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We have used themodified variational iterationmethod (MVIM) to find the approximate solutions
for some nonlinear initial value problems in the mathematical physics, via the Burgers-Fisher
equation, the Kuramoto-Sivashinsky equation, the coupled Schrodinger-KdV equations, and the
long-short wave resonance equations together with initial conditions. The results of these problems
reveal that the modified variational iteration method is very powerful, effective, convenient, and
quite accurate to systems of nonlinear equations. It is predicted that this method can be found
widely applicable in engineering and physics.

1. Introduction

Nonlinear partial differential equations are known to describe a wide variety of phenomena
not only in physics, where applications extend over magnetofluid dynamics, water surface
gravity waves, electromagnetic radiation reactions, and ion acoustic waves in plasma, but
also in biology, chemistry, and several other fields. It is one of the important tasks in the
study of the nonlinear partial differential equations to seek exact and explicit solutions. In
the past several decades both mathematicians and physicists have made many attempts in
this direction. Various methods for obtaining exact solutions to nonlinear partial differential
equations have been proposed. Among these methods are the Bäcklund transformation
method [1, 2], the Hirota’s bilinear method [3], the inverse scattering transform method
[4], extended tanh method [5–7], the Adomian-Pade approximation [8–10], the variational
method [11–14], the variational iteration method [15, 16], the various Lindstedt-Poincare
methods [17–20], the Adomian decomposition method [8, 21, 22], the F-expansion method
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[23, 24], the Exp-function method [25–27] and others [28–35]. Zayed et al. [36] investigated
the travelling wave solutions for nonlinear initial value problems using the homotopy
perturbation method. The modified variational iteration method is the couples of the
variational iteration method with the homotopy pertirbation method. Recently Akbarzade
and Langari [37] andMei and Zhang [38] had used the modified variational iteration method
for some nonlinear partial differential equations.

The main objective of the present paper is to use the modified variational iteration
method (MVIM) for constructing the traveling wave solutions of the following nonlinear
partial differential equations in mathematical physics:

(i) the nonlinear Burgers-Fisher equation [39]:

ut − uxx − uux − u(1 − u) = 0, (1.1)

(ii) the nonlinear Kuramoto-Sivashinsky equation [40]:

ut + auux + buxx + cuxxxx = 0, (1.2)

(iii) the nonlinear coupled Schrodinger KdV equations [41]:

iut − uxx − uv = 0,

vt + vxxx + 6vvx −
(
|u|2
)
x
= 0,

(1.3)

(iv) the nonlinear long-short wave resonance equations [42]:

iut + uxx − uv = 0,

vt + β
(
|u|2
)
x
= 0,

(1.4)

together with initial conditions, where a, b, c, and β are arbitrary constants while i =
√−1.

It is interesting to point out that (1.1) includes the convection term uux and the dissipation
term uxx. Equation (1.2) describes the fluctuations of the position of a flame front, the motion
of a fluid going down a vertical wall, or a spatially uniform oscillating chemical reaction in
a homogeneous medium. Equation (1.3) describe various processes in dusty plasma such as
Langmuri, dust-acoustic wave and electromagnetic waves, while in (1.4) u is the envelope of
the short wave and is a complex function, and v is the amplitude of the long wave which is a
real function.

2. Basic Idea of He’s Homotopy Perturbation Method

We illustrate the following nonlinear differential equation [43–54]:

A(u) − f(r) = 0, r ∈ Ω, (2.1)
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with the boundary conditions:

B

(
u,

∂u

∂n

)
= 0, r ∈ Γ, (2.2)

where A is a general differential operator, B is a boundary operator, f(r) is an analytic
function, and Γ is the boundary of the domain Ω. Generally speaking, the operator A can
be divided into two parts L and N, where L is linear but N is nonlinear. Therefore, (2.1) can
be rewritten in the following form:

L(u) +N(u) − f(r) = 0. (2.3)

By the homotopy technique, we construct a homotopy V (r, p) : Ω×[0, 1] → R which satisfies

H
(
V, p
)
=
(
1 − p

)
[L(V ) − L(u0)] + p

[
A(V ) − f(r)

]
= 0, r ∈ Ω, (2.4)

or

H
(
V, p
)
= L(V ) − L(u0) + pL(u0) + p

(
N(V ) − f(r)

)
= 0, r ∈ Ω, (2.5)

where p ∈ [0, 1] is an embedding parameter and u0 is an initial approximation of (2.1)which
satisfies the boundary conditions (2.2). Obviously, from (2.4) and (2.5), we have

H(V, 0) = L(V ) − L(u0) = 0,

H(V, 1) = A(V ) − f(r) = 0.
(2.6)

The changing process of p from zero to unity is just that of V (r, p) from u0(r) to u(r).
In topology, this is called the deformation but L(V ) − L(u0) and A(V ) − f(r) are called
the homotopies. According to the homotopy perturbation method, we can first use the
embedding parameter “p′′ as a small parameter and assume that (2.4) or (2.5) can be written
as a power series in “p′′ as follows:

V = V0 + pV1 + p2V2 + · · · . (2.7)

Letting p → 1 in (2.7), the approximate solution of (2.3) takes the following form:

u = lim
p→ 1

V = V0 + V1 + V2 + · · · . (2.8)

The combination of the perturbation method and the homotopy method is called the
homotopy perturbation method which has eliminated the limitations of the traditional
perturbation methods. On the other hand, this technique can have full advantage of the
traditional perturbation techniques.
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3. Variational Iteration Method

Consider the following nonhomogeneous, nonlinear partial differential equation:

Lu(x, t) +N(u(x, t)) = f(x, t), (3.1)

where L is a linear differential operator with respect to time, N is a nonlinear operator and
f(x, t) is a given function.

According to the variational iteration method, we can construct correct functionals as
follows:

un+1(x, t) = un(x, t) +
∫ t

0
λ(τ)

[
Lun(x, τ) +N(ũn(x, τ)) − f(x, τ)

]
dτ (3.2)

which is variational iteration algorithm I, and λ is a general Lagrange multipliers. The
variational iteration method can be identified optimally via variational theory [6, 7]. The
second term on the right-hand side in (3.2) is called the corrections, the subscript n denotes
the nth order approximation, and ũn is restricted variations. We can assume that the
aforementioned correctional functionals are stationary (i.e., δun+1 = 0), and then the Lagrange
multipliers can be identified.

Now we can start with the given initial approximation and by the previous iteration
formulas we can obtain the approximate solutions. He [55] has used the fractional iteration
method to obtain the approximate solutions for nonlinear fractional differential equations.

4. The Modified Variational Iteration Method

To convey the basic idea of the variational homotopy perturbation method [2, 3], we consider
the following general differential equation:

Lu +N(u) = f(x), (4.1)

where L is a linear differential operator, N is a nonlinear operator and f(x, t) is an inhomo-
geneous term. According to the variational iterationmethod [4–13], we can construct a correct
functional as follows:

un+1 = un +
∫x

0
λ(τ)

[
Lun +N(ũn) − f(τ)

]
dτ, (4.2)

where λ is a Lagrange multipliers, which can be identified optimally via variational theory
[6, 7]. The subscripts n denote the nth approximation, and ũn is considered as a restricted
variation. That is, δũn = 0 is called a correct functional. Now, we apply the homotopy pertur-
bation method to (4.2):

∞∑
i=0

piui = u0 +
∫x

0
λ(τ)

{
N

( ∞∑
i=0

piũi

)}
dτ −

∫x

0
λ(τ)f(τ)dτ, (4.3)
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which is the variational iteration algarithm II and is formulated by the modified variational
iteration method. The embedding parameter p ∈ [0, 1] can be considered as an expanding
parameter [14–19].

The homotopy perturbation method uses the homotopy parameter p as an expanding
parameter [14–19] to obtain

u =
∞∑
i=0

piui = u0 + pu1 + p2u2 + · · · . (4.4)

If p → 1, then (4.4) becomes the approximate solution of the following form:

u = u0 + u1 + u2 + · · · . (4.5)

A comparison of like powers of p gives solutions of various orders.
The application of the Adomain polynomial is too complex so that we consider the

variational iterationmethod andHe’s polynomial to calculate the approximate solutions (see,
e.g., [56–60]).

5. Applications

In this section, we construct the approximate solutions for some nonlinear evolution
equations in the mathematical physics, namely, the Burgers-Fisher equation (1.1), the
Kuramoto-Sivashinsky equation (1.2), the coupled Schrodinger-KdV equations (1.3), and the
long-short wave resonance equations (1.4) together with initial conditions by using the the
modified variational iteration method. Applications of this method to similar equations can
be found in [61–67].

5.1. Approximate Solution of Burgers-Fisher Equation with Initial
Conditions Using Modified Variational Iteration Method

In this subsection, we use the MVIM to find the solution u(x, t) of an initial value problem
consisting of the nonlinear Burgers-Fisher equation (1.1) and the following initial condition
[39]:

V0 = u(x, 0) =
1
2

[
1 + tanh

(x
4

)]
. (5.1)

This initial condition follows by setting t = 0 in the following exact solution of (1.1):

u(x, t) =
1
2

(
1 + tanh

[
1
4

(
x +

5
2
t

)])
. (5.2)
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This exact solution has been derived by Wazwaz [39] using the tanh-coth method. To this
end, we construct the modified variational iteration method for the nonlinear Burgers- Fisher
equation (1.1)which satisfies

∞∑
i=0

piui = u(x, 0) + p

∫ t

0

⎡
⎣

∞∑
i=0

piui,xx +

( ∞∑
i=0

piui

)( ∞∑
i=0

piui,x

)
+

( ∞∑
i=0

piui

)
−
( ∞∑

i=0

piui

)2
⎤
⎦dτ.

(5.3)

Comparing the different coefficient of like power of p, we have

p0 : u(x, 0) =
1
2

(
1 + tanh

[
1
4

(
x +

5
2
t

)])
,

p1 : u1(x, t) =
∫ t

0
u0,xx(x, τ)dτ +

∫ t

0
u0(x, τ)u0,x(x, τ)dτ +

∫ t

0
u0(x, τ)dτ −

∫ t

0
u2
0(x, τ)dτ,

p2 : u2(x, t) =
∫ t

0
u1,xx(x, τ)dτ +

∫ t

0
u0(x, τ)u1,x(x, τ)dτ +

∫ t

0
u1(x, τ)u0,x(x, τ)dτ

+
∫ t

0
u1(x, τ)dτ − 2

∫ t

0
u0(x, τ)u1(x, τ)dτ,

p3 : u3(x, t) =
∫ t

0
u2,xx(x, τ)dτ +

∫ t

0
u0(x, τ)u2,x(x, τ)dτ +

∫ t

0
u1(x, τ)u1,x(x, τ)dτ

+
∫ t

0
u2(x, τ)u0,x(x, τ)dτ +

∫ t

0
u2(x, τ)dτ + 2

∫ t

0
u0(x, τ)u2(x, τ)dτ

+
∫ t

0
u2
1(x, τ)dτ,

(5.4)

and so on. Consequently after some reduction with help of Maple or Mathematica, we get:

V0(x, t) =
1
2

[
1 + tanh

(x
4

)]
,

V1(x, t) =
5t
16

sech2
(x
4

)
,

V2(x, t) = −25t
2

128
sech2

(x
4

)
tanh

(x
4

)
,

V3(x, t) = −375t
3

3072
sech4

(x
4

)
+
125t3

1536
sech2

(x
4

)
.

(5.5)

In this manner the other components can be obtained.
Substituting from (5.5) into (4.5), we obtain the following approximate solution of the

initial value problem (1.1) and (5.1):

u(x, t) =
1
2

[
1 + tanh

(x
4

)]
+

5t
16

sech2
(x
4

)
− 25t2

128
sech2

(x
4

)
tanh

(x
4

)

− 375t3

3072
sech4

(x
4

)
+
125t3

1536
sech2

(x
4

)
+ · · · .

(5.6)
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Table 1: The approximate solution (5.6) in comparison with the exact solution (5.2) if t = 0.5.

x uexact uVHP |uexact − uVHP|
−50 2.59461 × 10−11 2.58455 × 10−11 1.00576 × 10−13

−40 3.85074 × 10−9 3.83581 × 10−9 1.4929 × 10−11

−30 5.715 × 10−7 5.69285 × 10−7 2.21575 × 10−9

−20 0.000084811 0.000084482 3.28572 × 10−7

−10 0.0124317 0.0123887 4.29767 × 10−5

0 0.651355 0.651164 1.91128 × 10−4

10 0.996406 0.996441 3.44391 × 10−5

20 0.999976 0.999976 2.55845 × 10−7

30 1 1 1.7249 × 10−9

40 1 1 1.16228 × 10−11

50 1 1 7.81597 × 10−14
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Figure 1: The approximate solution (5.6) shown in (b) in comparison with the exact solution (5.2) shown
in (a) if t = 0.5.

Note that if we expand the exact solution (5.2) in Taylor series near t = 0, we obtain the
approximate solution (5.6). To demonstrate the convergence of the variational homotopy
perturbation method, the results of the numerical example are presented and only few terms
are required to obtain accurate solutions. The accuracy of the modified variational iteration
method for the nonlinear Burgers-Fisher equation is controllable and absolute errors are very
small with the present choice of x and t. These results are listed in Table 1. Both the exact
solution (5.2) and the approximate solution (5.6) obtained for the first three approximations
are plotted in Figure 1. There are no visible differences in diagrams. It is also evident that
when more terms for the modified variational iteration method are computed, the numerical
results get much more closer to the corresponding exact solution with the initial condition
(5.1).
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5.2. Approximate Solution of the Nonlinear Kuramoto-Sivashinsky Equation
with Initial Conditions Using MVIM

In this subsection, we use the MVIM to find the solution u(x, t) of an initial-value problem
consisting of the nonlinear Kuramoto-Sivashinsky equation (1.2) with the following initial
condition [40]:

V0 = u(x, 0) =
15bλ
19a

[
2 + 3 tanh

(
λx

2

)
− tanh3

(
λx

2

)]
, (5.7)

where λ =
√
−b/19c, b/c < 0, and a, b, and c are constants. This initial condition follows by

setting t = 0 in the following exact solution of (1.2):

u(x, t) =
15bλ
19a

(
2 + 3 tanh

[
λ

2

(
x − 30bλ

19
t

)]
− tanh3

[
λ

2

(
x − 30bλ

19
t

)])
. (5.8)

This exact solution has been derived byWazwaz [40] using the tanhmethod and the extended
tanh method. Let us now apply the MVIM to the initial value problem (1.2) and (5.7). To this
end, we construct an MVIM for the nonlinear Kuramoto-Sivashinsky equation (1.2) which
satisfies

∞∑
i=0

piui = u(x, 0) − p

∫ t

0

[
a

( ∞∑
i=0

piui

)( ∞∑
i=0

piui,x

)
+ b

∞∑
i=0

piui,xx + c

( ∞∑
i=0

piui,xxxx

)]
dτ. (5.9)

Comparing the different coefficient of like power of p, we have

p0 : u(x, 0) =
15bλ
19a

[
2 + 3 tanh

(
λx

2

)
− tanh3

(
λx

2

)]
,

p1 : u1(x, t) = −a
∫ t

0
u0(x, τ)u0,x(x, τ)dτ − b

∫ t

0
u0,xx(x, τ)dτ − c

∫ t

0
u0,xxxx(x, τ)dτ,

p2 : u2(x, t) = −a
∫ t

0
u0(x, τ)u1,x(x, τ)dτ − a

∫ t

0
u1(x, τ)u0,x(x, τ)dτ − b

∫ t

0
u1,xx(x, τ)dτ

− c

∫ t

0
u1,xxxx(x, τ)dτ,

p3 : u3(x, t) = −a
∫ t

0
u0(x, τ)u2,x(x, τ)dτ − a

∫ t

0
u1(x, τ)u1,x(x, τ)dτ − a

∫ t

0
u2(x, τ)u0,x(x, τ)dτ

− b

∫ t

0
u2,xx(x, τ)dτ − c

∫ t

0
u2,xxxx(x, τ)dτ,

(5.10)
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Table 2: The approximate solution (5.12) in comparison with the exact solution (5.8) if b = −1, a = 1, λ =
0.1, and t = 0.1.

x uexact uhomotopy |uexact − uhomotopy|
−50 −0.0000423797 −0.0000423797 2.12648 × 10−13

−40 −0.000303737 −0.000303737 1.41527 × 10−12

−30 −0.00206958 −0.00206958 7.86068 × 10−12

−20 −0.0124247 −0.0124247 2.60451 × 10−11

−10 −0.0563527 0.0563527 3.22282 × 10−12

0 −0.158082 −0.158082 7.76927 × 10−11

10 −0.259668 −0.259668 3.28948 × 10−12

20 −0.303431 −0.303431 2.6031 × 10−11

30 −0.313732 −0.313732 7.85122 × 10−12

40 −0.315488 −0.315488 1.41315 × 10−12

50 −0.315747 −0.315747 2.12275 × 10−13

and so on. Consequently after some reduction with help of Maple or Mathematica, we get

V0(x, t) =
15bλ
19a

[
2 + 3 tanh

(
λx

2

)
− tanh3

(
λx

2

)]
,

V1(x, t) = −3λta
(
15bλ
19a

)2

sech4
(
λx

2

)
,

V2(x, t) = −6λ5t2a2
(
15bλ
19a

)3

sech4
(
λx

2

)
tanh

(
λx

2

)
.

(5.11)

and so on. Substituting from (5.11)-(5.12) into (4.5), we obtain the approximate solution of
the initial value problem (1.2):

u(x, t) =
15bλ
19a

[
2 + 3 tanh

(
λx

2

)
− tanh3

(
λx

2

)]
− 3λta

(
15bλ
19a

)2

sech4
(
λx

2

)

− 6λ5t2a2
(
15bλ
19a

)3

sech4
(
λx

2

)
tanh

(
λx

2

)
+ · · · ,

(5.12)

which is in agreement with the exact solution (5.8) using Taylor series expansion near t =
0. The comparison between the exact solution (5.8) and the approximate solution (5.12) is
shown in Table 2 and Figure 2. It seems that the errors are very small if b = −1, a = 1, λ =
0.1, and t = 0.1.
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Figure 2: The approximate solution (5.12) shown in (b) in comparison with the exact solution (5.8) shown
in (a) if b = −1, a = 1, λ = 0.1, and t = 0.1.

5.3. Approximate Solutions for the Nonlinear-Coupled Schrodinger-KdV
Equations with Initial Conditions Using MVIM

In this subsection, we find the solutions u(x, t) and v(x, t) satisfying the nonlinear coupled
Schrodinger-KdV equations (1.3) with the following initial conditions [41]:

u(x, 0) = −cα + 2αk tanh(ikx),

v(x, 0) = −2k2sech2(ikx),
(5.13)

where k, α, and c are arbitrary constants and α =
√
2k2 + c/2. These initial conditions follow

by setting t = 0 in the following exact solutions of (1.3):

u(x, t) = −cα + 2αk tanh(ik(x − ct)), (5.14)

v(x, t) = −2k2sech2(ik(x − ct)). (5.15)

These exact solutions have been derived by Zhang [41] using a direct algebraic approach. Let
us now apply the MVIM to the initial value problem (1.3) and (5.13):

i
∞∑
i=0

piui = iu(x, 0) + p

∫ t

0

[ ∞∑
i=0

piui,xx +

( ∞∑
i=0

piui

)( ∞∑
i=0

pivi

)]
dτ,

∞∑
i=0

pivi = v(x, 0) − p

∫ t

0

[ ∞∑
i=0

pivi,xxx + 6

( ∞∑
i=0

pivi

)( ∞∑
i=0

pivi,x

)

−
( ∞∑

i=0

piui,x

)( ∞∑
i=0

pi ui

)
−
( ∞∑

i=0

piui

)( ∞∑
i=0

piui,x

)]
dτ.

(5.16)
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Comparing the different coefficient of like power of p, we have

p0 : u(x, 0) = −cα + 2αk tanh(ikx),

p1 : iu1(x, t) =
∫ t

0
u0,xx(x, τ)dτ +

∫ t

0
u0(x, τ)v0(x, τ)dτ,

p2 : iu2(x, t) =
∫ t

0
u1,xx(x, τ)dτ +

∫ t

0
u0(x, τ)v1(x, τ)dτ +

∫ t

0
u1(x, τ)v0(x, τ)dτ,

p3 : iu3(x, t) =
∫ t

0
u2,xx(x, τ)dτ +

∫ t

0
u0(x, τ)v2(x, τ)dτ +

∫ t

0
u1(x, τ)v1(x, τ)dτ

+
∫ t

0
u2(x, τ)v0(x, τ)dτ,

p0 : v(x, 0) = −2k2sech2(ikx),

p1 : v1(x, t) = −
∫ t

0
v0,xxx(x, τ)dτ − 6

∫ t

0
v0(x, τ)v0,x(x, τ)dτ +

∫ t

0
u0(x, τ)u0,x(x, τ)dτ

+
∫ t

0
u0,x(x, τ)u0(x, τ)dτ,

p2 : v2(x, t) = −
∫ t

0
v1,xxx(x, τ)dτ − 6

∫ t

0
v1(x, τ)v0,x(x, τ)dτ − 6

∫ t

0
v1,x(x, τ)v0(x, τ)dτ

+
∫ t

0
u0(x, τ)u1,x(x, τ)dτ +

∫ t

0
u1(x, τ)u0,x(x, τ)dτ +

∫ t

0
u0,x(x, τ)u1(x, τ)dτ

+
∫ t

0
u1,x(x, τ)u0(x, τ)dτ,

(5.17)

and so on. Consequently after some reduction with help of Maple or Mathematica, we get

u0(x, t) = −cα + 2αk tanh(ikx),

u1(x, t) = −2itαck2sech2(ikx),

u2(x, t) = 2αt2c2k3 sech2(ikx) tanh(ikx),

u3(x, t) = −2it3αc3k4
[
3 sech4(ikx) − 2 sech2(ikx)

]
,

v0(x, t) = −2k2sech2(ikx),

v1(x, t) = − 4itck3sech2(ikx) tanh(ikx),

v2(x, t) = −2c2t2k4
[
3 sech4(ikx) − 2 sech2(ikx)

]
,

v3(x, t) = −2ic3t3k5
[
−4 sech4(ikx) tanh(ikx) +

4
3
sech2(ikx) tanh(ikx)

]
.

(5.18)
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Table 3: The approximate solutions (5.19) and (5.20) in comparison with the exact solutions (5.14) and
(5.15), respectively, if t = 0.5, k = 0.1, c = 0.2.

x |uexact − uapp| |vexact − vapp|
−2 1.43476 × 10−7 1.21337 × 10−8

−1.5 1.34152 × 10−7 8.68819 × 10−9

−1 1.27786 × 10−7 5.6321 × 10−9

−0.5 1.24096 × 10−7 2.82205 × 10−9

0 1.22925 × 10−7 1.33341 × 10−10

0.5 1.2422 × 10−7 2.54966 × 10−9

1 1.28038 × 10−7 5.34219 × 10−9

1.5 1.34545 × 10−7 8.36762 × 10−9

2 1.44027 × 10−7 1.17669 × 10−8
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Figure 3: The approximate solution (5.19) shown in the figure (a) in comparison with the exact solution
(5.14) shown in figure (b) if k = 0.1, ∝= 0.1, and c = 0.2.

In this manner the other components can be obtained. Substituting (5.18) into (4.5), we obtain
the approximate solutions of the initial value problem (1.3) and (5.13):

u(x, t) = − cα + 2αk tanh(ikx) − 2itαck2 sech2(ikx) + 2α t2c2k3 sech2(ikx) tanh(ikx)

− 2it3αc3k4
[
3 sech4(ikx) − 2 sech2(ikx)

]
+ · · · ,

(5.19)

v(x, t) = −2k2 sech2(ikx) − 4i tck3 sech2(ikx) tanh(ikx)

− 2c2t2k4
[
3 sech4(ikx) − 2 sech2(ikx)

]
+ · · · ,

(5.20)

which are in the closed form of the exact solutions (5.14) and (5.15) using Taylor series
expansion near t = 0.

The comparison between the exact solutions (5.14), (5.15) and the approximate
solutions (5.19), (5.20) respectively, are shown in Table 3 and Figures 3 and 4. It seems that
the errors are very small if t = 0.5, k = 0.1, c = 0.2.
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Figure 4: The approximate solution (5.20) shown in (a) in comparison with the exact solution (5.15) shown
in (b) if k = 0.1, c = 0.2,∝= 0.1.

Table 4: The approximate solutions (5.27) and (5.28) in comparison with the exact solutions (5.22) and
(5.23), respectively, if t = 0.5, k = 0.1, c = 0.2, ξ0 = 2, and ξ1 = 3.

x |uex − uapp| |vex − vapp|
−50 8.13281 × 10−5 9.25371 × 10−14

−40 9.81849 × 10−5 3.88495 × 10−13

−30 1.22963 × 10−4 2.56975 × 10−12

−20 1.61595 × 10−4 4.11388 × 10−11

−10 4.68634 × 10−10 8.35654 × 10−9

0 6.24133 × 10−3 1.42883 × 10−6

10 5.81547 × 10−4 2.09106 × 10−10

20 2.70634 × 10−4 6.79057 × 10−12

30 1.73048 × 10−4 7.77128 × 10−13

40 1.26497 × 10−5 1.58651 × 10−13

50 9.94724 × 10−5 4.52416 × 10−14

5.4. Approximate Solution of the Nonlinear Long and Short Wave Resonance
Equations with Initial Conditions Using MVIM

In this subsection, we find the solutions u(x, t) and v(x, t) satisfying the nonlinear long–short
wave resonance equations (1.4)with the following initial conditions [42]:

v0 = u(x, 0) = 2

√
k

β

1
(x + ξ1)

ei(kx+ξ0),

v0 = v(x, 0) =
2

(x + ξ1)
2
− C,

(5.21)
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Figure 5: The approximate solution (5.27) in comparison with the exact solution (5.22) if k = 0.1, c =
0.2, ξ0 = 2, and ξ1 = 3.

where β, k, C, ξ0 and ξ1 are arbitrary constants. These initial conditions follow by setting t = 0
in the following exact solutions of (1.4):

u(x, t) = 2

√
k

β

1
(x − 2kt + ξ1)

ei(kx+wt+ξ0), (5.22)

v(x, t) =
2

(x − 2kt + ξ1)
2
− C, (5.23)

where w = C − k2 is constant. These exact solutions have been derived by Shang [42] using
the extended hyperbolic functionmethod, which describes the resonance interaction between
the long wave and the short wave. Let us now apply the MVIM to the initial value problem
(1.4) and (5.21):

i
∞∑
i=0

piui = iu(x, 0) − p

∫ t

0

[ ∞∑
i=0

piui,xx −
( ∞∑

i=0

piui

)( ∞∑
i=0

pivi

)]
dτ,

∞∑
i=0

pivi = v(x, 0) − pβ

∫ t

0

[( ∞∑
i=0

piui,x

)( ∞∑
i=0

piui

)
+

( ∞∑
i=0

piui

)( ∞∑
i=0

piui,x

)]
dτ.

(5.24)
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Figure 6: The approximate solution (5.28) in comparison with the exact solution (5.23) if k = 0.1, c =
0.2, ξ0 = 2, and ξ1 = 3.

Comparing the different coefficient of like power of p, we have

p0 : u(x, 0) = 2

√
k

β

1
(x + ξ1)

ei(kx+ξ0),

p1 : iu1(x, t) = −
∫ t

0
u0,xx(x, τ)dτ +

∫ t

0
u0(x, τ)v0(x, τ)dτ,

p2 : iu2(x, t) = −
∫ t

0
u1,xx(x, τ)dτ +

∫ t

0
u0(x, τ)v1(x, τ)dτ +

∫ t

0
u1(x, τ)v0(x, τ)dτ,

p3 : iu3(x, t) = −
∫ t

0
u2,xx(x, τ)dτ +

∫ t

0
u0(x, τ)v2(x, τ)dτ +

∫ t

0
u1(x, τ)v1(x, τ)dτ

+
∫ t

0
u2(x, τ)v0(x, τ)dτ,

p0 : v(x, 0) =
2

(x + ξ1)
2
− C,

p1 : v1(x, t) = −β
∫ t

0
u0(x, τ)u0,x(x, τ)dτ − β

∫ t

0
u0,x(x, τ)u0(x, τ)dτ,

p2 : v2(x, t) = −β
∫ t

0
u0(x, τ)u1,x(x, τ)dτ − β

∫ t

0
u1(x, τ)u0,x(x, τ)dτ

− β

∫ t

0
u0,x(x, τ)u1(x, τ)dτ − β

∫ t

0
u1,x(x, τ)u0(x, τ)dτ,

p3 : v3(x, t) = −β
∫ t

0
u0,x(x, τ)u2(x, τ)dτ − β

∫ t

0
u0(x, τ)u2,x(x, τ)dτ − β

∫ t

0
u1,x(x, τ)u1(x, τ)dτ

− β

∫ t

0
u1(x, τ)u1,x(x, τ)dτ − β

∫ t

0
u2,x(x, τ)u0(x, τ)dτ − β

∫ t

0
u2(x, τ)u0,x(x, τ)dτ,

(5.25)
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and so on. On substituting (5.21) into (5.25), we deduce that

u0(x, t) = 2

√
k

β

1
(x + ξ1)

ei(kx+ξ0),

u1(x, t) = 2t

√
k

β

[
i
(
C − k2)

(x + ξ1)
+

2k

(x + ξ1)
2

]
ei(kx+ξ0),

u2(x, t) = 2t2
√

k

β

[
i
(
C − k2)2
(x + ξ1)

+
4ik

(x + ξ1)
2
+

4k

(x + ξ1)
3

]
ei(kx+ξ0),

v0(x, t) =
2

(x + ξ1)
2
− C,

v1(x, t) =
8kt

(x + ξ1)
3
,

v2(x, t) =
48kt2

(x + ξ1)
4
,

v3(x, t) =
384kt3

(x + ξ1)
5
.

(5.26)

In this manner the other components can be obtained. Consequently, we obtain the
following approximate solutions of the initial value problem (1.4) and (5.21):

u(x, t) = 2

√
k

β

1
(x + ξ1)

ei(kx+ξ0) + 2t

√
k

β

[
i
(
C − k2)

(x + ξ1)
+

2k

(x + ξ1)
2

]
ei(kx+ξ0)

+ 2t2
√

k

β

[
i
(
C − k2)2
(x + ξ1)

+
4ik

(x + ξ1)
2
+

4k

(x + ξ1)
3

]
ei(kx+ξ0) + · · · ,

(5.27)

v(x, t) =
2

(x + ξ1)
2
− C +

8kt

(x + ξ1)
3
+

48kt2

(x + ξ1)
4
+

384kt3

(x + ξ1)
5
+ · · · (5.28)

which are in the closed forms of the exact solutions (5.22) and (5.23) using Taylor series
expansion near t = 0.

The comparison between the exact solutions (5.22), (5.23) and the approximate sol-
utions (5.27), (5.28) respectively is shown in Table 4 and Figures 5 and 6. It seems that the
errors are very small if t = 0.5, k = 0.1, c = 0.2, ξ0 = 2, and ξ1 = 3.

6. Conclusions

In this paper, the modified variational iteration method was applied for finding the
approximate solutions for some nonlinear evolution equations in mathematical physics via
the nonlinear Burgers-Fisher equation, nonlinear Kuramoto-Sivashinsky equation, nonlinear
coupled Schrodinger KdV equations, and nonlinear long-short wave resonance equations
with well-known initial conditions. It seems to us that the modified variational iteration
method presents a rapid convergence solutions. It can be concluded that this method is
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very powerful and efficient technique in finding approximate solutions for wide classes of
nonlinear problems.
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