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We study the convergence of the Laurent polynomials of Lagrange interpolation on the unit circle
for continuous functions satisfying a condition about their modulus of continuity. The novelty
of the result is that now the nodal systems are more general than those constituted by the n
roots of complex unimodular numbers and the class of functions is different from the usually
studied. Moreover, some consequences for the Lagrange interpolation on [−1, 1] and the Lagrange
trigonometric interpolation are obtained.

1. Introduction

The aim of this paper is to study the Lagrange interpolation problem on the unit circle
T := {z : |z| = 1} for nodal systems more general than those constituted by the n roots
of complex unimodular numbers. This last case has been studied in [1], where there is posed
as an open problem its extension to more general nodal systems. Recently a similar problem
has been solved in [2] for the Hermite interpolation problem. Now we follow the ideas in
[2] to obtain some results for the Lagrange case. Moreover, in [1] there is obtained a result
about convergence of the interpolants for continuous functions satisfying a condition related
to their modulus of continuity. In the present paper our aim is to obtain a similar result for
the new nodal systems and with a different condition on the modulus of continuity for the
functions.

The Lagrange interpolation problem on the real line has been widely studied for a
long time and many results about convergence are known (see [3–6]). If we only assume



2 Journal of Applied Mathematics

the continuity of the function, it is well known that the behavior is rather irregular. Faber
has proved that for each nodal system there exists a continuous function such that the
sequence of Lagrange interpolation polynomials is not uniformly convergent. Bernstein has
also proved the existence of a continuous function such that the sequence of Lagrange
interpolation polynomials is unbounded on a prefixed point. In the case of the nodal
systems constituted by the zeros of the Tchebychef polynomials of the first kind, many
results are known. Although these last nodal systems are good for interpolation, Grünwald
in [7] and Marcinkiewicz in [8] have proved the existence of a continuous function such
that the sequence of Lagrange interpolation polynomials, corresponding to the Tchebychef
nodal system, is divergent. After this result a natural problem was to obtain an analogous
result for an arbitrary nodal system. This result was obtained by Erdös and Vértesi in [9],
where they prove that for each nodal system on [−1, 1] there exists a continuous function
such that the sequence of Lagrange interpolation polynomials diverges for almost every
point in [−1, 1]. Thus, to obtain better properties about the convergence of the sequence
of Lagrange interpolation polynomials, it is needed to impose some restriction on the
function, such as a condition on its modulus of continuity. In the case of Jacobi abscissas,
Szegő has obtained important results about convergence by imposing some conditions
to the modulus of continuity of the function (see [10]). For example, in the case of the
Tchebychef abscissas of first kind, he obtained the uniform convergence to the function on
[−1, 1], under the assumption that its modulus of continuity is o(| log δ|−1). Szegő has also
obtained uniform convergence of the sequence of Lagrange interpolation polynomials for
more general nodal systems, under the assumptions that the nodes are the zeros of the
orthogonal polynomials with respect to a weight function w(x) such that w(x)

√
1 − x2 ≥

μ > 0, x ∈ (−1, 1) and the modulus of continuity of the functions is o(δ1/2) with δ →
0.

In the present paper we improve some results about convergence of the Lagrange
interpolation polynomials in [−1, 1], by using the Szegő transformation and the results
concerning the unit circle. The organization of the paper is the following. In Section 2 we
obtain our main result concerning the uniform convergence of the Laurent polynomial of
Lagrange interpolation for nodal systems described in terms of some properties and for
continuous functions with modulus of continuity o(δp) when δ → 0 and p ≥ 1/2. Section 3
is devoted to obtain some consequences of the preceding results concerning the Lagrange
interpolation on [−1, 1]. Finally, in the last section, we obtain some improvements concerning
the Lagrange trigonometric interpolation.

2. Lagrange Interpolation in the Space of Laurent Polynomials

Let {zj}nj=1 be a set of complex numbers such that |zj | = 1 for all j = 1, . . . , n and zi /= zj
for i /= j. Let {uj}nj=1 be a set of arbitrary complex numbers, and let p(n) and q(n) be two
nondecreasing sequences of nonnegative integers such that p(n) + q(n) = n − 1, n ≥ 2 with
limn→∞p(n) = limn→∞q(n) = ∞.

We recall that the Lagrange interpolation problem in the space of Laurent polynomials
consists in determining the unique Laurent polynomial L−p(n),q(n)(z) ∈ Λ−p(n),q(n) = span{zk :
−p(n) ≤ k ≤ q(n)} such that

L−p(n),q(n)
(
zj
)
= uj, for j = 1, . . . , n. (2.1)
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If we denote by Wn(z) =
∏n

j=1(z − zj) the nodal polynomial, then L−p(n),q(n)(z) can be
written as follows:

L−p(n),q(n)(z) =
n∑

j=1

lj,n−1(z)uj, (2.2)

where lj,n−1(z) are the fundamental polynomials of Lagrange interpolation given by

lj,n−1(z) =
z
p(n)
j Wn(z)

W ′
n

(
zj
)(
z − zj

)
zp(n)

, for j = 1, . . . , n, (2.3)

and they are characterized by satisfying lj,n−1(zk) = δj,k, for all j, k.
We are also going to consider the Lagrange interpolation polynomial for a function F

defined on T, that we are going to denote by L−p(n),q(n)(F; z) and which is characterized by
fulfilling the conditions L−p(n),q(n)(F; zj) = F(zj) for j = 1, . . . , n.

When the nodal system is constituted by the n-roots of a complex number with
modulus 1, and the function F is continuous on T, and its modulus of continuity satisfies
λ(F, δ) = O(δp), p > 1/2, the following result about convergence is known (see [1]).

Theorem 2.1. Let F be a continuous function on T, let p(n) and q(n) be two nondecreasing sequences
of nonnegative integers such that p(n) + q(n) = n − 1 and limn→∞p(n)/(n − 1) = r with 0 < r < 1,
and assume that the modulus of continuity of F is λ(F, δ) = O(δp) for some p > 1/2, if δ → 0.

Let L−p(n),q(n)(F; z) be the Laurent polynomial of Lagrange interpolation for the function F
with nodal system {zj}nj=1 being the n-roots of complex numbers τn with |τn| = 1.

Then limn→∞L−p(n),q(n)(F; z) = F(z) uniformly on T.

Proof. See [1].

The main tools to prove the preceding result are the explicit expression of the Laurent
polynomial of Lagrange interpolation and some properties concerning the nodal system.
In [2] the Hermite interpolation problem was studied for general nodal systems satisfying
certain properties. Following similar ideas we prove, in the next theorem, a result about the
convergence of the Lagrange interpolants for a different class of functions and more general
nodal systems.

Theorem 2.2. Let F be a continuous function on T, with modulus of continuity λ(F, δ) = o(δ1/2),
if δ → 0. Let p(n) and q(n) be two nondecreasing sequences of nonnegative integers such that
p(n) + q(n) = n − 1 and limn→∞p(n)/(n − 1) = r with 0 < r < 1.

Let {zj}nj=1 be a set of complex numbers such that |zj | = 1 for all j = 1, . . . , n and zi /= zj for
i /= j and letWn(z) = Πn

j=1(z−zj) be the nodal polynomial. Assume that there exist positive constants
B and L such that for every z ∈ T and n large enough the following relations hold:

(i) B ≤ |W ′
n(z)|/n,

(ii) |Wn(z)|2/n2∑n
j=1(1/|z − zj |2) ≤ L.

If L−p(n),q(n)(F; z) ∈ Λ−p(n),q(n) is the Laurent polynomial of Lagrange interpolation related to
the nodal system and the function F, then limn→∞L−p(n),q(n)(F; z) = F(z) uniformly on T.
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Proof. First we prove that there exists a positive constant C such that
∑n

j=1 |lj,n−1(z)| ≤ C
√
n

for every z ∈ T and n large enough. Indeed, taking into account (2.3) and applying the
hypothesis we get

n∑

j=1

∣
∣lj,n−1(z)

∣
∣ =

n∑

j=1

∣
∣
∣Wn(z)z

p(n)
j

∣
∣
∣

∣
∣W ′

n

(
zj
)(
z − zj

)
zp(n)

∣
∣ =

n∑

j=1

|Wn(z)|∣
∣W ′

n

(
zj
)(
z − zj

)∣∣ ≤
1
Bn

n∑

j=1

|Wn(z)|∣
∣z − zj

∣
∣

≤ 1
Bn

⎛

⎝
n∑

j=1

|Wn(z)|2
∣
∣z − zj

∣
∣2

⎞

⎠

1/2⎛

⎝
n∑

j=1

1

⎞

⎠

1/2

≤
√
L

B

√
n.

(2.4)

Let us consider the Laurent polynomial of best uniform approximation to F, T−p(n),q(n)(z) ∈
Λ−p(n),q(n). If E−p(n),q(n)(F) = maxz∈T|F(z) − T−p(n),q(n)(z)|, then it holds that

E−p(n),q(n)(F) ≤ 2λ
(
F,

π

s(n)

)
, (2.5)

where s(n) = min(p(n), q(n)) (see [1]). Since limn→∞π/s(n) = 0, then by hypothesis
λ(F, π/s(n)) = o((π/s(n))1/2).

If we write

F(z) − L−p(n),q(n)(F; z) = F(z) − T−p(n),q(n)(z) − L−p(n),q(n)(F; z) + T−p(n),q(n)(z)

= F(z) − T−p(n),q(n)(z) − L−p(n),q(n)
(
F − T−p(n),q(n); z

)

= F(z) − T−p(n),q(n)(z) −
n∑

j=1

lj,n−1(z)
(
F
(
zj
) − T−p(n),q(n)

(
zj
))
,

(2.6)

then we have

∣∣F(z) − L−p(n),q(n)(F; z)
∣∣ ≤ ∣∣F(z) − T−p(n),q(n)(z)

∣∣ +
n∑

j=1

∣∣lj,n−1(z)
∣∣∣∣F
(
zj
) − T−p(n),q(n)

(
zj
)∣∣

≤ E−p(n),q(n)(F)

⎛

⎝1 +
n∑

j=1

∣∣lj,n−1(z)
∣∣

⎞

⎠ ≤ 2λ(F, π/s(n))
(
1 + C

√
n
)

= 2
λ(F, π/s(n))

(π/s(n))1/2

√
π

(s(n)/(n − 1))1/2
1 + C

√
n√

n − 1
,

(2.7)
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and it is easy to prove that the last expression tends to zero because limn→∞λ(F, π/s(n))/
(π/s(n))1/2 = 0 and

lim
n→∞

s(n)
n − 1

=
1
2

(

lim
n→∞

p(n)
n − 1

+ lim
n→∞

q(n)
n − 1

− lim
n→∞

∣
∣p(n) − q(n)

∣
∣

n − 1

)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 − r, if r ∈
(
1
2
, 1
)
,

r, if r ∈
(
0,

1
2

]
.

(2.8)

Remark 2.3. (i) Since λ(F, δ) = o(δp) for p > 1/2 implies λ(F, δ) = o(δ1/2), then the preceding
result is also valid for functions with modulus of continuity o(δp), with p > 1/2, if δ → 0.
Hence, in the sequel and for simplicity, we establish all the results with the condition λ(F, δ) =
o(δ1/2).

(ii) Since it is clear that the nodal systems in Theorem 2.1 satisfy the hypothesis of
Theorem 2.2, we have that the result given in Theorem 2.1 is also valid for functions with
modulus of continuity o(δ1/2), if δ → 0.

Next we recall a sufficient condition given in [2] in order that the nodal system satisfies
the conditions imposed in the previous theorem. We use the so-called para-orthogonal
polynomials (see [11–13]) and the class of measures satisfying the Szegő condition, (see
[10, 13–15]). Notice that the nodal systems in Theorem 2.1 are constituted by the n roots
of complex unimodular numbers, and indeed they are the n roots of the para-orthogonal
polynomials with respect to the Lebesgue measure on [0, 2π].

Theorem 2.4. Let ν be a measure on [0, 2π] in the Szegő class with Szegő function having analytic
extension up to |z| > 1. Let {φn(z)} be the monic orthogonal polynomial sequence with respect to
ν, MOPS(ν), and ωn(z, τ) = φn(z) + τφ∗

n(z), with |τ | = 1 being the para-orthogonal polynomials.
Then there exist positive constants A,B1, B2, and L such that for every z ∈ T and n large enough the
following relations hold:

(i) |ωn(z, τ)| ≤ A,

(ii) B1 ≤ |ω′
n(z, τ)|/n ≤ B2,

(iii) |ωn(z, τ)|2/n2∑n
j=1(1/|z − zj |2) ≤ L, where one assumes that z1, . . . , zn are the zeros of

ωn(z, τ).

Proof. See [2].

Taking into account the preceding results, we are in conditions to prove the following
corollary.

Corollary 2.5. Let F be a continuous function on T, with modulus of continuity λ(F, δ) = o(δ1/2),
if δ → 0. Let p(n) and q(n) be two nondecreasing sequences of nonnegative integers such that
p(n) + q(n) = n − 1 and limn→∞p(n)/(n − 1) = r with 0 < r < 1.

Let ν be a measure on [0, 2π] in the Szegő class with Szegő function having analytic extension
up to |z| > 1. Let {φn(z)} be the MOPS(ν) and let ωn(z, τ) = φn(z) + τφ∗

n(z), with |τ | = 1, be the
para-orthogonal polynomials.
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If L−p(n),q(n)(F; z) ∈ Λ−p(n),q(n) is the Laurent polynomial of Lagrange interpolation related
to the function F and with nodal system the zeros of the para-orthogonal polynomials ωn(z, τ), then
limn→∞L−p(n),q(n)(F; z) = F(z) uniformly on T.

Proof. Taking into account that the zeros of ωn(z, τ) belong to T (see [11]), the result is
immediate from Theorems 2.2 and 2.4.

Remark 2.6. Notice that the preceding result is valid for the Bernstein-Szegő measures (see
[13]).

3. Lagrange Interpolation on [−1, 1]
In this section we present some consequences of Theorem 2.2 concerning the Lagrange
interpolation problems on [−1, 1]. Let us recall that the Lagrange interpolation polynomial
related to a nodal system {xj}nj=1 ⊂ [−1, 1] and satisfying the conditions {uj}nj=1 is given by
ln−1(x) =

∑n
j=1(pn(x)/(p

′
n(xj)(x − xj)))uj , where pn(x) = Πn

j=1(x − xj).

Theorem 3.1. Let pn(x) =
∏n

j=1(x−xj) be a nodal system in [−1, 1] such thatW2n(z) = 2nznpn((z+
1/z)/2) satisfies the following inequalities

B ≤
∣∣W ′

2n(z)
∣∣

2n
, |W2n(z)|2

n∑

j=1

(
1

∣∣z − zj
∣∣2

+
1

∣∣z − zj
∣∣2

)

≤ L(2n)2, (3.1)

with (zj + (1/zj))/2 = xj for j = 1, . . . , n and for some positive constants B and L, n large enough
and every z ∈ T.

Let f be a continuous function on [−1, 1] such that λ(f, δ) = o(δ1/2), if δ → 0.
If ln−1(f, x) is the Lagrange interpolation polynomial such that ln−1(f, xj) = f(xj) for j =

1, . . . , n, then ln−1(f, x) converges to f(x) uniformly on [−1, 1].

Proof. It is easy to see that the polynomial W2n(z) has the following expression W2n(z) =
Πn

j=1(z − zj)(z − zj), with (zj + zj)/2 = xj .
Let us define a continuous function on T by F(z) = F(z) = f(x), with x = (z+(1/z))/2

and z ∈ T. It is clear that

λ(F, δ) = sup
z1,z2∈T;|z1−z2|<δ

|F(z1) − F(z2)| ≤ sup
x1,x2∈[−1,1];|x1−x2|<δ

∣∣f(x1) − f(x2)
∣∣ = λ

(
f, δ
)
.

(3.2)

If we take W2n(z) as nodal system on T, we can consider the following Lagrange
interpolation problem: find the Laurent polynomial of Lagrange interpolation L−n,n−1(F; z) ∈
Λ−n,n−1 satisfying the interpolation conditions

L−n,n−1
(
F; zj

)
= L−n,n−1

(
F; zj

)
= f
(
xj

)
, j = 1, . . . , n. (3.3)

By applying Theorem 2.2 we have that limn→∞L−n,n−1(F; z) = F(z) uniformly on T.
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On the other hand, for x = (z + (1/z))/2 and z ∈ T it holds

L−n,n−1(F; z) =
n∑

j=1

W2n(z)znj
znW ′

2n

(
zj
)(
z − zj

)F
(
zj
)
+

n∑

j=1

W2n(z)zj
n

znW ′
2n

(
zj
)(
z − zj

)F
(
zj
)

=
n∑

j=1

pn(x)
p′n
(
xj

)(
x − xj

)f
(
xj

)
= ln−1

(
f ;x
)
.

(3.4)

Hence limn→∞ln−1(f, x) = f(x) uniformly on [−1, 1].

As a consequence we obtain, in the next corollary, a result that was proved by Szegő
in [10] under weaker conditions. Although our result is not new, we give the proof because
the way in which it is obtained is different from Szegő’s proof.

Corollary 3.2. Let f be a continuous function on [−1, 1] such that λ(f, δ) = o(δ1/2), if δ → 0.
Let dμ(x) = w(x)dx be a finite positive Borel measure on [−1, 1] satisfying the Szegő condition
∫1
−1(log w(x)/

√
1 − x2)dx > −∞, and let {Pn(x)} be the MOPS(μ). Assume that the function

w(x)
√
1 − x2 is positive on [−1, 1] and it is analytic in an open set containing [−1, 1].
If ln−1(f, x) is the Lagrange interpolation polynomial satisfying the interpolation conditions

ln−1(f, xj) = f(xj), j = 1, . . . , n, where {xj}nj=1 are the zeros of the orthogonal polynomial Pn(x),
then

lim
n→∞

ln−1
(
f, x
)
= f(x) (3.5)

uniformly on [−1, 1].

Proof. By using the Szegő transformation (see [10]), the measure dμ(x) becomes into the
measure dν(θ) = (1/2)w(cos θ)| sin θ|dθ, which is in the Szegő class with Szegő function
having analytic extension up to |z| > 1 (see [14]). If we denote by {φn(z)} the MOPS(ν) and
by {Pn(z)} the MOPS(μ), then both sequences are related by

Pn(x) =
1

2n
(
1 + φ2n(0)

)
φ2n(z) + φ∗

2n(z)
zn

=
1

2n
(
1 + φ2n(0)

)
ω2n(z, 1)

zn
. (3.6)

The zeros of Pn(x), x1, . . . , xn, are simple and belong to (−1, 1) and they are related to
the zeros of ω2n(z, 1), z1, . . . , zn, zn+1 = zn, . . . , z2n = z1, by xj = (zj + zj)/2, j = 1, . . . , n. By
applying Theorem 2.4 we get that the systemω2n(z, 1) satisfies the hypothesis of Theorem 3.1.
Then we have that ln−1(f, x) converges to f(x) uniformly on [−1, 1].

Analogous results can be obtained for other nodal systems related to those given in
Corollary 3.2. Let dμ1(x) = w(x)dx be a finite positive Borel measure on [−1, 1]. Let us
consider the measures

dμ2(x) =
(
1 − x2

)
dμ1(x), dμ3(x) = (1 − x)dμ1(x), dμ4(x) = (1 + x)dμ1(x),

(3.7)
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and let us denote the MOPS with respect to these measures by {Pn(x, μi)}4i=1. Let us consider
the Szegő transformed measure of dμ1(x), dν(θ) = (1/2)w(cos θ)| sin θ|dθ with MOPS(ν),
{φn(z)}. Taking into account the relation between the measures, we can relate the orthogonal
sequences as follows (see [16]):

Pn

(
x, μ1

)
=

1
2n
(
1 + φ2n(0)

)
zn

w2n(z, 1),

√
1 − x2Pn

(
x, μ2

)
=

1
2n+1ı

(
1 − φ2n+2(0)

)
zn+1

w2n+2(z,−1),
√
1 − xPn

(
x, μ3

)
=

1
2n+1/2ı

(
1 − φ2n+1(0)

)
zn+(1/2)

w2n+1(z,−1),
√
1 + xPn

(
x, μ4

)
=

1
2n+1/2

(
1 + φ2n+1(0)

)
zn+(1/2)

w2n+1(z, 1).

(3.8)

We denote by ±1, x1, . . . , xn the zeros of
√
1 − x2Pn(x, μ2), by 1, y1, . . . , yn the zeros of√

1 − xPn(x, μ3), and by −1, v1, . . . , vn the zeros of
√
1 + xPn(x, μ4).

If we denote by ±1, z1, . . . , zn, z1, . . . , zn the zeros of ω2n+2(z,−1), by 1, w1, . . . ,
wn, w1, . . . , wn the zeros of w2n+1(z,−1), and by −1, u1, . . . , un, u1, . . . , un the zeros of
w2n+1(z, 1), then the following relations hold: �(zi) = xi, �(wi) = yi, and �(ui) = vi,
i = 1, . . . , n. By taking nodal systems related to the zeros of Pn(x, μi), i = 2, 3, 4, we obtain
the next result.

Theorem 3.3. Let f be a continuous function on [−1, 1] such that λ(f, δ) = o(δ1/2), if δ → 0. Let
μ1 be a finite positive Borel measure on [−1, 1], dμ1(x) = w(x)dx, satisfying the Szegő condition.
Assume that the function w(x)

√
1 − x2 is positive in [−1, 1] and it is analytic in an open set

containing [−1, 1]. Let dμi(x), i = 2, 3, 4, be the measures given in (3.7). Let us consider the Lagrange
interpolation polynomials for the function f with the following nodal systems:

(i) the zeros of Pn(x, μ2) joint with ±1,
(ii) the zeros of Pn(x, μ3) joint with 1,

(iii) the zeros of Pn(x, μ4) joint with −1.
Then the corresponding Lagrange interpolation polynomials uniformly converge to f(x) on [−1, 1].

Proof. By the Szegő transformation the measure dμ1(x) becomes into the measure dν(θ) =
(1/2)w(cos θ)| sin θ|dθ, which is in the Szegő class with Szegő function having analytic
extension up to |z| > 1. We denote by {φn(z)} the MOPS(ν). If we define a continuous
function F on T by F(z) = F(z) = f(x) with x = (z + 1/z)/2 and z ∈ T, then it is clear
that λ(F, δ) ≤ λ(f, δ).

(i) We consider the para-orthogonal polynomial ω2n+2(z,−1), whose zeros are
±1, z1, . . . , zn, z1, . . . , zn ∈ T and they are related to the zeros of Pn(x, μ2) by xj = (zj +
zj)/2; j = 1, . . . , n.

Let us consider the following Lagrange interpolation problem: find the Laurent
polynomial of Lagrange interpolation L−(n+1),n(F; z) satisfying

L−(n+1),n
(
F; zj

)
= L−(n+1),n

(
F; zj

)
= F
(
zj
)
, j = 1, . . . , n,

L−(n+1),n(F; 1) = F(1), L−(n+1),n(F;−1) = F(−1).
(3.9)
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By applying Corollary 2.5 we have that limn→∞L−(n+1),n(F; z) = F(z) uniformly on T. If we
take

ln+1
(
f, x
)
=

L−(n+1),n(F; z) + L−(n+1),n(F; 1/z)
2

(3.10)

for x = (z + (1/z))/2, then ln+1(f, x) fulfills ln+1(f, xj) = f(xj), j = 1, . . . , n, and ln+1(f,±1) =
f(±1). Therefore, ln+1(f, x) is the Lagrange interpolation polynomial for the function f and
the nodal system given in (i) and limn→∞ln+1(f, x) = f(x) uniformly on [−1, 1].

(ii) We consider the para-orthogonal polynomials ω2n+1(z,−1) whose zeros,
1, w1, . . . , wn,w1, . . . , wn, are related to the zeros of Pn(x, μ3) by yj = (wj +wj)/2, j = 1, . . . , n.

We pose the problem of finding the Laurent polynomial of Lagrange interpolation
L−n,n(F; z) satisfying

L−n,n
(
F;wj

)
= L−n,n

(
F;wj

)
= F
(
wj

)
, j = 1, . . . , n,

L−n,n(F; 1) = F(1).
(3.11)

Since limn→∞L−n,n(F; z) = F(z) uniformly on T, if we define ln(f, x) = (L−n,n(F; z) +
L−n,n(F; 1/z))/2 for x = (z + (1/z))/2 and z ∈ T, then ln(f, x) fulfills ln(f, xj) = f(xj), j =
1, . . . , n, and ln(f, 1) = f(1). Therefore, limn→∞ln(f, x) = f(x) uniformly on [−1, 1].

(iii) It is obtained proceeding the same way as in the previous items.

Remark 3.4. (i) In particular, the preceding result is valid for the following nodal systems:
the zeros of the Tchebychef polynomials of the second kind joint with ±1, the zeros of the
Tchebychef polynomials of the third kind joint with 1, and the zeros of the Tchebychef
polynomials of the fourth kind joint with −1.

(ii)Moreover it is also valid for the polynomial modifications, by positive polynomials,
of the Bernstein measures corresponding to the Tchebychef measures mentioned before.

4. Trigonometric Interpolation

Next we obtain some consequences of Theorem 2.2, which are related to the Lagrange
trigonometric interpolation. Now the nodal points are in [0, 2π] and they are obtained as
follows. Let dμ(x) = w(x)dx be a positive finite Borel measure on [−1, 1] satisfying the Szegő
condition. Assume that the functionw(x)

√
1 − x2 > 0 for all x ∈ [−1, 1] and it is analytic in an

open set containing [−1, 1]. If {Pn(x)} is the MOPS(μ) and {xj}nj=1 are the zeros of Pn(x), we
consider the following nodal system on [0, 2π], {θj}2nj=1, such that θj = arccosxj , j = 1, . . . , n
with 0 < θj < π and θn+j = 2π − θn−j+1 for j = 1, . . . , n; that is, the points are symmetric with
respect to π .

Theorem 4.1. Let f be a real continuous function on [0, 2π], with modulus of continuity λ(f, δ) =
o(δ1/2), if δ → 0.

Let the nodal system be {θj}2nj=1 with θj = arccosxj , j = 1, . . . , n with 0 < θj < π and
θn+j = 2π − θn−j+1 for j = 1, . . . , n, where {xj}nj=1 are the zeros of the orthogonal polynomial Pn(x)
with respect to the measure dμ. One also assumes that dμ(x) = w(x)dx is a positive finite Borel
measure on [−1, 1] satisfying the Szegő condition and such that w(x)

√
1 − x2 > 0 for all x ∈ [−1, 1]

and it is analytic in an open set containing [−1, 1].



10 Journal of Applied Mathematics

Then there is a Lagrange interpolation trigonometric polynomial of degree ≤ n, τn(θ), such
that τn(θj) = f(θj) for j = 1, . . . , 2n and it satisfies that limn→∞τn(θ) = f(θ) uniformly on [0, 2π].

Proof. Proceeding like in Corollary 3.2 we obtain that the transformed measure of dμ(x)
by the Szegő transformation, dν(θ), satisfies the hypothesis of Theorem 2.4 and the para-
orthogonal polynomials satisfy the bound condition of Theorem 2.4.

Let us define F by F(eıθ) = f(θ) for θ ∈ [0, 2π]. Let L−n,n−1(F, z) be the Lagrange
interpolation polynomial such that L−n,n−1(F, zj) = f(θj), where zj = eıθj , j = 1, . . . , 2n.

Since F is continuous on T and λ(F, δ) = o(δ1/2), we can apply Corollary 3.2 and
therefore limn→∞L−n,n−1(F; z) = F(z) uniformly on T.

If we take τn(θ) = �(L−n,n−1(F; eıθ)), then τn(θ) satisfies the interpolation conditions,
τn(θj) = f(θj), and limn→∞τn(θ) = f(θ).

In the next result we denote the integer part of x by [x] and we consider another type
of nodal system on [0, 2π].

Theorem 4.2. Let ν be a measure on [0, 2π] in the Szegő class with Szegő function having analytic
extension up to |z| > 1. Let {zj}nj=1 be the zeros of the para-orthogonal polynomials ωn(z) = φn(z) +
τφ∗

n(z), with |τ | = 1, and let θj ∈ [0, 2π] such that eıθj = zj , j = 1, . . . , n.
If f is a continuous function on [0, 2π] with λ(f, δ) = o(δ1/2), if δ → 0, then there is a

Lagrange interpolation trigonometric polynomial of degree ≤ [n/2], τ[n/2](θ), such that τ[n/2](θj) =
f(θj) for j = 1, . . . , n and it satisfies that limn→∞τ[n/2](θ) = f(θ) uniformly on [0, 2π].

Proof. Let F be a continuous function defined by F(eıθ) = f(θ). Since λ(F, δ) ≤ λ(f, δ),
then λ(F, δ) = o(δ1/2). By applying Corollary 2.5 we obtain for p(n) + q(n) = n − 1, with
limn→∞p(n)/(n−1) = r and 0 < r < 1, there exists L−p(n),q(n)(F; z) such that L−p(n),q(n)(F; eıθj ) =
f(θj) and limn→∞L−p(n),q(n)(F; z) = F(z) uniformly on T.

We distinguish the two following cases.

(i) If n is even, we take p(n) = n/2 and q(n) = n/2 − 1. Then [n/2] = n/2.

(ii) If n is odd, we take p(n) = (n − 1)/2 and q(n) = (n − 1)/2. Then [n/2] = (n − 1)/2.

In any case the real part of L−p(n),q(n)(F; z) is a trigonometric polynomial of degree [n/2], that
satisfies the interpolation conditions and the convergence property.
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[5] J. Szabados and P. Vértesi, Interpolation of Functions, World Scientific Publishing, Teaneck, NJ, USA,

1990.
[6] P. Turán, “On some open problems of approximation theory,” Journal of Approximation Theory, vol. 29,

no. 1, pp. 23–85, 1980.
[7] G. Grünwald, “On the theory of interpolation,” Acta Mathematica, vol. 75, pp. 219–245, 1943.
[8] J. Marcinkiewicz, “Sur la divergence des polynmes d’interpolation,”Acta ScientiarumMathematicarum,

vol. 8, pp. 131–135, 1937.
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