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We consider a delayed SIR epidemic model in which the susceptibles are assumed to satisfy the
logistic equation and the incidence term is of saturated form with the susceptible. We investigate
the qualitative behaviour of the model and find the conditions that guarantee the asymptotic
stability of corresponding steady states. We present the conditions in the time lag 7 in which
the DDE model is stable. Hopf bifurcation analysis is also addressed. Numerical simulations are
provided in order to illustrate the theoretical results and gain further insight into the behaviour of
this system.

1. Introduction

Epidemics have ever been a great concern of human kind, because the impact of infectious
diseases on human and animal is enormous, both in terms of suffering and social and
economic consequences. Mathematical modeling is an essential tool in studying a diverse
range of such diseases to gain a better understanding of transmission mechanisms, and make
predictions; determine and evaluate control strategies. Many authors have proposed various
kinds of epidemic models to understand the mechanism of disease transmission (see [1-10]
and references therein). The basic elements for the description of infectious diseases have
been considered by three epidemiological classes: S(t) that measures the susceptible portion
of population, I(t) the infected, and R(t) the removed ones. Kermack and McKendrick
[11] described the simplest SIR model which computes the theoretical number of people
infected with a contagious illness in a closed population over time. Transmission of a disease
is a dynamical process driven by the interaction between susceptible and infective. The
behaviour of the SIR models are greatly affected by the way in which transmission between
infected and susceptible individuals are modelled. The simplest model in which recovery
does not give immunity is the SIS model, since individuals move from the susceptible class to
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the infective class and then back to the susceptible class upon recovery. If individuals recover
with permanent immunity, then the simplest model is an SIR model. If individuals recover
with temporary immunity so that they eventually become susceptible again, then the simplest
model is an SIRS model. If individuals do not recover, then the simplest model is an SI
model. In general, SIR (epidemic and endemic) models are appropriate for viral agent
diseases such as measles, mumps, and smallpox, while SIS models are appropriate for some
bacterial agent diseases such as meningitis, plague, and sexually transmitted diseases, and
for protozoan agent diseases such as malaria and sleeping sickness. Modelling and analysis
of such infectious diseases have been done by many scientists; see, for example, [8, 12-22]
and the references therein.

Epidemiological models with latent or incubation period have been studied by
many authors, because many diseases, such as influenza and tuberculosis, have a latent
or incubation period, during which the individual is said to be infected but not infectious.
Delay differential equations (DDEs) have been successfully used to model varying infectious
period in a range of SIR, SIS, and SIRS epidemic models. Hethcote and van den Driessche
[23] have considered an SIS epidemic model with constant time delay, which accounts for
duration of infectiousness. Beretta et al. [24] have studied global stability in an SIR epidemic
model with distributed delay that describes the time which it takes for an individual to
lose infectiousness. Song and Cheng [25] have studied the effect of time delay on the
stability of the endemic equilibrium. They gave some conditions for which the endemic
equilibrium is asymptotically stable for all delays and also discussed the existence of orbitally
asymptotically stable periodic solutions. The mathematical analysis of epidemiological
modelling is often used for the assessment of the global asymptotic stability of both the
disease free and endemic equilibrium. However, most of the obtained epidemic/endemic
delay models are stiff (one definition of the stiffness is that the global accuracy of the
numerical solution is determined by stability rather than local error and implicit methods
are more appropriate for it; see [26]) and need a special care in their analysis and numerical
treatment. The state variables are also very sensitive to small perturbations (or changes) in
the initial conditions and parameters which occur in the model.

The contact rate is often a function of population density, reflecting the fact that
contacts take time and saturation occurs. In this paper, we consider a delayed SIR epidemic
model with time-delay and incidence rate of saturated form with the susceptibles. Qualitative
analysis of the model with constant infectious period is carried out. We present the conditions
in the time lag 7 in which the DDE model is stable. Hopf bifurcation analysis is also addressed
and results of simulation scenarios are presented.

2. Classic SIR Epidemic Models

Let the SIR model be based on the following assumptions: (i) susceptible individuals are
born at a rate u(S; I; R) which is assumed to be a function of the densities of the susceptible,
infected and recovered hosts; (ii) susceptibles are infected at a rate given by the product
of the densities of susceptible and infected hosts which times a proportionality constant f
describing the infectivity rate per contact between the two types of host. The assumption to
model the infection rate proportional to SI is justified if both hosts types are well mixed and
the encounter between the two host types is random. This assumption is often called mass-
action kinetics and derives from chemical kinetics; (iii) infected hosts recover at a rate a; (iv)
susceptible and recovered hosts die at a rate 6 which describes the natural death rate due to
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causes unrelated to infection. (v) Infected hosts die at a rate a which includes both the natural
death rate plus the disease induced death rate. One arrives at the model of the form

S'(t) = p—6S(t) - FS(HI(H),
I'(t) = BSH)I(t) — al (t) — al (), (2.1)
R'(t) = al(t) - 6R(t).

It is worth mentioning that in the above model many possibly relevant biological aspects,
such as age structure of the population, were ignored. The infectivity, death rate, and rate of
recovery may all depend on the age of the infected individual. Moreover, spatial structure
is also ignored. Often transmission to cohabiting individuals (i.e., members of the family)
occurs with increased probability. Often the total population size remains roughly constant
over the period of interest (such as the time for an epidemic to occur). To study the qualitative
behaviors of the above model at the equilibrium points, we assume that N = S+ + R is
constant and therefore AN /dt = dS/dt+dl/dt+dR/dt = 0. Summing up equations of model
(2.1), we thus obtain for the birth rate

p=6(S+R)+al (2.2)

If the total population size is assumed to be constant, we can drop the variable R (since
R= N -5-1). We thus obtain

S'(t) =6(N(t) = S(t) - I(t)) + al (t) - S(HI(1),

(2.3)
I'(t) = pS()I(t) — al(t) — al(t).
The above model has two equilibria:
w e [Gta 05" .
Ey=(N,0), E.=(5,I") = <T’6T¢x(k0 - 1)), (24)

where R = PN/(a + a) is the reproduction number (reproduction number denotes the
number of individuals infected by a single infected individual placed in a totally susceptible
population). The first equilibrium represents the case where none of the individuals are
infected (free-infection). The second equilibrium represents the case where a fraction of the
individuals are infected (infected equilibrium, or endemic equilibrium), when Rj > 1.

If a disease is not of short duration, then several changes need to be made to the SIR
model. Saturating contact rate of individual contacts is very important in an epidemiology
model. For more convenience and a practical point of view, model (2.1) is modified so that
the susceptible host population is assumed to have the logistic growth rS(1 — S/K) with
carrying capacity K (in a closed community) and a specific growth rate constant r. The
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bilinear transmission incidence rate fSI is also replaced by Holling type functional response
term SI/(1 + 0S), which is saturated with the susceptible. Model (2.1) takes the form

S(t)I
S'(t) = rS(t)(l - %) _ %
SHI |
o= [%)og) —al(t) - al(t), (2.5)

R(t) = al(t) - 6R(),

where o is the saturation factor that measures the inhibitory effect. The resulting model can
show oscillatory behaviors that are called epidemic waves. Stability and oscillatory behavior
of system (2.5) have been studied in [27].

3. Delayed SIR Epidemic Model

Assuming that the incubation period 7 > 0 is a time, during which the infectious agents
develop in the vector, and only after that time the infected vector becomes itself infectious,
model (2.5) is then generalized into a delayed SIR epidemiological model of the form

L S\ PSHI(t-7)
S(t)-rS(t)(l— = >— T30S0

pSHI(t-1)
1+0S(t)

R(t) = al(t) - 6R().

(3.1)

I'(t) = —al(t) - al(t),

All feasible solutions of (3.1) are bounded (see [28]) and the dynamics of model are mainly
determined by the first two equations:

Vo SH\ _ PSHI(E-17)
S'(t) = rS(t) (l - ?> - T.S(t)’

pSH)I(t-r)
1+0S(t)

(3.2)
I'(t) = —al(t) —al(t).

Proposition 3.1. For the model system (3.2), there always exist infection-free equilibria Ey = (0,0),
Ei = (K,0). If

K[p-o(a+a)]

(a+a) > 1 3.3)

Ro =

there also exists an endemic equilibrium E, = (S*,1*), where

a+a rS*?

E, = (ST = <ﬂ—a(a+a)' Klata) (Ro - 1)>. (3.4)
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3.1. Infection-Free Equilibria and Their Stabilities

The Jacobian matrix of the linearized system of model (3.2) is

LS BI* __ps e

] K (1+05%)? 1+0S* 35)
pI* BS . ' '

(1+05*)? 1+05° @

Using (3.5), the characteristic equation at the trivial equilibrium point Eq = (0,0) reduces to
A=A+ (a+a))=0. (3.6)

Obviously, (3.6) has a positive root A = r. Then the trivial equilibrium E, of system (3.2) is
always unstable (saddle point). However, at the infection-free equilibrium E; = (K,0), the
Jacobian matrix (3.5) reduces to

ﬁK -\t

' T+0K"®
] infection-free = ﬁ K (37)

-\t _

0 T+ oK® (a+a)
with characteristic equation
Ro+0K _,, ) 3

()L+r)</\+(a+a)1 1+0K6 ] =0. (3.8)

It is obvious from (3.8) that the two roots are real and negative if Ry < 1 (when 7 = 0) and the
equilibrium Ej is then asymptotically stable. In case of T > 0, we assume that the root of (3.8)
A = &i must satisfy

(3.9)

8=(a+af[512§§-1l

1+0oK

Then, when R < 1, then there are no positive real roots ¢. Therefore, we arrive at the following
theorem to indicate the stability of E;.

Theorem 3.2. If Ry is defined by (3.3), then infection-free equilibrium E; = (K, Q) of system (3.2) is
asymptotically stable when Ry < 1, and unstable when Ry > 1, and linearly neutrally stable if Ry = 1.

3.2. Endemic Equilibrium and Its Stability
Here we investigate the linear stability of (3.2) at the endemic equilibrium E, = (5% I*)

defined in (34). S* = (a+a)/(fp-o(a+a)) = pS/(1+0S*) = (a+a), and I* =
(rS$*?/K(a+a))(Ro-1) = pr'/(1+o0S*) =r(1 —-1/Ry). We also have Ry = K/S*. Therefore,
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the corresponding Jacobian matrix at the endemic equilibrium E. can be easily expressed in
terms of the reproduction number R as follows:

2 r 1 o
T<1—R—O>—m<1—7a—0> —(a+a)e
]endemic = . (310)
r 1 ir
TGS*<1—R—O> (a+a)e (a+a)

The characteristic equation of (3.10) for the endemic equilibrium is

—r(l— R%)) + (a+a)<1—e‘“> + ﬁ(l—%)]
+(a+a) [—r<1— %)(1—5“) + %OS*O— Ri())] =0.

We need to find the necessary and sufficient condition for every root of the characteristic
equation (3.11) having negative real part. Introducing

A2 +A

(3.11)

2 r 1
Q1—T<1—R—O>, QZ_TGS*<1_R_0>’ Q3—(a+0£) (3'12)

then the characteristic equation (3.11) can be rewritten in the form
A2+ A(=91 + 02+ 03) +03(—01 + 02) + e (@31 +103) = 0. (3.13)
For simplicity assume also that
A= (01 +Q2+03), Ay =03(-01+¢2), Az =93, Ay = 0103, (3.14)
then (3.13) takes the form
M+ Al + Ay +e M (—Azd + Ay) = 0. (3.15)

Theorem 3.3. Assume that R, =2+ 1/(1 +205*). Then

(i) the endemic equilibrium E. of system (3.2) is feasible and locally asymptotically stable for
allT >01if1 <Ry < R, holds;
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(ii) if Rg > R > 1, then there exist T* > 0 such that T € [0, 7T*) the endemic equilibrium E. is
asymptotically stable, and unstable when T > T*. When T = 7%, the characteristic equation
(3.15) has a pair of purely imaginary roots +iéy, with

1 1 2
8= 24+ 43— 23) + 3V (24; + 43— 42)7 - 4(A2 - AD),
(3.16)

., 1 ((A4+A1A3)§§—A2A4> 2jm

T* = — arccos +
o AR+ Af o

where A1, Ay, Az, and Ay are defined in (3.14).

Proof. If A = ¢i is a root of (3.13). After substitution and separation the real and imaginary
parts, we have

& +03(-01 +Q2) = £03singT — Q103 cOs¢T,

(3.17)
¢(—01 + Q2+ Q3) = Q103 SINET + {03 COS T,
which are equivalent to
&%+ Ay = EAssinéT — A4 cosiT,
(3.18)
A1 = AssinéT + ¢ A3 cosiéT.
Squaring and adding both equations yields
E+ 8 (01 +02) + 0203(-201 +02) =0 (319)
which is equivalent to
- <2A2 +A2- A%)gz + (Ag - Ai) = 0. (3.20)
Equation (3.19) can also be rewritten in the form
8+ 80+ 02(201 + 02)] + 0203 (201 + 02) = 0. (3.21)

Therefore, if =201 + @2 > 0 (when Ry > 1), then there is no positive real ¢ satisfying (3.19).
According the definitions given in (3.12), the inequality —2¢; + @2 > 0 which is equivalent to
Ry <2+1/(1+20S*) so that all the roots (A = ¢;) of (3.11) are negative.

However, if —2¢01 + g2 < 0, then (3.21) has one and only one positive root denoted
by ¢y, and the characteristic equation (3.15) has a pair of purely imaginary roots =+i¢y.
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Let A(7) = o(7) +ié(T) be the eigenvalue of (3.15) such that o(7*) = 0 and ¢(7*) = . From
(3.18), we have

Ag+ A1A3)E - A)A 2j
= _larccos (As+ A1A3)) — AsAy LT (3.22)
$o A3+ A] %
and from (3.20)
2 _ 1 2 2 1\/ 2 2)2 2 2 3.23
§0:§(2A2+A3—A1>+§ (245 + A2 = A2)? —4(A2 - A2), (3.23)
Hence the proof is complete. O

3.3. Hopf Bifurcation Analysis

A bifurcation analysis of a dynamical system is used to understand how the solutions and
their stability change as the parameters in the system vary. In particular, it can be used for the
stability, analysis, and continuation of equilibria (steady-state solutions), and periodic and
quasi-periodic oscillations; see [15, 21, 29].

Theorem 3.4. Suppose that (ii) of Theorem 3.3 holds. Then there exists € > 0 such that for each
0 < € < €%, system (3.2) has a family of periodic solutions ) = [(e) with period T = T(e), for the
parameter values T = 7(g) such that P(0) = 0, T(0) = 2or/&.

Proof. We already showed in Theorem 3.3 that the characteristic equation (3.15) has a pair of
purely imaginary roots +i¢y. Now, we apply the Hopf bifurcation theorem introduced in [30].
Let A(7) = o(7) +i¢(T) be the eigenvalue of (3.15), we need to verify that the transversality
condition

AR | _ do(r)

ar |~ ar |_. >0 (3.24)
holds. Differentiating (3.15) with respect to 7, we get
[ -\t -\t -\t dx -\t 2
20+ Ay = At = Age T+ Agrde V| 25 = e (Asd - A). (3.25)

This gives

. (3.26)

<@)—1 C 20+ Ay - e M[As + T(—Ash + Ay)]
dr) A=Az + Ay)e
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Using (3.15), and after some algebraic manipulations, we arrive at

(@)‘1_ 20+ A As T

d T (CAsh+ ADde M A=Azl + Ag) A

T (mAszL + Ay)re (A3 1) i (327)
20+ Aq As A3 T

TIMZ T AN+ AY) Al A(—Asd+ Ay A

Thus,

) d
sign { ER(A) }A—igo

-1
sign {SR(?) }
T A=idy
. 20 + A1 ] A%
sien< R R -
8 { [—mz + A+ Ad) | [ As(Asd+ Ay |

Jageo24) a2 ] qp
Slgn 5 - 5 ¥ = Slgn [6] ’
A22 4 (82— A))" AL+ A3

(3.28)

where, by doing some manipulations, the expressions

P=gA3+3(242) + A3(A7-24,) + 4343, Q= [A%éé + (8- A2>2] |43 + A28
(3.29)

which are positive when Ry > R. > 1. Then we have
{ d R()L)} >0 (3.30)
dr e '

Therefore, the transversality condition holds and hence Hopf bifurcation occurs at ¢ = ¢,
T = 7*. This completes the proof. O

4. Numerical Simulations

System (3.1) is an example of stiff model, in the sense that it has properties that make it
slow and expensive to solve using explicit numerical methods. The efficient use of reliable
numerical methods, that is based in general on implicit formulae, for dealing with stiff
problems involves a degree of sophistication. In this work, we used the so called mono-
implicit Runge-Kutta schemes for solve the underlying DDEs [31]. The schemes are suitable
for non-stiff and stiff problems.

Figures 1-3 show the numerical simulations of model (3.2), with different values of
the model parameters given in the corresponding captions, with Sp = 28, I = 3, and Ry = 6.
According to the obtained analysis, Figure 1 shows that the numerical simulations of the
model, for particular values of the parameters, admit limit cycles, while Figure 2 shows that



10 International Journal of Differential Equations

80

70

60

50

40

S,I,R

S,I,R

30

20

10

0
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200

Time Time

(a) (b)

Figure 1: Solution of delayed SIR model (3.2), whenr = 0.1,  =0.1,0 = 0.05,a =0.5,2a = 0.5, 6 = 0.1, and
time-lag 7 = 1 when S* = 20, K =40, Ryg =2, R, = 2.33 (a) and K = 80, Ry = 4, R. = 2.33 (b) that display
periodic outbreak of the disease. We get a stable solution when 1 < Ry < R, and a stable periodic solution
when Ry > R..

periodic solutions arise due to Hopf bifurcation. When the reproduction number R < 1, the
disease-free equilibrium is stable (see Figure 3) and when R > 1, the disease free-equilibrium
is unstable, and the endemic equilibrium exists. The endemic equilibrium is stable if 1 < Ry <
R. and a sustained periodic solution is obtained when Ry > R..

5. Concluding Remarks

This paper investigates the role of time delays in the stability of an SIR model with a
nonlinear incidence function. The dynamical behavior of the model is studied and the basic
reproductive number Ry is defined. For particular values of time-lag 7, oscillations occur
which can destabilize the system, and periodic solutions can arise due to Hopf bifurcation.
We studied the conditions, in terms of the threshold parameter R, that guaranteed the
asymptotic stability of the infection-free and endemic equilibria. It has been noted that when
Ry < 1, the infection dies out and when Ry > 1 the disease becomes endemic and infection is
maintained in the population. The effect of the time-lag parameter 7 on the behavior of the
infection has been investigated. Although the underlying DDE model is simple, it displays
very rich dynamics, such as quasiperiodic and chaotic patterns, and is suitable for large
population densities.
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Figure 2: Solution of delayed SIR model (3.2), when r = 0.1, K = 50, f = 0.1, 0 = 0.005, a = 0.5, a = 0.5,
6 =015 =105 Ry =47 > R, = 3 with time-lag 7 = 0.01 < 7* (a) and 7 = 7* = 0.58 (b) that display
periodic outbreak of the disease due to a Hopf bifurcation when 7 = 7*.
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Figure 3: Solution of delayed SIR model (3.2). We have asymptotically stable infection-free equilibrium
when Ry < 1 (a), and small portion endemic equilibrium when 1 < Ry < R, (b), with 7 = 10.
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