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Four natural orientations of the direct product of two digraphs are introduced in this paper.
Sufficient and necessary conditions for these orientations to be strongly connected are presented,
as well as an explicit expression of the arc connectivity of a class of direct-product digraphs.

1. Introduction

Various product operations are employed for constructing larger networks from smaller
ones, among which direct-product operation is the most frequently employed one. The direct
product of two graphs G1 andG2, denoted byG1×G2, is defined on vertex set V (G1)×V (G2),
where two vertices (x1, x2) and (y1, y2) are adjacent to each other in G1 × G2 if and only
if x1y1 ∈ E(G1) and x2y2 ∈ E(G2). Other names for direct product are tensor product,
categorical product, Kronecker product, cardinal product, relational product, and weak
direct product [1]. Some basic connectivity properties of direct-product graphs are presented
in [2, 3] and elsewhere. Specially, the authors characterize connected product graphs by
presenting the following Theorem 1.1 in [1]; an explicit expression of the connectivity of a
direct-product graph is presented in [4].

Theorem 1.1 (see [1, Theorem 5.29]). Let G andH be connected nonempty graphs. Then G×H is
connected if and only if at least one of them is nonbipartite. Furthermore, if bothG andH are bipartite,
then G ×H has exactly two components.

Let D1 = (V1, A1) and D2 = (V2, A2) be two digraphs. It is naturally to define the
vertex set and adjacency relationship between vertices of direct product of digraph as those
of undirected graphs. But the orientation is not unique, for every pair of arcs (x1, y1) ∈ A1

and (x2, y2) ∈ A2, there are four natural orientations of the two edges (x1, x2)(y1, y2) and
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Figure 1: Orientations of direct-product digraph �K2 × �K2.

(y1, x2)(x1, y2). For clarity and comparison, we depicture the Cartesian product �K2� �K2 and
the four orientations of direct-product digraph �K2 × �K2 in Figure 1.

A digraph is strongly connected or disconnected if any vertex is reachable from any
other vertex, where a vertex u is said to be reachable form another vertex v if there is
a directed path from v to u. The minimum number λ(D) of arcs needed to be removed
for destroying the strong connectivity of a digraph is called its arc connectivity. This work
characterizes strongly connected direct-product digraphs of the above four orientations. We
follow [5] for symbols and terminology not specified in this work.

2. Strongly Connected Direct-Product Digraphs

As will be shown in next section, the above four orientations can be transformed by one
another to some extent. So we assume in this section thatD1 ×D2 contains an arc from vertex
(x1, x2) to (y1, y2) if and only if arc (x2, y2) ∈ A(D2), and (x1, y1) ∈ A(D1) or (y1, x1) ∈ A(D1).

Lemma 2.1. Let D be a digraph. Then �K2 ×D is strongly connected if and only if D is nonbipartite
and strongly connected.

Proof. Necessity. If D is bipartite, then by Theorem 1.1 the underlying graph of �K2 × D is
disconnected. This contradiction shows that D is nonbipartite. Let {a, b} be the vertex set of
�K2. Since �K2×D is strongly connected, it follows that for any two vertices u, v ∈ V (D), �K2×D
contains a directed walk W1 from (a, u) to (a, v). Let W1 = (a, u)(b, v1)(a, v2) · · · (b, vk)(a, v).
Then it yields a directed walk uv1v2 · · ·vkv ofD. The necessity follows from this observation.

Sufficiency. Since D is strongly connected, it contains a spanning closed directed walk
W = u0v1v2 · · ·vku0, which corresponds two directed walks W ′ = (a, u0)(b, v1)(a, v2) · · ·
(x, u0) and W ′′ = (b, u0)(a, v1)(b, v2) · · · (y, u0) of �K2 × D, where x, y ∈ {a, b}. It is obvious
that W ′ ∪W ′′ is a spanning subgraph of V ( �K2 ×D).

Case 1. The length of W = u0v1v2 · · ·vku0 is odd, say, k = 2n.
In this case, W ′ = (a, u0)(b, v1)(a, v2) · · · (a, v2n)(b, u0) and W ′′ = (b, u0)(a, v1)(b, v2) · · ·

(b, v2n)(a, u0). And so W ′ ∪W ′′ is a spanning closed directed walk of �K2 ×D. Hence, �K2 ×D
is strongly connected.

Case 2. The length of W = u0v1v2 · · ·vku0 is even, say, k = 2n + 1.
In this case, both W ′ = (a, u0)(b, v1)(a, v2) · · · (a, v2n)(a, u0) and W ′′ = (b, u0)

(a, v1)(b, v2) · · · (b, v2n)(b, u0) are closed directed walks. SinceD is nonbipartite, it contains an
arc joining two vertices of W whose suffixes have same parity. Without loss of generality, let
(u0, v2l) ∈ A(D). This arc corresponds to two arcs ((a, u0), (b, v2l)), ((b, u0), (a, v2l)) of �K2 ×D.
These two arcs make W ′ and W ′′ reachable from each other. Therefore, �K2 × D is strongly
connected.
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Theorem 2.2. Let D1 and D2 be two digraphs. Then D1 ×D2 is strongly connected if and only if D2

is strongly connected and D1 or D2 is nonbipartite.

Proof. Sufficiency. If D2 is nonbipartite and strongly connected, by Lemma 2.1, D1 × D2 is
strongly connected.

If D2 is strongly connected and bipartite, but D1 is nonbipartite, then D2 contains a
spanning closed directed walk W2 = u0u1u2 · · ·uku0. Since D2 is bipartite, it follows that k
is odd. Let W1 = v0v1v2 · · ·vi · · ·v2m+ivi · · ·vsv0 be a spanning closed walk of D1, where C =
vi · · ·v2m+ivi is an odd cycle. For any vertex vj ∈ V (W1) and any one of its neighbor vl in W1,
W ′

j = (vj , u0)(vl, u1)(vj , u2) · · · (vl, uk)(vj , u0) ∼= W2 and V (D) = ∪si=0V (W ′
i). Since vj and vl are

adjacent inW1, it follows that l = j + 1 or 2m + j. Let

W ′′ =
(
vj , u0

)(
vj+1, u1

)(
vj , u2

) · · · (vj+1, uk

)(
vj , u0

)
,

W ′′′ =
(
vj , u0

)(
v2m+j , u1

)(
vj , u2

) · · · (v2m+j , uk

)(
vj , u0

)
.

(2.1)

The sum of the suffixes of each vertex inW ′′ has the same parity as the integer j. Since
vj may be any vertex of W1, it follows that the vertices of V (D1) × V (D2) whose suffix sum
has same parity induce a strong component (a strongly connected vertex-induced subgraph
with as many as possible vertices). Since W ′′′ contains vertices with odd suffix sum as well
vertices with even suffix sum, it follows that D1 ×D2 is strongly connected.

Necessity. Since D1 × D2 is strongly connected, every two vertices (ui, vj) and (uk, vl)
are reachable from each other in D1 × D2. It follows that vj and vl are reachable from each
other in D2. Hence, D2 is strongly connected. If D2 is strongly connected, but both D1 and
D2 are bipartite, then D1 ×D2 is not strongly connected by Lemma 2.1. The necessity follows
from this contradiction.

3. Relationship of the Four Orientations

The last three orientations of Figure 1 can be defined as follows, respectively.

Orientation 2. Let D1 = (V1, A1) and D2 = (V2, A2) be two digraphs. D1 × D2 contains an arc
from (x1, x2) to (y1, y2) if and only if (y2, x2) ∈ A2, and (y1, x1) or (x1, y1) ∈ A1.

Orientation 3. Let D1 = (V1, A1) and D2 = (V2, A2) be two digraphs. D1 × D2 contains an arc
from (x1, x2) to (y1, y2) if and only if (x1, y1) ∈ A1, and (x2, y2) or (y2, x2) ∈ A2.

Orientation 4. Let D1 = (V1, A1) and D2 = (V2, A2) be two digraphs. D1 ×D2 has an arc from
(x1, x2) to (y1, y2) if and only if (y1, x1) ∈ A1, and (x2, y2) or (y2, x2) ∈ A2.

The readers are suggested to refer to (2), (3), and (4) of Figure 2 for Orientations 2,
3, and 4 respectively. It is not difficult to see that Orientation 2 is the converse of the first
orientation in Figure 1. And so, the following Corollary 3.1 follows directly from Theorem 2.2.
Similarly, if D2 ×D1 has Orientation 1 (refer to (2) of Figure 1) and D1 ×D2 has Orientation
3 then D2 × D1

∼= D1 × D2. From this observation and Corollary 3.1, Corollary 3.2 follows
directly.
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Corollary 3.1. Let D1 ×D2 be oriented as Orientation 2. Then it is strongly connected if and only if
D2 is strongly connected and D1 or D2 is nonbipartite.

Corollary 3.2. LetD1 ×D2 be oriented as in Orientations 3 or 4. Then it is strongly connected if and
only if D1 is strongly connected and D1 or D2 is nonbipartite.

4. Strong Arc Connectivity

Let D be a strongly arc connected digraph and X � V (D) be a nonempty vertex set. Denote
by (X,V (D)−X) the set of arcs with tail inX and head in V (D)−X, which is called a directed
cut of D. If T is a directed cut of strongly connected digraph D, then D − T is connected but
is not strongly connected. The size λ(D) of minimum directed cuts of digraph D is called its
strong arc connectivity. Let β(D) = min{|S| : S ⊂ A(D) such that D − S is a bipartite graph},
δ(D) = min{δ+(D), δ−(D)} be the minimum degree of D. For every integer δ(D) ≥ j ≥ λ(D),
let βj = min{β(C) : C be any strongly connected component of D − T and T is an arbitrary
directed cut of D of size j}.

Let D1 × D2 be oriented according to the first orientation of Figure 1. For every arc
((x1, x2), (y1, y2)) of D1 × D2, the arc (x2, y2) ∈ A(D2) is called its projection on D2. The
following Lemma 4.1 is immediate, so we omit its proof herein.

Lemma 4.1. If directed graph D is not strongly connected, then it contains two strongly connected
components, one of which has no outer neighbors and the other has no inner neighbors.

Theorem 4.2. If �K2 ×D is strongly connected, then λ( �K2 ×D) = min{2λ(D), β(D),min{j + βj :
λ(D) ≤ j ≤ δ}}.

Proof. By Lemma 2.1, Theorem 4.2 is clearly true in the case when D is bipartite, and so we
assume in what follows that β(D) ≥ 1 and D is nonbipartite. Let T be a minimum direct cut
ofD and let F be a minimum arc-set ofD such thatD −F = (X,Y ;E) is a bipartite graph with
bipartition X and Y . Then β(D) = |F| and, λ(D) = |T | ≥ 1 by Lemma 2.1.

Claim 1. λ( �K2 ×D) ≤ min{2λ(D), β(D),min{j + βj : λ(D) ≤ j ≤ δ}.
Let A( �K2) = {(a, b)}. By Theorem 1.1, �K2 × (D − F) consists of two components. The

vertex sets of these two components are {(a, x) : x ∈ X} ∪ {(b, y) : y ∈ Y} and {(b, x) : x ∈
X} ∪ {(a, y) : y ∈ Y}. It is not difficult to see that {((a, x), (b, y)) : (x, y) ∈ F ∩ A(D[X])} ∪
{((b, x), (a, y)) : (x, y) ∈ F ∩ A(D[Y ])} is a directed cut of �K2 × D, since its removal makes
{(b, x) : x ∈ X} ∪ {(a, y) : y ∈ Y} not reachable from {(a, x) : x ∈ X} ∪ {(b, y) : y ∈ Y}. And

so, λ(
←
K2 ×D) ≤ |F| = β(D).
By Lemma 4.1, D − T contains a strongly connected component D1 that has no outer

neighbors. By the minimality of T , we have (D1, D1) = T . Obviously, {((a, x), (b, y)) : (x, y) ∈
T} ∪ {((a, y), (b, x)) : (x, y) ∈ T} is a directed cut of �K2 ×D. Hence λ( �K2 ×D) ≤ 2|T | = 2λ(D).

Let Tj be a directed cut of D that has size j, Cj be a strongly connected component
of D − Tj with (Cj,D − Tj − Cj) = ∅ (by Lemma 4.1 such components exist), Fj be an arc
set of Cj such that Cj − Fj = (Xj, Yj ;Ej) is a bipartite subgraph with bipartition (Xj, Yj).
Then �K2 × (Cj − Fj) consists of two components, whose vertex sets are {(a, x) : x ∈ Xj} ∪
{(b, y) : y ∈ Yj} and {(b, x) : x ∈ Xj} ∪ {(a, y) : y ∈ Yj}. It’s not difficult to see that the
union of {((a, x), (b, y)) : (x, y) ∈ Fj ∩ A(D[Xj])}, {((b, x), (a, y)) : (x, y) ∈ Fj ∩ A(D[Yj])},
{((a, x), (b, y)) : (x, y) ∈ (Xj,D − Cj)} and {((b, x), (a, y)) : (x, y) ∈ (Yj,D − Cj)} is a directed
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cut of �K2 ×D, since its removal makes {(a, y) : y ∈ Yj} ∪ {(b, x) : x ∈ Xj} not reachable from
{(a, x) : x ∈ Xj} ∪ {(b, y) : y ∈ Yj}. Noticing that |{((a, x), (b, y)) : (x, y) ∈ Fj ∩A(D[Xj])} ∪
{((b, x), (a, y)) : (x, y) ∈ Fj ∩ A(D[Yj])}| = |Fj |, |{((a, x), (b, y)) : (x, y) ∈ (Xj,D − Cj)} ∪
{((b, x), (a, y)) : (x, y) ∈ (Yj,D − Cj)}| = |Tj | and |Tj ∪ Fj | = |Tj | + |Fj | = j + βj , we deduce that
λ( �K2 ×D) ≤ min{j + βj : λ(D) ≤ j ≤ δ}. And so, Claim 1 follows.

Claim 2. λ( �K2 ×D) ≥ min{2λ(D), β(D),min{j + βj : λ(D) ≤ j ≤ δ}.
Let S be a minimum direct cut of �K2 ×D, V1 = {x ∈ V (D): vertices (a, x) and (b, x) lie

in common strongly connected component of �K2 ×D−S}, V2 = {x ∈ V (D): vertices (a, x) and
(b, x) lie in different components of �K2×(D−S)}. Then (V1, V2) is a partition of V (D). From the
minimality of S it follows that �K2 ×D−S consists of two strongly connected components, say
C1 and C2. Noticing that (C1, C2) ⊆ S or (C2, C1) ⊆ S, we assume without loss of generality
that (C1, C2) ⊆ S. Now three different cases occur: V1 /= ∅ = V2; V1 = ∅/=V2; V1 /= ∅/=V2.

Consider at first the case when V1 /= ∅ = V2. By Lemma 2.1, we deduce that {x ∈ V (D) :
(a, x) ∈ V (C1)} induces a strongly connected component of D as well as {y ∈ V (D) : (a, y) ∈
V (C2)} in this case. Furthermore, ({x ∈ V (D) : (a, x) ∈ V (C1)}, {y ∈ V (D) : (a, y) ∈ V (C2)})
is a directed cut of D and ({(a, x) : (a, x) ∈ V (C1)}, {(b, y) : (b, y) ∈ V (C2)}) ∪ ({(b, x) :
(b, x) ∈ V (C1)}, {(a, y) : (a, y) ∈ V (C2)}) ⊆ S. It follows from these observations that

|S| ≥ ∣∣{(a, x) ∈ V (C1)},
{(

b, y
) ∈ V (C2)

}∣∣

+
∣∣{(b, x) ∈ V (C1)},

{(
a, y

) ∈ V (C2)
}∣∣

≥ 2λ(D).

(4.1)

Consider secondly the case when V1 = ∅/=V2. Let M = {x ∈ V (D) : (a, x) ∈
V (C1)} and N = {y ∈ V (D) : (b, y) ∈ V (C1)}. Then (M,N) is a partition of V (D) and
(C1, C2) = {((a, x), (b, y)) : (x, y) ∈ A(D[M])} ∪ {((b, x), (a, y)) : (x, y) ∈ A(D[N])}.
Since D − A(D[M]) − A(D[N]) is a bipartite subgraph of D, it follows that |(C1, C2)| =
|A(D[M])| + |A(D[N])| ≥ β(D). Recalling that (C1, C2) ⊆ S, we have |S| ≥ |(C1, C2)| ≥ β(D).

Consider finally the case when V1 /= ∅/=V2. Let

H = {x ∈ V (D) : (a, x) ∈ V (C1), x ∈ V1},
Q = {x ∈ V (D) : (a, x) ∈ V (C2), x ∈ V1},
W = {x ∈ V (D) : (a, x) ∈ V (C1), x ∈ V2},
Z = {x ∈ V (D) : (a, x) ∈ V (C2), x ∈ V2}.

(4.2)

Then (H,Q,W,Z) is a partition of V (D), refer to (1) of Figure 2. Since (C1, C2) ⊆ S,
the arcs in this set is removed in Figure 2. If H /= ∅/=Q, then the set of arcs from {(a, x) : x ∈
H} ∪ {(b, x) : x ∈ H} to C2 is a directed cut of �K2 × D, but it has less arcs than S. This
contradiction shows that eitherH = ∅ orQ = ∅. Assume without loss of generality thatQ = ∅.
Then �K2 ×D − S can be depicted as (2) of Figure 2.

On the one hand, for every arc (x, y) ∈ (H,D −H), if y ∈ W then ((a, x), (b, y)) ∈ S;
if y ∈ Z then ((b, x), (a, y)) ∈ S. On the other hand, for every arc (x, y) ∈ A(D[W]) the
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Figure 2: Partition of V ( �K2 ×D − S).

arc ((a, x), (b, y)) ∈ S and for every arc (x, y) ∈ A(D[Z]) the arc ((b, x), (a, y)) ∈ S. It follows
from these observations that

|S| ≥ |[H,D −H]| + (|A(D[W])| + |A(D[Z])|)
≥ min

{
j + βj : λ(D) ≤ j ≤ δ(D)

}
,

(4.3)

where [H,D −H] represents the set of arcs with ends in H and D −H, respectively. And so,
the theorem follows from Claims 1 and 2.
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[1] W. Imrich and S. Klavžar, Product Graph, Structure and Recognition, Wiley-Interscience, New York, NY,
USA, 2000.

[2] Y. Chao, Connectivity and fault-diameter of product graph [Ph.D. thesis], University of Science and
Technology of China, 2007.

[3] P. M. Weichsel, “The Kronecker product of graphs,” Proceedings of the American Mathematical Society,
vol. 13, pp. 47–52, 1962.

[4] R. Guji and E. Vumar, “A note on the connectivity of Kronecker products of graphs,” Applied
Mathematics Letters, vol. 22, no. 9, pp. 1360–1363, 2009.

[5] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, Macmillan Press, London, UK, 1976.


