, 2, \ldots, m) \) are employed, where \(x = (x^{(1)}, \ldots, x^{(m)})^T \) for each \(x^{(j)} \). In this way, construction of the suitable Lyapunov functions is much easier than for \(x \) as [4, 6, 7, 10]. In addition, compared with [9, 12] where the infinite delay was considered in the Lyapunov stability of differential equations, we obtain the uniformly practical stability in terms of two measures.

Now, we may develop the ideas behind Theorem 3.1 to obtain the following more general results.

Theorem 3.3. For \(j = 1, 2, \ldots, m \), let \(\Phi_j : R^+ \to R^+ \) be continuous, \(\Phi_j \in L^1[0, \infty) \), \(\Phi_j(t) \leq K_j \) for \(t \geq 0 \) with some constants \(K_j > 0 \), and let \(W_{ij} \ (i = 1, 2, 3, 4) \) be wedge functions. If there also exist Lyapunov functions \(V_j : R_\alpha \times S^{(j)}(H) \to R^+ \) such that

(i) \(W_{1j} \sum_{j=1}^m W_{1j}(h_j^{(j)}(t)) \leq V_j(t) \leq W_{2j} \sum_{j=1}^m W_{3j} \int_0^t \Phi_j(t - s) W_{4j}(h_j^{(j)}(t)) ds, \) where \(h_j^{(j)} \in \Gamma^{\alpha}_\alpha, \ h_j^{(j)} \in \Gamma^{\alpha}_\alpha; \)

(ii) when \(V_j(t) = \max \{ V_j(t) \mid j = 1, 2, \ldots, m \} \), there holds \(V_j(t) \leq 0 \) if \(V_j(t) \) for \(s \in [\alpha, t] \); \(l = 1, 2, \ldots, m; \)

(iii) \(V_j(t_k) \leq (1 + b_k) V_j(t_k), \ k = 1, 2, \ldots, b_k \geq 0, \) and \(\sum_{k=1}^\infty b_k < \infty; \)

(iv) \(0 < u < v \) are given, \(\phi_j(u) < v; \) when \(h_j^{(j)}(t, x_j^{(j)}) \leq \phi_j \) \((\tilde{h}_0^{(j)}(t, x_j^{(j)})) \) where \(\phi_j \) are wedge functions, and \(x(t) = (x^{(1)}(t), \ldots, x^{(m)}(t)) \) is a solution of (2.1) and (2.2).

Then the zero solution of (2.1) and (2.2) is \((\tilde{h}_0, h)\)-uniformly practically stable.

It suffices to mention a few points in the proofs of Theorem 3.3, the rest are the same as in the proofing of Theorem 3.1, thus, are omitted.

For \(x(t) = (x^{(1)}(t), \ldots, x^{(m)}(t)) \), we define

\[V(t) = V_i(t), \quad V_i(t) = \max \{ V_j(t) \mid j = 1, 2, \ldots, m \}; \quad (3.12) \]

Second, instead of (3.2) we can claim that for any \(t \geq \alpha \)

\[\frac{\sum_{j=1}^m W_{1j}(h_j^{(j)}(t))}{m} \leq V(t) \leq \sum_{j=1}^m W_{2j} \int_0^t \Phi_j(t - s) W_{4j}(h_j^{(j)}(t)) ds. \quad (3.13) \]

Example 3.4. Consider the equation

\[x_1'(t) = -a_1(t)x_1(t) + a_2(t)x_2(t) + b_1(t)x_1(t - r_1(t)) + \int_{-\infty}^0 g_1(t, u, x_1(t + u)) du, \quad t \neq t_k, \]

\[x_2'(t) = c_1(t)x_1(t) - c_2(t)x_2(t) + b_2(t)x_2(t - r_2(t)) + \int_{-\infty}^0 g_2(t, u, x_2(t + u)) du, \quad t \neq t_k, \quad (3.14) \]

\[x_i(t_k) - x_i(t_k^-) = I_k(x_i(t_k^-)), \quad k \in Z^+, \ i = 1, 2, \]
This work was supported by the National Natural Science Foundation of China (nos. 11101373 and 61074011), the Natural Science Foundation of Zhejiang Province of China (no. Y6100007), and Zhejiang Innovation Project (no. T200905).

Abstract and Applied Analysis

where \(|x + I_k(x)|^2 \leq (1 + b_k)^2 x^2_k\), with \(b_k \geq 0\), \(\sum_{k=1}^{\infty} b_k < \infty\). Let \(M = \prod_{k=1}^{\infty} (1 + b_k) < \infty\).\(a_i, b_i, c_i, r_i\) and \(g_i\) \(i = 1,2\) are all continuous functions.

We first assume that \(r_i(t) \geq 0\) and \(|g_i(t,u,x)| \leq m_i(u)|x|, t \geq 0, i = 1,2,\) with \(\int_{-\infty}^{0} m_1(u)du \leq a_1(t) - |b_1(t)|,\) and \(\int_{-\infty}^{0} m_2(u)du \leq c_2(t) - |c_1(t)| - |b_2(t)|\). Without loss of generality, we may assume that the right-hand sides of (3.14) are defined on \(\mathbb{R} \times PC_1(t)\), then set \(a = -\infty\) and \(t_\ast = 0\).

Let \(V_1(t,x_j(t)) = x_j^2(t), h_{0j}^{(i)}(t,x_j) = x_j^2(t), w_{2j}(s) = (1/2)s, w_{2j}(s) = 2s,\) then from the definition \(\tilde{h}_{0j}^{(i)}(t,x_j) = \sup_{-\infty < \theta \leq 0} x_j^2(\theta) = \|x_j^2\|,\) \(j = 1,2.\) For given \(0 < u < v,\) we assume \(\|x_j^2\| < u\) implies that there exists a \(K \in \mathbb{R}^+\) such that \(x_j^2(t) < K x_j^2(\theta)\) for any \(\theta \in (-\infty, t].\) Let \(h^{(i)}(t,x_j) = x_j^2(t)/(K + 1), \phi^{(i)}(t) = (K/(K + 1))t,\) then \(\phi^{(i)}(u) < u < v;\) furthermore, when \(\tilde{h}_{0j}^{(i)}(t,x_j) = \|x_j^2\| < u,\) then for \(\theta \in (-\infty, t],\)

\[
\begin{align*}
 h^{(i)}(t,x_j) &= \frac{x_j^2(t)}{K + 1} \leq \frac{K}{K + 1} x_j^2(\theta) \leq \frac{K}{K + 1} \|x_j^2\| = \phi^{(i)}(\tilde{h}_{0j}^{(i)}(t,x_j)),
\end{align*}
\]

so conditions (i) and (iv) in Theorem 3.1 are verified.

Moreover, when \(V_1(t) \geq V_2(t),\) that is, \(|x_1(t)| \geq |x_2(t)|,\) and for \(s \in (-\infty, t],\) \(V_1(s) \leq V_1(t),\) we have

\[
\begin{align*}
 V'_1(t) &= -2a_1(t)x_1^2(t) + 2a_2(t)x_1(t)x_2(t) + 2b_1(t)x_1(t)x_1(t - r_1(t)) + 2x_1(t) \int_{-\infty}^{0} g_1(t,u,x_1(t + u))du \\leq 2 \left[a_1(t) - |a_2(t)| - |b_1(t)| - \int_{-\infty}^{0} m_1(u)du \right] x_1^2(t) \leq 0,
\end{align*}
\]

similarly, when \(V_1(t) \leq V_2(t)\) and for \(s \in (-\infty, t],\) \(V_2(s) \leq V_2(t),\) we also have \(V'_2(t) \leq 0.\) Thus, condition (ii) in Theorem 3.1 is satisfied and the zero solution of system (3.14) is \((\tilde{h}_{0j}, h)\)-uniformly practically stable.

It is easy to see that if we put two variables \(x_1, x_2\) in one Lyapunov function, then the arguments to get the desired stability conclusions would be much more complicated and the imposed conditions would be more restrictive. Furthermore, we extend the uniformly practically stable results to the infinite delay systems, and it is easy to see that the criteria in [3–10] are limited to judge the practical stability of Example 3.4.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (nos. 11101373 and 61074011), the Natural Science Foundation of Zhejiang Province of China (no. Y6100007), and Zhejiang Innovation Project (no. T200905).
References