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We first introduce a new notion of the partial and generalized cone subconvexlike set-valued
map and give an equivalent characterization of the partial and generalized cone subconvexlike
set-valued map in linear spaces. Secondly, a generalized alternative theorem of the partial and
generalized cone subconvexlike set-valued map was presented. Finally, Kuhn-Tucker conditions
of set-valued optimization problems were established in the sense of globally proper efficiency.

1. Introduction

Generalized convexity plays an important role in set-valued optimization. The generalization
of convexity from vector-valued maps to set-valued maps happened in the 1970s. Borwein
[1] and Giannessi [2] introduced and studied the cone convexity of set-valued maps. Based
on Borwein and Giannessi’s work, some authors [3–7] established a series of optimality
conditions of set-valued optimization problems under different types of generalized
convexity of set-valued maps in topological spaces. Since linear spaces are wider than
topological spaces, generalizing some results of the above mentioned references from
topological spaces to linear spaces is an interesting topic. Li [8] introduced a cone
subconvexlike set-valued map involving the algebraic interior and established Kuhn-Tucker
conditions. Huang and Li [9] studied Lagrangian multiplier rules of set-valued optimization
problems with generalized cone subconvexlike set-valued maps in linear spaces. When the
algebraic interior of the convex cone is empty, Hernández et al. [10] used the relative algebraic
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interior of the convex cone to introduce cone subconvexlikeness of set-valued maps and
investigated Benson proper efficiency of set-valued optimization problems in linear spaces.

The aim of this paper is to study globally proper efficiency of set-valued optimization
problems in linear spaces. This paper is organized as follows. In Section 2, we recalled some
basic notions and gave some lemmas. In Section 3, we presented a generalized alternative
theorem of the partial and generalized cone subconvexlike set-valued map and established
Kuhn-Tucker conditions of set-valued optimization problems in the sense of globally proper
efficiency.

2. Preliminaries

In this paper, let Y and Z be two real-ordered linear spaces, and let 0 denote the zero element
of every space. Let K be a nonempty subset in Y . The cone hull of K is defined as coneK :=
{λk | k ∈ K, λ ≥ 0}. K is called a convex cone if and only if

λ1k1 + λ2k2 ∈ K, ∀λ1, λ2 ≥ 0, ∀k1, k2 ∈ K. (2.1)

A coneK is said to be pointed if and only ifK ∩ (−K) = {0}. A coneK is said to be nontrivial
if and only if K/= {0} and K/=Y .

Let Y ∗ and Z∗ stand for the algebraic dual spaces of Y and Z, respectively. Let C and
D be nontrivial, pointed, and convex cones in Y and Z, respectively. The algebraic dual cone
C+ of C is defined as C+ := {y∗ ∈ Y ∗ | 〈y, y∗〉 � 0, ∀y ∈ C}, and the strictly algebraic dual
cone C+i of C is defined as C+i := {y∗ ∈ Y ∗ | 〈y, y∗〉 > 0, ∀y ∈ C \ {0}}, where 〈y, y∗〉 denotes
the value of the linear functional y∗ at the point y. The meaning ofD+ is similar to that of C+.

Let K be a nonempty subset of Y . The linear hull spanK of K is defined as spanK :=
{k | k =

∑n
i=1 λiki, λi ∈ R, ki ∈ K, i = 1, . . . , n}, and the affine hull affK of K is defined as

affK := {k | k =
∑n

i=1 λiki,
∑n

i=1 λi = 1, λi ∈ R, ki ∈ K, i = 1, . . . , n}. The generated linear
subspace L(K) of K is defined as L(K) := span(K −K).

Definition 2.1 (see [11]). Let K be a nonempty subset of Y . The algebraic interior of K is the
set

corK :=
{
k ∈ K | ∀k′ ∈ Y, ∃λ′ > 0, ∀λ ∈ [

0, λ′
]
, k + λk′ ∈ K

}
. (2.2)

Definition 2.2 (see [12]). LetK be a nonempty subset of Y . The relative algebraic interior ofK
is the set

icrK = {k ∈ K | ∀v ∈ affK − k, ∃λ0 > 0, ∀λ ∈ [0, λ0], k + λv ∈ K}. (2.3)

Clearly, affK − k = L(K), for all k ∈ K. Therefore, Definition 2.2 is consistent with the
definition of the relative algebraic interior of K in [13, 14]. However, Definition 2.2 seems to
be more convenient than the ones in [13, 14].

It is worth noting that if K is a nontrivial and pointed cone in Y , then 0 /∈ icrK, and if
K is a convex cone, then icrK is a convex set, and icrK ∪ {0} is a convex cone.
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Lemma 2.3 (see [13]). If K is a convex cone in Y , then K + icrK = icrK.

Lemma 2.4 (see [10, 12, 14]). If K is a nonempty subset in Y , then

(a) affK − k = affK −K, for all k ∈ K;

if K is convex in Y and icrK/= ∅, then

(b) icr (icrK) = icrK;

(c) aff(icrK) = affK.

Lemma 2.5 (see [12]). Let K be a convex set with icr (K)/= ∅ in Y . If 0 /∈ icrK, then there exists
y∗ ∈ Y ∗ \ {0} such that

〈
k, y∗〉 ≥ 0, ∀k ∈ K. (2.4)

3. Main Results

Let A be a nonempty set, and let F : A ⇒ Y and G : A ⇒ Z be two set-valued maps on A.
Write F(A) :=

⋃
x∈A F(x) and 〈F(x), y∗〉 := {〈y, y∗〉 | y ∈ F(x)}. The meanings of G(A) and

〈G(x), z∗〉 are similar to those of F(A) and 〈F(x), y∗〉.
Now, we introduce a new notion of the partial and generalized cone subconvexlike

set-valued map.

Definition 3.1. A set-valued map J = (F,G) : A ⇒ Y × Z is called partial and generalized
C ×D-subconvexlike on A if and only if cone(J(A)) + icrC ×D is a convex set in Y × Z.

The following theorem will give some equivalent characterizations of the partial and
generalized C ×D-subconvexlike set-valued map in linear spaces.

Theorem 3.2. Let icrC/= ∅. Then the following statements are equivalent:

(a) the set-valued map J : A ⇒ Y × Z is partial and generalized C ×D-subconvexlike on A,

(b) For all (c, d) ∈ icrC ×D, ∀x1, x2 ∈ A, ∀λ ∈ ]0, 1[,

(c, d) + λJ(x1) + (1 − λ)J(x2) ⊆ cone(J(A)) + icrC ×D, (3.1)

(c) ∃c′ ∈ icrC, ∀x1, x2 ∈ A, ∀λ ∈]0, 1[, ∀ε > 0,

ε
(
c′, 0

)
+ λJ(x1) + (1 − λ)J(x2) ⊆ cone(J(A)) + C ×D, (3.2)

(d) ∃c′′ ∈ C, ∀x1, x2 ∈ A, ∀λ ∈]0, 1[, ∀ε > 0,

ε
(
c′′, 0

)
+ λJ(x1) + (1 − λ)J(x2) ⊆ cone(J(A)) + C ×D. (3.3)
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Proof. (a) ⇒ (b). Let (c, d) ∈ icrC × D,x1, x2 ∈ A, λ ∈]0, 1[, (y1, z1) ∈ J(x1), and (y2, z2) ∈
J(x2). Clearly,

(
y1, z1

)
+ (c, d) ∈ cone(J(A)) + icrC ×D,

(
y2, z2

)
+ (c, d) ∈ cone(J(A)) + icrC ×D.

(3.4)

Since J is partial and generalized C ×D-subconvexlike on A, it follows from (3.4) that

(c, d) + λ
(
y1, z1

)
+ (1 − λ)

(
y2, z2

)

= λ
((
y1, z1

)
+ (c, d)

)
+ (1 − λ)

((
y2, z2

)
+ (c, d)

) ∈ cone(J(A)) + icrC ×D,
(3.5)

which implies that (3.1) holds.
The implications (b) ⇒ (c) ⇒ (d) are clear.
(d) ⇒ (a). Let (mi, ni) ∈ cone(J(A)) + icrC ×D (i = 1, 2), λ ∈]0, 1[. Then there exist ρi ≥

0, xi ∈ A, (yi, zi) ∈ J(xi), and (ci, di) ∈ icrC×D (i = 1, 2) such that (mi, ni) = ρi(yi, zi) + (ci, di).
Case one: if ρ1 = 0 or ρ2 = 0, we have λ(m1, n1)+(1−λ)(m2, n2) ∈ cone (J(A))+icrC×D.
Case two: if ρ1 > 0 and ρ2 > 0, we have

λ(m1, n1) + (1 − λ)(m2, n2)

= λ
(
ρ1
(
y1, z1

)
+ (c1, d1)

)
+ (1 − λ)

(
ρ2
(
y2, z2

)
+ (c2, d2)

)

= [λ(c1, d1) + (1 − λ)(c2, d2)] +
[
λρ1

(
y1, z1

)
+ (1 − λ)ρ2

(
y2, z2

)]

= β

{
1
β
[λ(c1, d1) + (1 − λ)(c2, d2)] +

[
λρ1
β

(
y1, z1

)
+
(1 − λ)ρ2

β

(
y2, z2

)
]}

,

(3.6)

where β = λρ1 + (1 − λ)ρ2.
By Lemma 2.4, we obtain

−c′′ ∈ C − C ⊆ affC − C = affC − 1
β
[λc1 + (1 − λ)c2]

= aff(icrC) − 1
β
[λc1 + (1 − λ)c2].

(3.7)

Since (1/β)[λc1 + (1 − λ)c2] ∈ icrC = icr(icrC), there exists λ0 > 0 such that

1
β
[λc1 + (1 − λ)c2] + λ0

(−c′′) ∈ icrC. (3.8)
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By (3.3), (3.6), (3.8), and Lemma 2.3, we have

λ(m1, n1) + (1 − λ)(m2, n2) = β

{
1
β
[λ(c1, d1) + (1 − λ)(c2, d2)]

+λ0
(−c′′, 0) +

[

λ0
(
c′′, 0

)
+
λρ1
β

(
y1, z1

)
+
(1 − λ)ρ2

β

(
y2, z2

)
]}

= β

{(
1
β
[λc1 + (1 − λ)c2] + λ0

(−c′′), 1
β
[λd1 + (1 − λ)d2]

)

+
[

λ0
(
c′′, 0

)
+
λρ1
β

(
y1, z1

)
+
(1 − λ)ρ2

β

(
y2, z2

)
]}

∈ β(icrC ×D) + cone(J(A)) + C ×D ⊆ cone(J(A)) + icrC ×D.

(3.9)

Cases one and two imply that cone(J(A))+ icrC×D is a convex set in Y ×Z. Therefore,
(a) holds.

Remark 3.3. Theorem 3.2 generalizes the sixth item of Proposition 2.4 in [14], Lemma 2.1 in
[15], and Lemma 2 in [16].

Now, we will give a generalized alternative theorem of the partial and generalized
C ×D-subconvexlike map. We consider the following two systems.

System 1. There exists x0 ∈ A such that −J(x0) ∩ (icrC ×D)/= ∅.
System 2. There exists (y∗, z∗) ∈ (C+ ×D+) \ {(0, 0)} such that

〈
y, y∗〉 + 〈z, z∗〉 ≥ 0, ∀(y, z) ∈ J(A). (3.10)

Theorem 3.4 (generalized alternative theorem). Let icr (cone(J(A)) + icrC×D)/= ∅, and let the
set-valued map J : A ⇒ Y × Z be partial and generalized C ×D-subconvexlike on A. Then,

(i) if System 1 has no solutions, then System 2 has a solution;

(ii) if (y∗, z∗) ∈ C+i ×D+ is a solution of System 2, then System 1 has no solutions.

Proof. (i) Firstly, we assert that (0, 0) /∈ cone(J(A)) + icrC ×D. Otherwise, there exist x0 ∈ A
and α ≥ 0 such that (0, 0) ∈ αJ(x0) + icrC ×D.

Case one: if α = 0, then 0 ∈ icrC. Since C is a nontrivial, pointed, and convex cone,
0 /∈ icrC. Thus, we obtain a contradiction.

Case two: if α > 0, then there exists (y0, z0) ∈ J(x0) such that

−(y0, z0
) ∈ 1

α
(icrC ×D) ⊆ icrC ×D, (3.11)

which contradicts that System 1 has no solutions.
Cases one and two show that our assertion is true. Since the set-valuedmap J is partial

and generalizedC×D-subconvexlike onA, cone(J(A))+icrC×D is a convex set in Y×Z. Note
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that icr(cone(J(A))+ icrC×D)/= ∅. Thus, all conditions of Lemma 2.5 are satisfied. Therefore,
there exists (y∗, z∗) ∈ (Y ∗ × Z∗) \ {(0, 0)} such that

〈
ry + c, y∗〉 + 〈rz + d, z∗〉 ≥ 0, ∀r ≥ 0, x ∈ A,y ∈ F(x), z ∈ G(x), c ∈ icrC, d ∈ D. (3.12)

Letting r = 1 in (3.12), we have

〈
y + c, y∗〉 + 〈z + d, z∗〉 ≥ 0, ∀x ∈ A,y ∈ F(x), z ∈ G(x), c ∈ icrC, d ∈ D. (3.13)

We again assert that y∗ ∈ C+. Otherwise, there exists y′ ∈ C such that 〈y′, y∗〉 < 0. Let
x ∈ A,y ∈ F(x), z ∈ G(x), c ∈ icrC, and d ∈ D be fixed. Then there exists sufficiently large
positive number λ such that λ〈y′, y∗〉 + 〈y + c, y∗〉 + 〈z + d, z∗〉 < 0, that is,

〈
y +

(
c + λy′), y∗〉 +

〈
z + d, z∗

〉
< 0. (3.14)

By Lemma 2.3, c + λy′ ∈ icrC. Thus, (3.14) contradicts (3.13). Therefore, y∗ ∈ C+. Similarly,
we can prove that z∗ ∈ D+.

Let c ∈ icrC be fixed in (3.13). Then, βc ∈ icrC, ∀β > 0. Letting d = 0 in (3.13), we have

〈
y, y∗〉 + β

〈
c, y∗〉 + 〈z, z∗〉 ≥ 0, ∀x ∈ A, y ∈ F(x), z ∈ G(x). (3.15)

Letting β → 0 in (3.15), we obtain

〈
y, y∗〉 + 〈z, z∗〉 ≥ 0, ∀x ∈ A,y ∈ F(x), z ∈ G(x), (3.16)

which implies that System 2 has a solution.
(ii) If (y∗, z∗) ∈ C+i ×D+ is a solution of System 2, then

〈
y, y∗〉 + 〈z, z∗〉 ≥ 0, ∀x ∈ A, y ∈ F(x), z ∈ G(x). (3.17)

We assert that System 1 has no solutions. Otherwise, there exist p ∈ F(x0) and q ∈ G(x0)
such that −p ∈ icrC ⊆ C \ {0} and −q ∈ D. Therefore, we have 〈p, y∗〉 + 〈q, z∗〉 < 0, which
contradicts (3.17). Therefore, our assertion is true.

Remark 3.5. If Y × Z is a finite-dimensional space, then the partial and generalized C × D-
subconvexlikeness of J : A ⇒ Y ×Z implies that cone(J(A))+ icrC×D is a nonempty convex
in Y ×Z, which in turn implies that the condition icr(cone(J(A))+ icrC×D)/= ∅ holds trivially.

Remark 3.6. Theorem 3.4 generalizes Theorem 3.7 in [14], Theorem 2.1 in [15], and Theo-
rem 1 in [16].

From now on, we suppose that icrC/= ∅.

Definition 3.7 (see [17]). Let B ⊆ Y. y ∈ B be called a global properly efficient point with
respect to C (denoted by y ∈ GPE(B,C)) if and only if there exists a nontrivial, pointed, and
convex cone C′ with C \ {0} ⊆ icrC′ such that (B − y) ∩ (−C′ \ {0}) = ∅.
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Now, we consider the following set-valued optimization problem:

Min F(x)

subject to −G(x) ∩D/= ∅.
(3.18)

The feasible set of (3.18) is defined by S := {x ∈ A | −G(x) ∩D/= ∅}.

Definition 3.8. Let x ∈ S be called a global properly efficient solution of (3.18) if and only if
there exists y ∈ F(x) such that y ∈ GPE(F(S), C). The pair (x, y) is called a global properly
efficient element of (3.18).

Now, we will establish Kuhn-Tucker conditions of set-valued optimization problem
(3.18) in the sense of globally proper efficiency.

Theorem 3.9. Suppose that the following conditions hold:

(i) (x0, y0) is a global properly efficient element of (3.18);

(ii) the set-valued map I : A ⇒ Y × Z is partial and generalized C × D-subconvexlike on A,
where I(x) = (F(x) − y0, G(x)), for allx ∈ A.

Then, there exists (y∗, z∗) ∈ (C+ ×D+) \ {(0, 0)} such that

inf
x∈A

(〈
F(x), y∗〉 + 〈G(x), z∗〉) =

〈
y0, y

∗〉, inf〈G(x0), z∗〉 = 0. (3.19)

Proof. Since (x0, y0) is a global properly efficient element of (3.18), there exists a nontrivial,
pointed, and convex cone C′ with C \ {0} ⊆ icrC′ such that

−(F(x) − y0
) ∩ (

C′ \ {0}) = ∅, ∀x ∈ A. (3.20)

It follows from (3.20) that

−(F(x) − y0
) ∩ icrC = ∅, ∀x ∈ A. (3.21)

By (3.21), we obtain

−I(x) ∩ (icrC ×D) = ∅, ∀x ∈ A. (3.22)

Since I is partial and generalized C × D-subconvexlike on A, it follows from (3.22) and
Theorem 3.4 that there exists (y∗, z∗) ∈ (C+ ×D+) \ {(0, 0)} such that

〈
F(x) − y0, y

∗〉 + 〈G(x), z∗〉 ≥ 0, ∀x ∈ A, (3.23)

that is

〈
F(x), y∗〉 + 〈G(x), z∗〉 ≥ 〈

y0, y
∗〉, ∀x ∈ A. (3.24)
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Because x0 ∈ S, there exists p ∈ G(x0) such that −p ∈ D. Since z∗ ∈ D+, we have

〈
p, z∗

〉 ≤ 0. (3.25)

Letting x = x0 in (3.24), we obtain

〈
p, z∗

〉 ≥ 0. (3.26)

It follows from (3.25) and (3.26) that

〈
p, z∗

〉
= 0. (3.27)

Therefore, we have

〈
y0, y

∗〉 ∈ 〈
F(x0), y∗〉 + 〈G(x0), z∗〉. (3.28)

By (3.24) and (3.28), we have infx∈A(〈F(x), y∗〉 + 〈G(x), z∗〉) = 〈y0, y
∗〉. Letting x = x0 in

(3.24), we have

〈G(x0), z∗〉 ≥ 0. (3.29)

It follows from (3.27) and (3.29) that inf〈G(x0), z∗〉 = 0.

The following theorem, which can be found in [17], is a sufficient condition of global
properly efficient elements of (3.18).

Theorem 3.10. Suppose that the following conditions hold:

(i) x0 ∈ S,

(ii) there exist y0 ∈ F(x0) and (y∗, z∗) ∈ C+i ×D+ such that

inf
x∈A

(〈
F(x), y∗〉 + 〈G(x), z∗〉) ≥ 〈

y0, y
∗〉. (3.30)

Then, (x0, y0) is a global properly efficient element of (3.18).
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