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A relaxed splitting preconditioner based on matrix splitting is introduced in this paper for linear
systems of saddle point problem arising from numerical solution of the incompressible Navier-
Stokes equations. Spectral analysis of the preconditioned matrix is presented, and numerical
experiments are carried out to illustrate the convergence behavior of the preconditioner for solving
both steady and unsteady incompressible flow problems.

1. Introduction

We consider systems of linear equations arising from the finite-element discretization of the
incompressible Navier-Stokes equations governing the flow of viscous Newtonian fluids. The
primitive variables formulation of the Navier-Stokes equations is

∂u
∂t

− υΔu + (u · ∇)u +∇p = f on Ω × (0, T], (1.1)

divu = 0 onΩ × [0, T], (1.2)

u = g on ∂Ω × [0, T], (1.3)

u(x, 0) = u0(x) onΩ, (1.4)

where Ω ⊂ R
2 is an open bounded domain with sufficiently smooth boundary ∂Ω, [0, T] is

an time interval of interest, u(x, t) and p(x, t) are unknown velocity and pressure fields, υ is
the kinematic viscosity,Δ is the vector Laplacian,∇ is the gradient, div is the divergence, and
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f, g, and u0 are given functions. The Stokes problem is obtained by dropping the nonlinearity
(u · ∇)u from the momentum equation (1.1). Refer to [1] for an introduction to the numerical
solution of the Navier-Stokes equations. Implicit time discretization and linearization of
the Navier-Stokes equations by Picard or Newton fixed iteration result in a sequence of
(generalized)Oseen problems. The Oseen problems by spatial discretization with LBB-stable
finite elements (see [1, 2]) are reduced to a series of large sparse systems of linear equations
with a saddle point matrix structure as follows:

˜Ax = b, (1.5)

with

˜A =
[

A BT

−B 0

]

, x =
(

u
p

)

, b =
(

f
−g
)

, (1.6)

where u and p represent the discrete velocity and pressure, respectively. In two-dimensional
cases,A = diag(A1, A2) denotes the discretization of the reaction diffusion, and each diagonal
submatrix Ai is a scalar discrete convection-diffusion operator represented as

Ai = σV + υL +Ni (i = 1, 2), (1.7)

where V denotes the velocity mass matrix, L the discrete (negative) Laplacian, and Ni the
convective terms. The matrix A is positive definite in the sense that AT + A is symmetric
positive definite. Matrix BT = (BT

1 , B
T
2 ) denotes the discrete gradient with BT

1 , B
T
2 being dis-

cretizations of the partial derivatives ∂/∂x, ∂/∂y, respectively. f = (f1, f2)
T and g contain the

forcing and boundary terms.
In the past few years, a considerable amount of work has been spent in developing

efficient solvers for systems of linear equations in the form of (1.5); see [3] for a compre-
hensive survey. Here we consider preconditioned Krylov subspace methods, in particular
preconditioned GMRES [4] in this paper. The convergence performance of this method
is mainly determined by the underlying preconditioner employed. An important class of
preconditioners is based on the block LU factorization of the coefficient matrix, including
a variety of block diagonal and triangular preconditioners. A crucial ingredient in all these
preconditioners is an approximation to the Schur complement S = BA−1BT . This class of
preconditioners includes the pressure convection diffusion (PCD) preconditioner, the least-
squares commutator (LSC) preconditioner, and their variants [5–7]. Somewhat related to this
class of preconditioners are those based on the augmented Lagrangian (AL) reformulation
of the saddle point problem; see [8–11]. Other types of preconditioners for the saddle point
problems include those based on the Hermitian and skew-Hermitian splitting (HSS) [12–
15] and the dimensional splitting (DS) [16] of the coefficient matrix ˜A. In [17], a relaxed
dimensional factorization preconditioner is introduced.

The remainder of the paper is organized as follows. In Section 2, we present a relaxed
splitting preconditioner based on matrix splitting and prove that the preconditioned matrix
has eigenvalue 1 of algebraic multiplicity at least n (recall that n is the number of velocity
degrees of freedom). In Section 3, we show the results of a series of numerical experiments
indicating the convergence behavior of the relaxed splitting preconditioner. In the final
section, we draw our conclusions.
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2. A Relaxed Splitting Preconditioner

2.1. A Splitting of the Matrix

In this paper, we limit to 2D case. The system matrix ˜A admits the following splitting:

˜A =

⎡

⎢

⎣

A1 0 BT
1

0 A2 BT
2

−B1 −B2 0

⎤

⎥

⎦
=

⎡

⎣

A1 0 0
0 0 0

−B1 0 0

⎤

⎦ +

⎡

⎢

⎣

0 0 BT
1

0 A2 BT
2

0 −B2 0

⎤

⎥

⎦
= H + S, (2.1)

where A1 ∈ R
n1×n1 , A2 ∈ R

n2×n2 , B1 ∈ R
m×n1 , and B2 ∈ R

m×n2 . Thus, ˜A ∈ R
(n+m)×(n+m) is of

dimension n = n1 + n2. Let α > 0 be a parameter and denote by I the identity matrix of order
n1 + n2 +m. Then,H+αI and S+αI are both nonsingular, nonsymmetric, and positive definite.
Consider the two splittings of ˜A:

˜A = (H + αI) − (αI − S), ˜A = (S + αI) − (αI −H). (2.2)

Associated to these splittings is the alternating iteration, k = 0, 1, . . .,

(H + αI)xk+1/2 = (αI − S)xk + b,

(S + αI)xk+1 = (αI −H)xk+1/2 + b.
(2.3)

Eliminating xk+1/2 from these, we can rewrite (2.3) as the stationary scheme:

xk+1 = Tαxk + c, k = 0, 1, . . . , (2.4)

where

Tα = (S + αI)−1(αI −H)(H + αI)−1(αI − S) (2.5)

is the iteration matrix and c = 2α(S+αI)−1(H +αI)−1. The iteration matrix Tα can be rewritten
as follows:

Tα = (S + αI)−1(H + αI)−1(αI −H)(αI − S)

= (S + αI)−1(H + αI)−1
[

(αI +H)(αI + S) − 2α ˜A
]

= I −
[

1
2α

(H + αI)(S + αI)
]−1
˜A

= I − P−1
α
˜A,

(2.6)

where Pα = (1/2α)(H + αI)(S + αI).
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Obviously, Pα is nonsingular and c = P−1
α b. As in [18], one can show there is a unique

splitting ˜A = Pα −Qα such that the iteration Tα is the matrix induced by that splitting, that is,
Tα = P−1

α Qα = I − P−1
α
˜A. Matrix Qα is given by Qα = (1/2α)(αI −H)(αI − S).

2.2. A Relaxed Splitting Preconditioner

The relaxed splitting preconditioner is defined as follows:

M =

⎡

⎢

⎢

⎢

⎢

⎣

A1 0
1
α
A1B

T
1

0 A2 BT
2

−B1 −B2 αI − 1
α
B1B

T
1

⎤

⎥

⎥

⎥

⎥

⎦

. (2.7)

It is important to note that the preconditioner M can be written in a factorized form as

M =
1
α

⎡

⎣

A1 0 0
0 αI 0

−B1 0 αI

⎤

⎦

⎡

⎢

⎢

⎣

αI 0 BT
1

0 A2 BT
2

0 −B2 αI

⎤

⎥

⎥

⎦

=

⎡

⎣

A1 0 0
0 I 0

−B1 0 I

⎤

⎦

⎡

⎢

⎢

⎣

I 0
1
α
BT
1

0 A2 BT
2

0 −B2 αI

⎤

⎥

⎥

⎦

=

⎡

⎣

A1 0 0
0 I 0

−B1 0 I

⎤

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

I 0
1
α2

BT
1

0 I
1
α
BT
2

0 0 I

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

I
1
α2

BT
1B2 0

0 ̂A2 0

0 0 αI

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎣

I 0 0
0 I 0

0 − 1
α
B2 I

⎤

⎥

⎥

⎦

,

(2.8)

where ̂A2 = A2 + (1/α)BT
2B2. Note that both factors on the right-hand side are invertible

provided that A1 have ̂A2 have positive definite symmetric parts. Hence, the new
preconditioner is nonsingular. This condition is satisfied for both Stokes and Oseen problems.
We can see from (2.1) and (2.7) that the difference between M and ˜A is given by

R = M − ˜A =

⎡

⎢

⎢

⎢

⎢

⎣

0 0
1
α
A1B

T
1 − BT

1

0 0 0

0 0 αI − 1
α
B1B

T
1

⎤

⎥

⎥

⎥

⎥

⎦

. (2.9)

This observation suggests that M could be a good preconditioner, since the appropriate
values for the parameters involved in the new preconditioners are estimated. Furthermore,
the structure of (2.9) somewhat facilitates the analysis of the eigenvalue distribution of
the preconditioned matrix. In the following, we analyze the spectral properties of the
preconditioned matrix T = ˜AM−1.

Theorem 2.1. The preconditioned matrix T = ˜AM−1 has an eigenvalue 1 with multiplicity at least
n, and the remaining eigenvalues are λi, where λi are the eigenvalues of an m ×m matrix Zα := (1/
α)(S1 + S2) − (1/α2)S2S1 with S1 = B1A

−1
1 BT

1 and S2 = B2 ̂A
−1
2 BT

2 .
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Proof. First of all, from ̂T := M−1( ˜AM−1)M = M−1
˜A we see that the right-preconditioned

matrix T is similar to the left-preconditioned one ̂T, then T and ̂T have the same eigenvalues.
Furthermore, we have

̂T = I −M−1R

= I −

⎡

⎢

⎢

⎢

⎣

I 0 0

0 I 0

0
1
α
B2 I

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

I − 1
α2

BT
1B2 ̂A

−1
2 0

0 ̂A−1
2 0

0 0
1
α
I

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

I 0 − 1
α2

BT
1

0 I − 1
α
BT
2

0 0 I

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

×

⎡

⎢

⎢

⎣

A−1
1 0 0

0 I 0

B1A
−1
1 0 I

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 0
1
α
A1B

T
1 − BT

1

0 0 0

0 0 αI − 1
α
B1B

T
1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

I 0 ∗
0 I ∗

0 0
1
α
(S1 + S2) − 1

α2
S2S1

⎤

⎥

⎥

⎥

⎦

.

(2.10)

Therefore, from (2.10) we can see that the eigenvalues of T are given by 1 (with multiplicity
at least n = n1 + n2) and by the λi’s.

Lemma 2.2. Let Aα = (A1−(1/α)BT
1 B1 −(1/α)BT

1 B2

0 A2
) ∈ R

n×n, α > σmax(BT
1B1)/σmin(A1), and A1, and

A2 be positive definite. Then Aα is positive definite.

Lemma 2.3. Let Aα ∈ R
n×n and B ∈ R

m×n (m ≤ n). Let α ∈ R, and assume that matrices Aα, Aα+
(1/α)BTB, BA−1

α BTand B(Aα + (1/α)BTB)−1BT are all invertible. Then

[

B

(

Aα +
1
α
BTB

)−1
BT

]−1
=
(

BA−1
α BT

)−1
+
1
α
I. (2.11)

Theorem 2.4. Let α > σmax(BT
1B1)/σmin(A1). The remaining eigenvalues λi of Zα are of the form:

λi =
μi

α + μi
, (2.12)

where the μi’s satisfy the eigenvalue problem: BA−1
α BTφi = μiφi.

Proof. We note

Zα =
1
α
(S1 + S2) − 1

α2
S2S1 =

1
α
(B1B2)

⎛

⎝

A−1
1 0

− 1
α
̂A−1
2 BT

2B1A
−1
1
̂A−1
2

⎞

⎠

⎛

⎝

BT
1

BT
2

⎞

⎠

=
1
α
(B1B2)

⎛

⎝

A1 0
1
α
BT
2B1 ̂A2

⎞

⎠

−1⎛

⎝

BT
1

BT
2

⎞

⎠
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=
1
α
(B1B2)

⎛

⎜

⎜

⎝

⎛

⎜

⎝

A1 − 1
α
BT
1B1 − 1

α
BT
1B2

0 A2

⎞

⎟

⎠ +

⎛

⎜

⎜

⎝

1
α
BT
1B1

1
α
BT
1B2

1
α
BT
2B1

1
α
BT
2B2

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

−1
⎛

⎝

BT
1

BT
2

⎞

⎠

=
1
α
B

(

Aα +
1
α
BTB

)−1
BT .

(2.13)

Thus, the remaining eigenvalues are the solutions of the eigenproblem:

1
α
B

(

Aα +
1
α
BTB

)−1
BTφi = λiφi. (2.14)

By Lemma 2.3, we obtain

1
α
φi = λi

(

B

(

Aα +
1
α
BTB

)−1
BT

)−1
φi = λi

(

BA−1
α BT

)−1
φi +

λi
α
φi. (2.15)

Hence, λi = μi/(α + μi), where μi’s satisfy the eigenvalue problem BA−1
α BTφi = μiφi.

In addition, we obtain easily that the remaining eigenvalues λi → 0 as α → ∞.
Figures 1 and 2 show this behavior, that is, the nonunity eigenvalues of the preconditioned
matrix are increasingly clustered at the origin as the parameters become larger.

2.3. Practical Implementation of the Relaxed Splitting Preconditioner

In this subsection, we outline the practical implementation of the relaxed splitting precondi-
tioner in a subspace iterative method. The main step is applying the preconditioner, that is,
solving linear systems with the coefficient matrix M. From (2.8), we can see that the relaxed
splitting preconditioner can be factorized as follows:

M =

⎡

⎣

A1 0 0
0 I 0

−B1 0 I

⎤

⎦

⎡

⎢

⎢

⎢

⎢

⎣

I 0
1
α2

BT
1

0 I
1
α
BT
2

0 0 I

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎣

I
1
α2

BT
1B2 0

0 ̂A2 0
0 0 αI

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

I 0 0
0 I 0

0 − 1
α
B2 I

⎤

⎥

⎥

⎦

, (2.16)

showing that the preconditioner requires solving two linear systems at each step, with
coefficient matrices A1 and ̂A2 = A2 + (1/α)BT

2B2. Several different approaches are available
for solving linear systems involving A1 and ̂A2. We defer the discussion of these to Section 3.

We conclude this section with a discussion of diagonal scaling. We found that
scaling can be beneficial for the relaxed splitting preconditioner. Unless otherwise specified,
we perform a preliminary symmetric scaling of the linear systems ˜Ax = b in the form
D−1/2

˜AD−1/2y = D−1/2b with y = D1/2x, and D = diag(D1, D2, I), where diag(D1,D2) is the
main diagonal of the velocity submatrix A. Incidentally, it is noted that diagonal scaling is
very beneficial for the HSS preconditioner (see [13]) and the DS preconditioner (see [16, 17]).
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Figure 1: Spectrum of preconditioned steady Oseen matrix, 32 × 32 grid with υ = 0.1.

3. Numerical Experiments

In this section, numerical experiments are carried out for solving the linear system coming
from the finite-element discretization of the two-dimensional linearized Stokes and Oseen
models of incompressible flow in order to verify the performance of our preconditioner. The
test problem is the leaky lid-driven cavity problem generated by the IFISS software package
[19]. We used a zero initial guess and stopped the iteration when ||rk||2/||b||2 ≤ 10−6, where
rk is the residual vector. The relaxed splitting preconditioner is combined with restarted
GMRES(m). We set m = 30.

We consider the 2D leaky lid-driven cavity problem discretized by the finite-element
method on uniform grids [1]. The subproblems arising from the application of the relaxed
splitting preconditioner are solved by direct methods. We use AMD reordering technique
[20, 21] for the degrees of freedom that makes the application of the Cholesky (for Stokes) or
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Figure 2: Spectrum of preconditioned generalized steady Oseen matrix, 32 × 32 grid with υ = 0.001.

Table 1: Iterations of preconditioned GMRES(30) for steady Stokes problem.

Grid Q2-Q1 Q2-P1

16 × 16 25 15
32 × 32 26 12
64 × 64 23 10
128 × 128 19 11
256 × 256 16 10
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Table 2: Iterations of preconditioned GMRES(30) for steady Oseen problems (Picard).

Grid υ = 1 υ = 0.1 υ = 0.02
Q2-Q1 Q2-P1 Q2-Q1 Q2-P1 Q2-Q1 Q2-P1

16 × 16 27 14 29 16 48 27
32 × 32 27 12 29 14 54 26
64 × 64 23 10 26 12 49 24
128 × 128 19 11 21 10 37 20
256 × 256 16 10 10 8 17 14

Table 3: Iterations of preconditioned GMRES(30) for steady Oseen problems (Newton).

Grid υ = 1 υ = 0.1 υ = 0.02
Q2-Q1 Q2-P1 Q2-Q1 Q2-P1 Q2-Q1 Q2-P1

16 × 16 27 15 29 16 46 26
32 × 32 27 12 29 14 53 24
64 × 64 23 10 26 12 46 23
128 × 128 19 11 21 10 34 18
256 × 256 16 10 10 8 15 13

LU (for Oseen) factorization of A1 and ̂A2 relatively fast. For simplicity, we use α = 100 for
all numerical experiments.

In Table 1, we show iteration counts (referred to as “its”) for the relaxed splitting
preconditioned GMRES(30) when solving the steady Stokes problem on a sequence of
uniform grids. We see that the iteration count is independent of mesh size involved in the Q2-
Q1 and the Q2-P1 finite-element scheme. The Q2-P1 finite-element scheme has much better
profile than the Q2-Q1 finite-element scheme.

In Tables 2 and 3, we show iteration counts for the steadyOseen problem on a sequence
of uniform grids and for different values of υ, using Picard and Newton linearization of
generalized Oseen problems, respectively. We found that the relaxed splitting preconditioner
has difficulties dealing with low-viscosity, that is, the number of iterations increases with
the decrease in the kinematic viscosity. In this case, it appears that the Q2-P1 finite-element
scheme gives faster convergence results than the Q2-Q1 finite-element scheme.

Next, we report on analogous experiments involving the generalized Stokes problem
and the generalized Oseen problem. As we can see from Table 4, for the generalized Stokes
problem, the results are virtually the same as those obtained in the steady case. Indeed,
we can see from the results in Table 1 that the rate of convergence for the relaxed splitting
preconditioned GMRES (30) is essentially independent of mesh size involved in the Q2-Q1
and the Q2-P1 finite-element schemes.

In Tables 5 and 6, for generalized Oseen problems, we compare our preconditioner
with the RDF preconditioner in [17]. The RDF preconditioner can be factorized as follows:

P =

⎡

⎢

⎢

⎢

⎢

⎣

I 0
BT
1

α

0 I 0

0 0 I

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎣

̂A1 0 0
0 I 0

−B1 0 I

⎤

⎥

⎦

⎡

⎢

⎢

⎣

I 0 0

0 ̂A2 BT
2

0 0 αI

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

I 0 0

0 I 0

0
−B2

α
I

⎤

⎥

⎥

⎥

⎦

, (3.1)
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Table 4: Iterations of preconditioned GMRES(30) for generalized Stokes problems.

Grid Q2-Q1 Q2-P1

16 × 16 25 13
32 × 32 26 12
64 × 64 23 10
128 × 128 19 11
256 × 256 16 10

Table 5: Iterations of preconditioned GMRES(30) for generalized Oseen problem (Picard, Q2-Q1, 128 × 128
uniform grids).

Viscosity RDF New preconditioner
its CPU its CPU

0.1 12 22.75374 13 15.90265
0.01 7 20.93871 9 14.30008
0.001 5 20.31654 6 13.36891

Table 6: Iterations of preconditioned GMRES(30) for generalized Oseen problem (Newton, Q2-Q1, 128 ×
128 uniform grids).

Viscosity RDF New preconditioner
its CPU its CPU

0.1 12 22.86654 13 16.12583
0.01 7 21.02928 8 14.34972
0.001 12 22.81674 16 17.49554

where ̂A1 = A1 + (1/α)BT
1B1 and ̂A2 = A2 + (1/α)BT

2B2. It shows that RDF preconditioner
requires solving two linear systems at each step. The new preconditioner requires solving
linear systems with A1 and ̂A2 at each step. We can see that the linear system with A1 is
easier to solve than that with ̂A1. From Tables 5 and 6, we can see for 128 × 128 grid with
different viscosities that the RDF preconditioner leads to slightly less iteration counts than
the new preconditioner, but the new preconditioner is slightly faster in terms of elapsed CPU
time.

From Figures 3 and 4, we found that for the relaxed splitting preconditioner the inter-
vals containing values of parameter α are very wide. Those imply that the relaxed splitting
preconditioner is not sensitive to the value of parameter. Noting that the optimal parameters
of the relaxed splitting preconditioner are always larger than 50, we can always take α = 100
to obtain essentially optimal results.

4. Conclusions

In this paper, we have described a relaxed splitting preconditioner for the linear systems
arising from discretizations of the Navier-Stokes equations and analyzed the spectral
properties of the preconditioned matrix. The numerical experiments show good performance
on a wide range of cases. We use direct methods for the solution of inner linear systems,
but it is not a good idea to solve larger 2D or 3D problems at the constraint of memory and
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Figure 3: Iteration number versus parameter, steady Oseen problem, with υ = 0.1. (a) 16 × 16 grid, (b) 32 ×
32 grid.
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Figure 4: Iteration number versus parameter, generalized Oseen problem, with υ = 0.001. (a) 16 × 16 grid,
(b) 32 × 32 grid.

time requirement. In this case, exact solve can be replaced with inexact solve, which requires
further research in the future.
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