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Aggregate signature scheme proposed by Boneh, Gentry, Lynn, and Shacham allows n signatures
on n distinct messages from n distinct users to aggregate a single signature that convince any
verifier that n users did indeed sign the n messages, respectively. The main benefit of such
schemes is that they allow bandwidth and computational savings. In this paper, we question
about whether the existing aggregate signature schemes satisfy the basic property that they can
convince any verifier that every user indeed signed the message which should be signed by
him. We show that Rückert et al.’s scheme, and Shim’s scheme do not satisfy the property. As
a comparison, we investigate Boneh et al.’s scheme and show that under the assumption that each
signer correctly signs one message, Boneh et al.’s scheme satisfies this property under two users’
setting. Furthermore, we propose the concept of inside attack on aggregate signatures and give an
improved aggregate signature scheme based on Shim’s scheme. We also prove that the improved
scheme is secure against inside attack.

1. Introduction

An aggregate signature scheme as introduced by Boneh et al. [1] is a method for combining
n signatures from n different signers on n different messages into a single signature. This
single signature (and the n original messages) will convince the verifier that the n signers
did indeed sign the n original messages (i.e., signer i signed message mi for i = 1, . . . , n).
Typical applications for aggregate signatures are, for example, secure routing [2] or certificate
chain compression [1]. The main benefit of aggregate signature is that it saves bandwidth,
which makes it an optimal solution for networks of small, battery-powered devices that
communicate over energy-consuming wireless channels [3].

Since Boneh et al.’s aggregate signature scheme, many aggregate signature schemes
are proposed [4–10]. There even are aggregate proxy signature [11] and aggregate



2 Journal of Applied Mathematics

signcryption schemes [12]. However, about the security of aggregate signature schemes, only
traditional unforgeability was discussed in all existing schemes. We question that whether
every existing aggregate signature satisfies the basic property proposed by Boneh et al. that it
convinces any verifier that, for all 1 ≤ i ≤ n, signer i indeed signed message mi which should
be signed by him; he didnot signed message mj . Because in some situation an aggregate
signature may satisfy the verification, even though signer i signed message mj . We call
this attack an inside attack on aggregate signatures. We think this is an important issue to
aggregate signatures. Shao [13] discussed the security of aggregate signatures, but its issue
was another aspect. He pointed that every signer i forges a signature σi

· = σi · di on message
mi; here σi is the true signature of messagemi, when d1 · d2 · . . . · dn = 1 and S = σ ·1 · σ ·2 · . . . · σ ·n
also satisfies the aggregate signature verification.

Recently, Rückert et al. [6] proposed the first aggregate signature in standard model.
The scheme was based on the Boneh-Silverberg signature [14]. They proved its traditional
unforgeability in the standard model while maintaining an optimal signature size and
reasonable efficiency. However, in this paper, we show that Rückert et al.’s scheme does
not satisfy the basic property that a verifier, given the aggregate signature along with the
identities if the parties involved and their respective messages, can be convinced that signer
i indeed signed message mi which should be signed by him. In 2010, Shim proposed an
efficient ID-based aggregate signature scheme with constant pairing computations [8]. It is
the first scheme whose number of pairing computation in verification is independent of the
number of users. But, in this paper we point that Shim’s scheme also does not satisfy the basic
property. As a comparison, we investigate Boneh et al.’s scheme [1] and show that under the
assumption that each signer signs one message correctly, Boneh et al.’s scheme satisfies this
property under two users’ setting. Furthermore, we propose an improved scheme based on
Shim’s scheme and prove that the improved scheme is secure against the inside attack.

The rest of the paper is organized as follows. In Section 2 we introduce preliminaries
and the computational assumption. Section 3 investigates the security of Rückert et al.’s
aggregate signature. Section 4 investigates the security of the aggregate signature of Shim. As
a comparison, we study Boneh et al.’s aggregate signature scheme in Section 5. The improved
scheme is in Section 6. Section 7 concludes this paper.

2. Preliminary

2.1. The Bilinear Pairing

Let G1 be a cyclic additive group generated by P , whose order is a prime q, and G2 a cyclic
multiplicative group of the same order. Let e : G1 ×G1 → G2 be a pairing map which satisfies
the following conditions.

(1) Bilinearity: for any P,Q,R ∈ G1, we have e(P +Q,R) = e(P,R)e(Q,R) and

e(P,Q + R) = e(P,Q)e(P,R). (2.1)

In particular, for any a, b ∈ Zq, e(aP, bP) = e(P, P)ab = e(P, abP) = e(abP, P).

(2) Nondegeneracy: there exists P,Q ∈ G1, such that e(P,Q)/= 1.

(3) Computability: there is an efficient algorithm to compute e(P,Q) for all P,Q ∈ G1.
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The typical way of obtaining such pairings is by deriving them from the Weil-pairing
or the Tate-pairing on an elliptic curve over a finite field.

2.2. Gap Diffie-Hellman (GDH) Groups

Let G be a cyclic additive group of prime order q, and let P be a generator of G.

(1) The decisional Diffie-Hellman (DDH) problem is to decide whether c = ab inZ/qZ
for given P, aP, bP, cP ∈ G. If so, (P, aP, bP, cP) is called a valid Diffie-Hellman
tuple.

(2) The computational Diffie-Hellman (CDH) problem is to compute abP for given
P, aP, bP ∈ G.

Definition 2.1. The advantage of an algorithm F in solving the computational Diffie-Hellman
problem on group G is

AdvCDHF = Pr
[
F(P, aP, bP) = abP : ∀a, b ∈ Zq

]
. (2.2)

The probability took over the choice of a, b and F’s coin tosses. An algorithm F is said to be
(t, ε)-breaks the computational Diffie-Hellman problem on group G if F runs in time at most
t, and AdvCDHF is at least ε.

Definition 2.2. A groupG is said to be (t, ε)-gap Diffie-Hellman (GDH) group if the decisional
Diffie-Hellman problem in G can be efficiently computable and there exists no algorithm
(t, ε)-breaks the computational Diffie-Hellman problem on group G.

2.3. Security Model of Aggregate Signature

We take identity-based aggregate signature (IBAS) for example to give the definition
of aggregate signature and its security model. An identity-based aggregate signature is
composed of five algorithms [5]: key generation by the private key generation center (PKG),
private key extraction by the PKG for individual users, signing by an individual user,
aggregation of multiple individual signatures, and verification of an identity-based aggregate
signature.

KeyGen

Take a security parameter λ as input and output system parameters params and master key
msk.

KeyExt

Take params, msk. and a user identity ID as input and output a user private key SID.

Sign

Take private key SID and a message M as input and output an individual identity-based
signature σID.



4 Journal of Applied Mathematics

Agg

Given n signatures (σ1, . . . , σn) along with n users’ identities (ID1, . . . , IDn) and n messages
(M1, . . . ,Mn), output an aggregate signature σAgg.

Verify

Given an aggregate signature σAgg, the message, and identities’ pair list
{(M1, ID1), . . . , (Mn, IDn)}, verify the aggregate signature that if it is valid.

2.3.1. Security Model against Traditional Existential Forgery Attack

An IBAS scheme should be secure against traditional existential forgery under an adaptive
chosen-message and an adaptive-chosen-identity attack. We formalize the security model as
follows. The adversary’s goal is the existential forgery of an aggregate signature. We give
the adversary the power to choose the identities on which it wishes to forge a signature,
the power to request the identity-based private key on all but one of these identities. The
adversary’s advantage is defined as its probability of success in the following game.

Setup. The adversary is given the needed parameters and an identity ID1 at random.

Extraction Queries

Given an identity IDi (i /= 1), the challenger returns the private key SIDi
corresponding to IDi.

Signature Queries

Proceeding adaptively, the adversary may request signatures with respect to identity IDi on
messages of his choice.

Response

Finally, the adversary outputs n − 1 additional identities (ID2, . . . , IDn), n messages
(M1, . . . ,Mn) and an aggregate signature σ with respect to these n identities, and nmessages
(M1, . . . ,Mn).

The adversary wins if the aggregate signature σ is a valid signature on (M1, . . . ,Mn)
under ID1, ID2, . . . , IDn and the adversary did not request the private key for ID1 and did not
request a signature on M1 under ID1.

2.3.2. Security Model against Inside Existential Forgery Attack

We defined one new secure concept of aggregate signature as inside attack. It means the
included signers to generate an aggregate signature V on messages (Mj1 ,Mj2 . . . ,Mjn) for
identities (ID1, . . . , IDn). But, they claim that they generate an aggregate signature V on
messages (M1,M2 . . . ,Mn) for identities (ID1, . . . , IDn), here
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(1) (M1,M2 . . . ,Mn)/= (Mj1 ,Mj2 . . . ,Mjn),

(2) V really satisfies the aggregate signature verification equation on messages
(M1,M2 . . . ,Mn) for identities (ID1, . . . , IDn).

The concept of inside attack is closely related to the basic property of aggregate
signature that it should convince any verifier that every user indeed signed the message
which should be signed by him.

3. The Security of the Aggregate Signature Rückert et al.’s Scheme

3.1. Brief Review of Rückert et al.’s Scheme

In Rückert et al.’s scheme [6], two groups G1 and G2 of prime order l and a multilinear map e
are used; g is a generator ofG1. If a1, . . . , an ∈ Z, and x1, . . . , xn ∈ G1, then e(xa1

1 , xa2
2 , . . . , xan

n ) =
e(x1, x2, . . . , xn)

a1a2···an . Rückert et al.’s scheme comprises five algorithms.

Key Generation

The key generation algorithm takes as input the security parameter. It randomly selects 2n
elements a1,0, a1,1, . . . , an,0, an,1 ∈ {1, . . . , l − 1}. The algorithm computes

u1,0 = ga1,0 , u1,1 = ga1,1 , . . . , un,0 = gan,0 , un,1 = gan,1 (3.1)

and returns the private key and the public key pair:

sk = (a1,0, a1,1, . . . , an,0, an,1), pk = (u1,0, u1,1, . . . , un,0, un,1). (3.2)

Signature Issue

It accepts as input a message m = (m1, . . . , mn) ∈ {0, 1}n as well as signing key sk =
(a1,0, a1,1, . . . , an,0, an,1) and computes the signature σ = g

∏n
i=1ai,mi .

Signature Verification

It returns 1 iff e(σ, g, . . . , g) = e(u1,m1 , u2,m2 , . . . , un,mn).

Signature Aggregation

It builds an aggregate signature S on messages m(1), . . . , m(q), under public keys
pk(1), . . . ,pk(q), respectively. It outputs the triple (pk,M, S). Here S =

∏q

i=1σ
(i), pk =

{pk(1), . . . ,pk(q)}, M = {m(1), . . . , m(q)}, and σ(i) is the signature on message m(i) produced
by the user with public key pk(i).
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Aggregate Verification

It takes as input a set of public keys pk = {pk(1), . . . ,pk(q)}, a set of messages M =
{m(1), . . . , m(q)}, and an aggregate signature S. It returns 1 iff

q∏

i=1

e

(
u
(i)

1,m(i)
1

, u
(i)

2,m(i)
2

, . . . , u
(i)

n,m
(i)
n

)
= e

(
S, g, . . . , g

)
. (3.3)

3.2. The Security of Rückert et al.’s Scheme

In Rückert et al.’s scheme, let n = 2, two users A1, A2 with private key and pubic key pairs:

sk(1) =
(
a
(1)
1,0 , a

(1)
1,1 , a

(1)
2,0 , a

(1)
2,1

)
, pk(1) =

(
u
(1)
1,0 , u

(1)
1,1 , u

(1)
2,0 , u

(1)
2,1

)
,

sk(2) =
(
a
(2)
1,0 , a

(2)
1,1 , a

(2)
2,0 , a

(2)
2,1

)
, pk(2) =

(
u
(2)
1,0 , u

(2)
1,1 , u

(2)
2,0 , u

(2)
2,1

)
,

(3.4)

respectively.

Let m(1) = (m(1)
1 , m

(1)
2 ), m(2) = (m(2)

1 , m
(2)
2 ) be two messages. Then σ(1) = g

a
(1)

1,m(1)
1

·a(1)
2,m(1)

2 is

the signature onm(1) byA1, σ(2) = g
a
(2)

1,m(2)
1

·a(2)
2,m(2)

2 is the signature onm(2) byA2. So the aggregate
signature produced by users A1, A2 is

S = σ(1) · σ(2) = g
a
(1)

1,m(1)
1

·a(1)
2,m(1)

2

+a(2)
1.m(2)

1

·a(2)
2,m(2)

2 . (3.5)

The aggregate verification equation

e

(
u
(1)

1,m(1)
1

, u
(1)

2,m(1)
2

)
· e
(
u
(2)

1,m(2)
1

, u
(2)

2,m(2)
2

)
= e

(
g, g

)a(1)
1,m(1)

1

·a(1)
2,m(1)

2

+a(2)
1,m(2)

1

·a(2)
2,m(2)

2 = e
(
S, g

)
(3.6)

holds.
However, when m

(1)
1 = m

(2)
1 , m(1)

2 = 0, m(2)
2 = 1, a(1)

1,m(1)
1

= a
(2)

1,m(2)
1

= 1, and a
(1)
2,0 + a

(2)
2,1 =

a
(2)
2,0 + a

(1)
2,1, The equation

a
(1)

1,m(1)
1

· a(1)

2,m(1)
2

+ a
(2)

1,m(2)
1

· a(2)

2,m(2)
2

= a
(1)

1,m(2)
1

· a(1)

2,m(2)
2

+ a
(2)

1,m(1)
1

· a(2)

2,m(1)
2

, (3.7)

holds. So when the user with public key pk(1) signs m(2), the user with public key pk(2) signs
m(1), they generate aggregate signature

S∗ = g
a
(1)

1,m(2)
1

·a(1)
2,m(2)

2

+a(2)
1.m(1)

1

·a(2)
2,m(1)

2 , (3.8)
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and also satisfies the aggregate verification equation

e

(
u
(1)

1,m(1)
1

, u
(1)

2,m(1)
2

)
· e
(
u
(2)

1,m(2)
1

, u
(2)

2,m(2)
2

)
= e

(
S∗, g

)
. (3.9)

In this situation, the aggregate signature cannot convince the verifier that signer i
signed message mi. So Rückert et al.’s aggregate signature is not secure; it does not satisfy
the property that a verifier, given the aggregate signature along with the identities if the
parties involved and their respective messages, can be convinced that signer i indeed signed
message mi which should be signed by him. It is not secure against the inside forgery attack.

4. The Security of Shim’s Aggregate Signature Scheme

4.1. Brief Review of Shim’s Scheme

Shim’s scheme [8] comprises five algorithms.

Setup. Given security parameter k ∈ Z, the algorithm works as follows.

(1) Generate a prime q, a cyclic additive group G1 and a cyclic multiplicative group G2

of prime order q, a generator P in G1 and an admissible pairing e : G1 ×G1 → G2.

(2) Pick a random s ∈ Z·q and set Ppub = sP .

(3) Choose cryptographic hash functionsH1 : {0, 1}∗ → G1 and H2 : {0, 1}∗ → Zq.

The system parameters are 〈q,G1, G2, e, P, Ppub,H1,H2〉.

Extract

For a given string ID ∈ {0, 1}∗.
(1) Compute QID = H1(ID) ∈ G1.

(2) Set the private key SID to be s ·QID, where s is a master secret.

Sign

Given a private SID and a message M ∈ {0, 1}∗.
(1) Choose r ∈R Z∗q and compute U = r · P ∈ G1.

(2) Compute h = H2(ID,M,U) ∈ Zq and V = SID + h · r · Ppub ∈ G1. The signature on
M is σ = (U,V ).

Agg

For the aggregating set of users S, assign to each user an index i, ranging from 1 to k = |S|.
(1) Each user Ai ∈ S computes signature σi = (Ui, VI) on a message Mi ∈ {0, 1}∗.
(2) Compute V =

∑k
i=1 Vi and output σ = (U1, . . . , Uk, V ) as an aggregate signature on

(M1, . . . ,Mk) for (ID1, . . . , IDk).
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AVerify

Given an aggregate signature σ = (U1, . . . , Uk, V ) as above.

(1) Compute Qi = H1(IDi) and hi = H2(IDi,Mi,Ui) for i = 1, . . . , k.

(2) Verify whether e(V, P) = e(
∑k

i=1[Qi + hi ·Ui], Ppub) holds or not. If it holds, accept
the aggregate signature σ = (U1, . . . , Uk, V ).

4.2. Attack on Shim’s Scheme

Let ID1 be an identity of signer A1 and let ID2 be an identity of signer A2. They claim that
they generate an aggregate signature σ = (U1, U2, V ) on messages (M1,M2) for identities
(ID1, ID2). Then, A1 should sign M1, and A2 should sign M2. That is to say, they should do
as following:

(1) A1 and A2 choose r1, r2 ∈R Z∗q and compute U1 = r1 · P and U2 = r2 · P , respectively.
(2) A1 and A2 compute

V1 = S1 +H2(ID1,M1, U1) · r1 · Ppub, V2 = S2 +H2(ID2,M2, U2) · r2 · Ppub, (4.1)

respectively.

(3) They generate aggregate signature σ = (U1, U2, V ) on messages (M1,M2) for
identities (ID1, ID2). Here V = V1 + V2.

But, if the aggregate signature satisfies the verification equation, can the verifier be
convinced thatA1 indeed has signedM1, andA2 indeed has signedM2? They may cooperate
to do on purpose as following:

(1) A1 and A2 Choose r1, r2 ∈R Z∗q and compute U1 = r1 · P and U2 = r2 · P .
(2) A1 and A2 compute

V ∗1 = S1 +H2(ID2,M2, U2) · r2 · Ppub, V ∗2 = S2 +H2(ID1,M1, U1) · r1 · Ppub, (4.2)

respectively. They have not signed M1 and M2, respectively.

(3) They claim that they generate aggregate signature σ = (U1, U2, V
∗) on messages

(M1,M2) for identities (ID1, ID2). Here V ∗ = V ∗1 + V ∗2 .

Since V ∗ = V ∗1 + V ∗2 = V1 + V2 = V , the verification equation

e(V ∗, P) = e
(
(Q1 + h1U1 +Q2 + h2U2), Ppub

)
. (4.3)

Holds. A1 and A2 succeed in forging aggregate signature for (ID1, ID2) on (M1,M2).
The weakness of Shim’s scheme against this inside forgery attack is due to the

separation of the message signed and the private key in the signing equation V = SID +
h · r · Ppub ∈ G1.
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5. The Security of Boneh et al.’s Aggregate Schemes

We can investigate the security of Boneh et al.’s aggregate signature scheme [1] to provide
further illustration to this flaw of about two schemes.

5.1. Brief Review of Boneh et al.’s Scheme

In Boneh et al.’s aggregate signature, two cyclic multiplicative groups G1 and G2 of prime
order and a bilinear map e : G1 × G1 → G2 are used. g is a generator of G1. The scheme
employs a hash function h : {0, 1}· → G2.

Boneh et al.’s aggregate signature scheme comprises five algorithms.

Key Generation

For a user, pick random x ← Zp, and compute v = gx. The user’s public key is v ∈ G1, and
secret key is x ∈ Zp.

Signing

Given the secret key x and amessagem ∈ {0, 1}·, compute h = h(m), and the signature σ = hx.

Verification

Given user’s public key v, a message m, and a signature σ, compute h = h(m); accept if
e(g, σ) = e(v, h) holds.

Aggregation

For the aggregating set of users U, assign to each user an index i, ranging from 1 to k = |U|.
Each user ui ∈ U provides a signature σi ∈ G2 on amessagemi ∈ {0, 1}·of his choice. Compute
the aggregate signature σ =

∏k
i=1σi.

Aggregate Verification

Given an aggregate signature σ for an aggregating set of users U, indexed as before, and
given the original messages mi ∈ {0, 1}· and public keys vi for all users ui ∈ U. Compute
hi = h(mi) for 1 ≤ i ≤ k, and accept if e(g, σ) =

∏k
i=1e(vi, hi) holds.

5.2. The Security of Boneh et al.’s Scheme

In Boneh et al.’s scheme, given an aggregate signature of two different messages m1 and m2

under two users with public keys v1 and v2, respectively, if

e(v1, h1) · e(v2, h2) = e(v2, h1) · e(v1, h2), (5.1)
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then, it will be impossible to know whether signer i signed message mi, and Boneh et al.’s
scheme will have the same flaw as that of Rückert et al.’s scheme. But if

e(v1, h1) · e(v2, h2) = e(v2, h1) · e(v1, h2), (5.2)

then

e
(
gx1 , h1

) · e(gx2 , h2
)
= e

(
gx2 , h1

) · e(gx1 , h2
)
,

e
(
g, hx1

1

) · e(g, hx2
2

)
= e

(
g, hx2

1

) · e(g, hx1
2

)
,

e
(
g, hx1

1 hx2
2

)
= e

(
g, hx2

1 hx1
2

)
,

hx1
1 hx2

2 = hx2
1 hx1

2 ,

hx1−x2
1 = hx1−x2

2 ,

h1 = h2,

h(m1) = h(m2).

(5.3)

So if the hash function h is secured, h(m1)/=h(m2), then, under the assumption that each
signer signs one message correctly, Boneh et al.’s scheme does not suffer the same flaw as
about two schemes under two users.

6. An Improvement of Shim’s Identity-Based
Aggregate Signature Scheme

6.1. The Improved Scheme

The improved scheme comprises five algorithms.

Setup. Given security parameter k ∈ Z, the algorithm works as follows.

(1) Generate a prime q, a cyclic additive group G1 and a cyclic multiplicative group G2

of prime order q, two random generators P and Q in G1, and an admissible pairing
e : G1 ×G1 → G2.

(2) Pick a random s ∈ Z·q and set Ppub = sP .

(3) Choose cryptographic hash functionsH1 : {0, 1}∗ → G1 and H2 : {0, 1}∗ → Zq.

The system parameters are 〈q,G1, G2, e, P, Ppub,H1,H2〉.

Extract

For a given string ID ∈ {0, 1}∗.

(1) Compute QID = H1(ID) ∈ G1.

(2) Set the private key SID to be s ·QID, where s is a master secret.
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Sign

Given a private SID and a message M ∈ {0, 1}∗.
(1) Choose r ∈R Z∗q and compute U = r · P ∈ G1.

(2) Compute h = H2(ID,M,U) ∈ Zq and V = hSID + r ·Q ∈ G1. The signature on M is
σ = (U,V ).

Agg

For the aggregating set of users S, assign to each user an index i, ranging from 1 to k = |S|.
(1) Each user Ai ∈ S computes signature σi = (Ui, VI) on a message Mi ∈ {0, 1}∗.
(2) Compute V =

∑k
i=1 Vi and output σ = (U1, . . . , Uk, V ) as an aggregate signature on

(M1, . . . ,Mk) for (ID1, . . . , IDk).

AVerify

Given an aggregate signature σ = (U1, . . . , Uk, V ) as above.

(1) Compute Qi = H1(IDi) and hi = H2(IDi,Mi,Ui) for i = 1, . . . , k.

(2) Verify whether e(V, P) = e(Ppub,
∑n

i=1 hiQIDi
)e(Q,

∑n
i=1 Ui) holds or not. If it holds,

accept the aggregate signature σ = (U1, . . . , Uk, V ).

6.2. Security of the Improved Scheme

Following the method in [10], it is easy to prove that the improved scheme is secure against
the traditional existential forgery under an adaptive chosen message and an adaptive-chosen
identity attack. Here, we only show that our improvement is secure against the inside attack
proposed by us.

Take two signers as example, let ID1 be the identity of signer A1, and ID2 the identity
of signer A2. If they cooperate to do as following:

(1) A1 and A2 Choose r1, r2 ∈R Z∗q and compute U1 = r1 · P and U2 = r2 · P .
(2) A1 and A2 compute

V ∗1 = H2(ID2,M2, U2)SID1 + r2Q, V ∗2 = H2(ID1,M1, U1)SID2 + r1Q, (6.1)

respectively. Note that they have not signedM1 and M2, respectively.

(3) They claim that they generate aggregate signature σ = (U1, U2, V
∗) on messages

(M1,M2) for identities (ID1, ID2). Here V ∗ = V ∗1 + V ∗2 .

But, when σ = (U1, U2, V
∗) is a valid aggregate signature on messages (M1,M2) for

identities (ID1, ID2), the following equation holds:

e(V ∗, P) = e
(
H2(ID1,M1, U1)QID1 +H2(ID2,M2, U2)QID2 , Ppub

)
e(Q,U1 +U2). (6.2)



12 Journal of Applied Mathematics

In fact

e(V ∗, P) = e(H2(ID2,M2, U2)SID1 + r2Q +H2(ID1,M1, U1)SID2 + r1Q,P)

= e
(
H2(ID2,M2, U2)QID1 +H2(ID1,M1, U1)QID2 , Ppub

)
e(Q,U1 +U2).

(6.3)

If

e
(
H2(ID1,M1, U1)QID1 +H2(ID2,M2, U2)QID2 , Ppub

)
e(Q,U1 +U2)

= e
(
H2(ID2,M2, U2)QID1 +H2(ID1,M1, U1)QID2 , Ppub

)
e(Q,U1 +U2),

(6.4)

then

e
(
H2(ID1,M1, U1)QID1 +H2(ID2,M2, U2)QID2 , Ppub

)

= e
(
H2(ID2,M2, U2)QID1 +H2(ID1,M1, U1)QID2 , Ppub

)
.

(6.5)

So

H2(ID1,M1, U1)QID1 +H2(ID2,M2, U2)QID2 = H2(ID2,M2, U2)QID1

+H2(ID1,M1, U1)QID2 ,

(H2(ID2,M2, U2) −H(ID1,M1, U1))QID2 = (H2(ID2,M2, U2) −H(ID1,M1, U1))QID1

QID2 = QID1 .

(6.6)

This is impossible. So the inside attack is not successful in improved scheme in two
signers’ setting.

In n signers’ setting, if they generate an aggregate signature V on messages
(Mj1 ,Mj2 . . . ,Mjn) for identities (ID1, . . . , IDn). But they claim that they generate an
aggregate signature V on messages (M1,M2 . . . ,Mn) for identities (ID1, . . . , IDn), here
(M1,M2 . . . ,Mn)/= (Mj1 ,Mj2 . . . ,Mjn). Then the probability of V satisfying the aggregate
signature verification equation on messages (M1,M2 . . . ,Mn) for identities (ID1, . . . , IDn) is
equal to the probability of the following equation holding

(
H2

(
IDj1 ,Mj1 , Uj1

) −H(ID1,M1, U1)
)
QID1 +

(
H2

(
IDj2 ,Mj2 , Uj2

) −H(ID2,M2, U2)
)
QID2

+ · · · + (
H2

(
IDjn ,Mjn ,Ujn

) −H(IDn,Mn,Un)
)
QIDn = O.

(6.7)

Here O denotes the identity of the cyclic additive group G1. So the improved aggregate
signature scheme is secured against the inside attack.
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7. Conclusion

In this paper, we analyse the security of some aggregate signature schemes. We show
that Rückert et al.’s scheme cannot convince the verifier that every signer indeed signed
the message which should be signed by him. Shim’s scheme also suffers such flaw. As a
comparison, we investigate Boneh et al.’s scheme and show that under the assumption that
each signer signs one message correctly, Boneh et al.’s aggregate scheme can convince the
verifier that every signer indeed signed the message which should be signed by him under
two users. Furthermore, we propose the concept of inside attack on aggregate signatures and
give an improved scheme based on Shim’s scheme. We also prove that the improved scheme
is secured against the inside attack.
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