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The present paper deals with the justification of solvability conditions and properties of solutions
for weakly singular integro-differential equations by collocation and mechanical quadrature
methods. The equations are defined on an arbitrary smooth closed contour of the complex plane.
Error estimates and convergence for the investigated methods are established in Lebesgue spaces.

1. Introduction

Singular integral equations (SIE) and singular integro-differential equations with Cauchy
kernels (SIDE) and systems of such equations model many problems in elasticity theory,
aerodynamics, mechanics, thermoelasticity and queuing analysis (see [1–6] and the literature
cited therein). The general theory of SIE and SIDE has been widely investigated over the
last decades [7–11]. It is known that the exact solution for SIDE can be found only in some
particular cases. That is why there is a necessity to elaborate approximation methods for
solving SIDE.

In the past, there was a lot of research in literature devoted to an approximate solution
of SIE and SIDE by collocation and mechanical quadrature methods. The equations are
defined on the unit circle centered at the origin or on the real axis, see for example [12–15].
However, the case when the contour of integration is an arbitrary smooth closed curve has
not been studied enough.

It should be noted that conformal mapping from the arbitrary smooth closed contour
to the unit circle does not solve the problem. Moreover, it makes it more difficult. In the
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present paper we consider the collocation and mechanical quadrature methods for the
approximate solution of weakly SIDE. We use the Fejér points as collocation knots. In
Section 2 we introduce the main definitions and notations. We present the numerical schemes
of collocation and mechanical quadrature methods in Section 3. In Section 4 we formulate the
auxiliary results. We use these results to prove the convergence theorems in Section 5.

We note that the convergence of the collocation method, reduction method and
mechanical quadrature method for SIDE and systems of such equations in generalized
Hölder spaces has been obtained in [16–18]. The equations are given on an arbitrary smooth
closed contour (not weakly SIDE).

2. The Main Definitions and Notations

Let Γ be an arbitrary smooth closed contour bounding a simply connected region F+ of the
complex plane and let t = 0 ∈ F+, F− = C \ {F+ ∪ Γ}, where C is the complex plane. Let
z = ψ(w) be a function, mapping conformably the outside of unit circle Γ0 = {|w| = 1} on the
domain F− so that

ψ(∞) = ∞, ψ(′)(∞) = 1. (2.1)

We assume that the function z = ψ(w) has the second derivative, satisfying on Γ0 the Hölder
condition with some parameter μ (0 < μ < 1); the class of such contours is denoted by C(2;μ)
[19, 20].

Let Lp(Γ) (1 < p <∞) be the space of complex functions with norm

∥
∥g
∥
∥
p =
(
1
l

∫

Γ

∣
∣g
∣
∣
p|dτ |
)1/p

, (2.2)

where l is the length of Γ.
LetUn be the Lagrange interpolating polynomial

(

Ung
)

(t) =
2n∑

s=0

g(ts) · ls(t), (2.3)

lj(t) =
2n∏

k=0,k /= j

t − tk
tj − tk

(
tj

t

)n

≡
n∑

k=−n
Λ(j)
k
tk, t ∈ Γ, j = 0, . . . , 2n. (2.4)
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3. Numerical Schemes of the Collocation Method and Mechanical
Quadrature Method

In the complex space Lp(Γ) (1 < p < ∞) we consider the weakly singular integro-differential
equation (SIDE):

(Mx ≡)
ν∑

r=0

[

Ãr(t)x(r)(t) + B̃r(t)
1
πi

∫

Γ

x(r)(τ)
τ − t dτ

+
1

2πi

∫

Γ

Kr(t, τ)
|t − τ |γ · x(r)(τ)dτ

]

= f(t), t ∈ Γ,

(3.1)

where 0 < γ < 1, Ãr(t), B̃r(t),Kr(t, τ)(r = 0, . . . , ν) and f(t) are known functions; x(0)(t) = x(t)
is an unknown function; x(r)(t) = ((drx(t))/dtr) (r = 1, . . . , ν) (ν is a positive integer). Using
the Riesz operators P = 1/2(I + S), Q = I − P , (where I is the identity operator, and S is the
singular operator (with Cauchy kernel)), we rewrite (3.1) in the following form convenient
for consideration:

(Mx ≡)
ν∑

r=0

[

Ar(t)
(

Px(r)
)

(t) + Br(t)
(

Qx(r)
)

(t)

+
1

2πi

∫

Γ

Kr(t, τ)
|t − τ |γ · x(r)(τ)dτ

]

= f(t), t ∈ Γ,

(3.2)

where Ar(t) = Ãr(t) + B̃r(t), Br(t) = Ãr(t) − B̃r(t), r = 0, . . . , ν.
We search for a solution of (3.1) in the class of functions, satisfying the condition

1
2πi

∫

Γ
x(τ)τ−k−1dτ = 0, k = 0, . . . , ν − 1. (3.3)

In order to reduce the numerical schemes of collocation method we introduce a new integro-
differential equation from the initial one. The weakly singular kernels are substituted by
continuous ones. We obtain the new approximate equation

(

Mρ(x) ≡
)

(M0x)(t) +
1

2πi

ν∑

r=0

∫

Γ
Kr,ρ(t, τ)x(r)(τ)dτ = f(t), t ∈ Γ, (3.4)

where

Kr,ρ(t, τ) =

⎧

⎪⎪⎪
⎨

⎪⎪⎪
⎩

Kr(t, τ)
|t − τ |γ , when |t − τ | ≥ ρ,

Kr(t, τ)
ργ

, when |t − τ | < ρ.
(3.5)
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ρ is an arbitrary positive number, M0 is characteristic part of weakly SIDE. Equation (3.1)
with the conditions (3.3) we denote as problem “(3.1)–(3.3)”. We search for the approximate
solution of problem (3.1)–(3.3) in polynomial form

xn,ρ(t) =
n∑

k=0

ξ
(n)
k,ρt

k+ν +
−1∑

k=−n
ξ
(n)
k,ρt

k, t ∈ Γ, (3.6)

where ξ(n)
k,ρ

= ξk,ρ (k = −n, . . . , n) are unknown complex numbers. We note that the function
xn,ρ(t), constructed by formula, obviously satisfies the condition (3.3). LetRn(t) = (Mρxn)(t)−
f(t) be residual of SIDE. The collocation method consists in setting it equal to zero at some
chosen points tj , j = 0, . . . , 2n on Γ and thus obtaining a linear algebraic system for unknowns
ξk,ρ which is determined by solving it:

Rn

(

tj
)

= 0, j = 0, . . . , 2n. (3.7)

Using the (3.7) we obtain a system of linear algebraic equations (SLAE) for collocation
method:

ν∑

r=0

Ar

(

tj
)

n∑

k=0

(k + ν)!
(k + ν − r)! t

k+ν−r
j ξk,ρ

+ Br
(

tj
)

n∑

k=1

(−1)r (k + r − 1)!
(k − 1)!

t−k−rj × ξ−k,ρ

+
1

2πi
·

n∑

k=0

(k + ν)!
(k + ν − r)!

∫

Γ
Kr,ρ

(

tj , τ
)

τk+ν−rdτ · ξk,ρ

+
n∑

k=1

(−1)r (k + r − 1)!
(k − 1)!

· 1
2πi

∫

Γ
Kr,ρ

(

tj , τ
)

τ−k−rdτ · ξ−k,ρ = f
(

tj
)

,

j = 0, . . . , 2n,

(3.8)

where tj , (j = 0, . . . , 2n) are distinct points on Γ andAr(t) = Ãr(t)+ B̃r(t), Br(t) = Ãr(t)− B̃r(t).
We approximate the integrals in SLAE (3.8) by quadrature formula:

1
2πi

∫

Γ
g(τ)τl+kdτ ∼= 1

2πi

∫

Γ
Un

(

τl+1 · g(τ)
)

τk−1dτ, (3.9)

where k = 0, . . . , n, at l = 0, 1, 2, . . . and k = −1, . . . ,−n, for l = −1,−2, . . ., and Un is the
Lagrange interpolation operator defined by formula (2.3).
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Thus, we obtain the following SLAE from (3.8):

ν∑

r=0

Ar

(

tj
)

n∑

k=0

(k + ν)!
(k + ν − r)! t

k+ν−r
j ξk,ρ

+ Br
(

tj
)

n∑

k=1

(−1)r (k + r − 1)!
(k − 1)!

t−k−rj × ξ−k,ρ

+
n∑

k=0

(k + ν)!
(k + ν − r)!

2n∑

s=0

Kr,ρ

(

tj , ts
)

t1+k−rs Λ(s)
−k ξk,ρ

+
n∑

k=1

(−1)r (k + r − 1)!
(k − 1)!

2n∑

s=0

Kr,ρ

(

tj , ts
)

t−k−rs Λ(s)
k
ξ−k,ρ = f

(

tj
)

,

j = 0, . . . , 2n.

(3.10)

4. Auxiliary Results

We formulate one result from [21], establishing the equivalence (in sense of solvability)
of problem (3.1)–(3.3) and SIE. We use this result for proving Theorems 5.3 and 5.4. The
functions dν(Px)(t)/dtν and dν(Qx)(t)/dtν can be represented by integrals of Cauchy type
with the same density v(t):

dν(Px)(t)
dtν

=
1

2πi

∫

Γ

v(τ)
τ − tdτ, t ∈ F+,

dν(Qx)(t)
dtν

=
t−ν

2πi

∫

Γ

v(τ)
τ − tdτ, t ∈ F−.

(4.1)

Using the integral representation (4.1) we reduce the problem (3.1)–(3.3) to the equivalent
(in sense of solvability) of SIE

(Υv ≡)C(t)v(t) + D(t)
πi

∫

Γ

v(τ)
τ − tdτ

+
1

2πi

∫

Γ

h(t, τ)
|τ − t|γ v(τ)dτ = f(t), t ∈ Γ,

(4.2)
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for unknown v(t)where

C(t) =
1
2
[

Aν(t) + t−νBν(t)
]

, D(t) =
1
2
[

Aν(t) − t−νBν(t)
]

, (4.3)

h(t, τ) =
1
2
[

Kν(t, τ) +Kν(t, τ)τ−n
] − 1

2πi

∫

Γ

[

Kν(t, t1) −Kν(t, t1)t−n1
] dt1
t1 − τ

+
ν−1∑

j=0

[

Aj(t)M̃j(t, τ) +
∫

Γ
Kj(t, t1)M̃j(t1, τ)dt1

]

−
ν−1∑

j=0

[

Bj(t)Ñj(t, τ) +
∫

Γ
Kj(t, t1)Ñj(t1, τ)dt1

]

,

(4.4)

where M̃j(t, τ), Ñj(t, τ) j = 0, . . . , ν are Hölder functions. An obvious form for these functions
are given in [21]. By virtue of the properties of the functions M̃j(t, τ), Ñj(t, τ),Kj(t, τ),Aj(t),
Bj(t), j = 0, . . . , ν the function h(t, τ) is a continuous function in both variables.

Lemma 4.1. The SIE (4.2) and problem (3.1)–(3.3) are equivalent in the sense of solvability. That is,
for each solution v(t) of SIE (4.2) there is a solution of problem (3.1)–(3.3), determined by formulae

(Px)(t) =
(−1)ν

2πi(ν − 1)!

∫

Γ
v(τ)

[

(τ − t)ν−1 log
(

1 − t

τ

)

+
ν−1∑

k=1

α̃kτ
ν−k−1tk

]

dτ, (4.5)

(Qx)(t) =
(−1)ν

2πi(ν − 1)!

∫

Γ
v(τ)τ−ν

[

(τ − t)ν−1 log
(

1 − τ

t

)

+
ν−2∑

k=1

β̃kτ
ν−k−1tk

]

dτ, (4.6)

where (α̃k =
∑k−1

j=0 ((−1)jCj

ν−1/(k − j)), k = 1, . . . , ν − 1, β̃k =
∑ν−1

j=k+1((−1)jC
j

ν−1/(j − k)), k =

1, . . . , ν − 2 and Cj

ν−1 are the binomial coefficients). On the other hand, for each solution x(t) of the
problem (3.1)–(3.3) there is a solution v(t)

v(t) =
dν(Px)(t)

dtν
+ tν

dν(Qx)(t)
dtν

, (4.7)

to the SIE (4.2). Furthermore, for linearly independent solutions of (4.2), there are corresponding
linearly-independent solutions of the problem (3.1)–(3.3) from (4.6) and vice versa.

In formulas (4.6) by log(1 − t/τ) we understand the branch which vanishes as t = 0
and by log(1 − τ/t) the branch which vanishes as t = ∞.
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4.1. Estimates for Weakly Singular Integral Operators

Lemma 4.2. Let h(t, τ) ∈ C(Γ × Γ), and ψ(t) ∈ Lp(Γ), 1 < p < ∞. Then the function H(t) =
(1/2πi)

∫

Γ(h(t, τ)/|τ − t|γ)ψ(τ)dτ , satisfies the inequality

‖H‖p ≤ d1
∥
∥ψ
∥
∥
p,

1
p
+
1
q
= 1, ‖(·)‖p =

∣
∣
∣
∣

1
l

∫

Γ
|(·)(τ)|pdτ

∣
∣
∣
∣

1/p

. (4.8)

By d1, d2,. . ., we denote the constants.

The proof can be found in [22].

Lemma 4.3. Let the assumptions of Lemma 4.2 be satisfied; then ||χρ||p ≤ d2ρ
(1−γ)/q||ψ||p, where

χρ = (1/2πi)
∫

Γ[(h(t, τ)/|τ − t|γ) − hρ(t, τ)]ψ(τ)dτ , 1/p + 1/q = 1.

The proof of this lemma can be found in [22].

5. Convergence Theorems

Define
◦
W

(ν)

p as

◦
W

(ν)

p =
{

g ∈ Lp(Γ) : g(ν) ∈ Lp(Γ), 1
2πi

∫

Γ
g(τ)τ−k−1dτ = 0, k = 0, . . . , ν − 1

}

. (5.1)

The norm in
◦
W

(ν)

p is determined by the equality

∥
∥g
∥
∥
p,ν =

∥
∥
∥g(ν)

∥
∥
∥
Lp
. (5.2)

We denote by Lp,ν the image of the space Lp with respect to the map P + t−νQ equipped with
the norm of Lp. We formulate Lemmas 5.1 and 5.2 from [23]. We use these lemmas to prove
the convergence theorems.

Lemma 5.1. The differential operator Dν :
◦
W

(ν)

p → Lp,ν, (Dνg)(t) = g(ν)(t) is continuously

invertible and its inverse operator D−ν : Lp,ν →
◦
W

(ν)

p is determined by the equality

(

D−νg
)

(t) =
(

N+g
)

(t) +
(

N−g
)

(t),

(

N+g
)

(t) =
(−1)ν

2πi(ν − 1)!

∫

Γ

(

Pg
)

(τ)(τ − t)ν−1 log
(

1 − t

τ

)

dτ,

(

N−g
)

(t) =
(−1)ν−1

2πi(ν − 1)!

∫

Γ

(

Qg
)

(τ)(τ − t)ν−1 log
(

1 − τ

t

)

dτ.

(5.3)

From Lemma 5.1 Lemma 5.2 follows.
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Lemma 5.2. The operator B :
◦
W

(ν)

p → Lp, B = (P + tνQ)Dν is invertible and

B−1 = D−ν(P + t−νQ
)

. (5.4)

The proofs of Lemmas 5.1 and 5.2 can be found in [23].
The convergence of collocation method and mechanical quadrature method are given

in the following theorems.

Theorem 5.3. Let the following conditions be satisfied:

(1) Γ ∈ C(2, μ), 0 < μ < 1;

(2) the functions Ar(t) and Br(t) belong to the spaceHα(Γ), 0 < α < 1;

(3) Aν(t)Bν(t)/= 0, t ∈ Γ;

(4) the index of the function tνB−1
ν (t)Aν(t) is equal to zero;

(5) Kr(t, τ)(r = 0, . . . , ν) ∈ Hβ(Γ × Γ), 0 < β ≤ 1, function f(t) ∈ C(Γ);

(6) the operatorM :
◦
W

(ν)

p → Lp(Γ) is linear and invertible;

(7) the points tj(j = 0, . . . 2n) form a system of Fejér knots on Γ [24, 25]:

tj = ψ
[

exp
(

2πi
2n + 1

(

j − n)
)]

, j = 0, . . . , 2n, i2 = −1. (5.5)

Then, the SLAE (3.8) of collocation method has the unique solution ξk(k = −n, . . . , n), for numbers
n ≥ n1 that are large enough and for numbers ρ small enough. The ρ satisfies the following inequality:

ερ = d3ρ(1−γ)/q
∥
∥
∥M−1

∥
∥
∥
p
< q8 < 1. (5.6)

The approximate solutions xn,ρ(t), constructed by formula (3.6), converge when n → ∞ in the norm

of space
◦
W

(ν)

p to the exact solution x(t) of the problem (3.1)–(3.3) in sense of

lim
ρ→ 0

lim
n→∞
∥
∥x − xn,ρ

∥
∥
p,ν

= 0, (5.7)

and the following estimation for convergence holds:

∥
∥x − xn,ρ

∥
∥
p,ν

= O
(

ρ(1−γ)/q
)

+O
(

1
nα

)

+O
(

ω

(

f ;
1
n

))

+O
(

ωt

(

hρ;
1
n

))

def= δn,

(
1
p
+
1
q
= 1
)

.

(5.8)
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The ω(f ; 1/n) and ωt(h; 1/n) are modules of continuity, where

ω

(

f ;
1
n

)

= sup
|t′−t′′ |≤1/n

∣
∣f
(

t′
) − f(t′′)∣∣,

ωt

(

h;
1
n

)

= sup
|t′−t′′ |≤1/n

∣
∣h
(

t′; τ
) − h(t′′; τ)∣∣, t′, t′′ ∈ Γ.

(5.9)

Proof. Using the conditions of Theorem 5.3 we have that the operator M :
o

Wp,ν → Lp(Γ)
is invertible. We estimate the perturbation of M depending on ρ. Using Lemma 4.3 and the
relationMρ =M0 +Kρ we obtain

∥
∥M −Mρ

∥
∥ = O

(

ρ(1−γ)/q
)

. (5.10)

Let us show that the operator Mρ is invertible for sufficiently small values ρ such that the
inequality (5.6) is valid. Using the representation Mρ = M[I −M−1(M −Mρ)] and (5.10),
we obtain from Banach theorem that the inverse operator M−1

ρ = [I −M−1(M −Mρ)]
−1M−1

exists. The following inequalities hold:

∥
∥
∥M−1

ρ

∥
∥
∥ ≤
∥
∥M−1∥∥

1 − q ,
∥
∥
∥M−1 −M−1

ρ

∥
∥
∥ ≤ d11ρ(1−γ)/q

∥
∥
∥M−1

∥
∥
∥. (5.11)

The SLAE (3.8) of the collocation method for SIDE (3.1) for γ ∈ (0; 1) is equivalent to the
operator equation

UnMρUnxn,ρ ≡ UnM0Unxn,ρ

+Un

ν∑

r=0

{
1

2πi

∫

Γ
Kr,ρ(t, τ)x

(r)
n,ρ(τ)dτ

}

= Unf,
(5.12)

where Kr,ρ(t, τ), (r = 0, . . . , ν) is defined by formula (3.5). Using the integral presentation
(4.1), (5.12) is equivalent to the operator equation

UnΥρUnvn,ρ = Unf, (5.13)

where operator Υρ is defined in (4.2), substituting Υ by Υρ and (h(t, τ)/|τ − t|γ) by hρ(t, τ)
(where hρ(t, τ) is calculated by formula (3.5)). Equation (5.13) represents the collocation
method for SIE

Υρvρ = f, vρ(t) ∈ Lp(Γ). (5.14)
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We should show that if n(≥ n1) is large enough and ρ satisfies the relation (5.6) the operator

UnMρUn is invertible. The operator acts from the subspace
◦
Xn = {tν∑n

k=0 ξk,ρt
k+
∑−1

k=−n ξk,ρt
k}

(the norm as in
◦
W

(ν)

p ) to the subspace

Xn =
n∑

k=−n
rkt

k, t ∈ Γ. (5.15)

(the norm as in Lp(Γ).)
Using formulas (4.1) the dν(Pxn,ρ)(t)/dtν and dν(Qxn,ρ)(t)/dtν can be represented by

Cauchy-type integrals with the same density vn,ρ(t):

dν
(

Pxn,ρ
)

(t)
dtν

=
1

2πi

∫

Γ

vn,ρ(τ)
τ − t dτ, t ∈ F+,

dν
(

Qxn,ρ
)

(t)
dtν

=
t−ν

2πi

∫

Γ

vn,ρ(τ)
τ − t dτ, t ∈ F−.

(5.16)

Using the formulas

(Px)(r)(t) = P
(

x(r)
)

(t), (Qx)(r)(t) = Q
(

x(r)
)

(t), (5.17)

and relations (4.1)we obtain from (5.16)

vn,ρ(t) =
n∑

k=0

(k + ν)!
k!

tkξk,ρ + (−1)ν
n∑

k=1

(k + ν − 1)!
(k − 1)!

t−kξ−k,ρ. (5.18)

We obtain from previous relation that vn,ρ(t) ∈ Xn, t ∈ Γ.
The collocation method for SIE was considered in [19, 20, 26], where sufficient

conditions for solvability and convergence of this method were obtained. From (5.16),
Lemma 4.1, and vn,ρ(t) ∈ Xn we conclude that if function vn,ρ(t) is the solution of (5.13)
then the function xn,ρ(t) is the discrete solution for the system UnMUnxn,ρ = Unf and vice
versa. We can determine the function vn,ρ(t) from relations (4.6):

(

Pxn,ρ
)

(t) =
(−1)ν

2πi(ν − 1)!

∫

Γ
vn,ρ(τ)

[

(τ − t)ν−1 log
(

1 − t

τ

)

+
ν−1∑

k=1

α̃kτ
ν−k−1tk

]

dτ,

(

Qxn,ρ
)

(t) =
(−1)ν

2πi(ν − 1)!

∫

Γ
vn,ρ(τ)τ−ν

[

(τ − t)ν−1 log
(

1 − τ

t

)

+
ν−1∑

k=1

β̃kτ
ν−k−1tk

]

dτ.

(5.19)

From the conditions (3), (4), and (6) of Theorem 5.3 and Lemmas 5.1 and 5.2, the invertibility
of operator Υ : Lp(Γ) → Lp(Γ) follows. From Banach theorem and Lemma 4.3 for small
numbers ρ (ρ satisfies the relation (5.6)) we have that the operator Υρ : Lp(Γ) → Lp(Γ)
is invertible. We should show that for (5.13) all conditions of the Theorem 1 are satisfied
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from [19, 20]. Theorem 1 [20] gives the convergence of the collocation method for SIE in
spaces Lp(Γ). From condition 3 of Theorem 1 [20] and from (4.3)we obtain the condition 3 of
Theorem 5.3. From the equality

[C(t) −D(t)]−1[C(t) +D(t)] = tνB−1
ν Aq(t), (5.20)

we conclude that the index of the function [C(t)−D(t)]−1[C(t) +D(t)] is equal to zero, which
coincides with condition (4) of Theorem 5.3. Other conditions of Theorem 5.3 coincide with
conditions of Theorem 1 [20]. Conditions (1)–(6) in Theorem 5.3 provide the validity of all
conditions of Theorem 1 [20]. Therefore, beginning with numbers n ≥ n1 (5.13) is uniquely
solvable for numbers ρ small enough where ρ satisfies the relation (5.6). The approximate
solutions vn,ρ(t) of (5.13) converge to the exact solution of (4.2) in the norm of the space
Lp(Γ) as n → ∞. Therefore (5.12) and the SLAE (3.10) have the unique solutions for (n ≥ n1).
From Theorem 1 [20] the following estimation holds:

∥
∥vρ − vn,ρ

∥
∥
p
≤ O
(

1
nα

)

+O
(

ω

(

f ;
1
n

))

+O
(

ωt

(

h;
1
n

))

, (5.21)

where O(ωt(h; 1/n) and O(ω(f ; 1/n) are modulus of continuity. From (4.1) and (5.19) we
obtain

(

Pxρ
)(ν)(t) =

(

Pvρ
)

(t),
(

Qxρ
)(ν)(t) = t−ν

(

Qvρ
)

(t). (5.22)

Therefore we have

(

Pxn,ρ
)(ν)(t) =

(

Pvn,ρ
)

(t),
(

Qxn,ρ
)(ν)(t) = t−ν

(

Qvn,ρ
)

(t). (5.23)

We proceed to get an error estimate

∥
∥xρ − xn,ρ

∥
∥
p,ν

=
∥
∥
∥x

(ν)
ρ − x(ν)

n,ρ

∥
∥
∥
[Lp]

≤ ∥∥P(vρ − vn,ρ)
∥
∥
[Lp]

+
∥
∥t−νQ(vρ − vn,ρ)

∥
∥
[Lp]

≤ ‖P‖ · ∥∥vρ − vn,ρ
∥
∥
[Lp]

+
∥
∥t−ν
∥
∥‖Q‖ · ∥∥vρ − vn,ρ

∥
∥
[Lp]

≤ (‖P‖ + ∥∥t−ν∥∥‖Q‖)∥∥vρ − vn,ρ
∥
∥
[Lp]

.

(5.24)

Using the inequality

∥
∥t−ν
∥
∥
Lp

=
(
1
l

∫

Γ

∣
∣t−ν
∣
∣
p
dt

)1/p

=
(
1
l

∫

Γ

∣
∣t−νp
∣
∣dt

)1/p

≤
⎛

⎝
1
l

1
min
t∈Γ

|t|pν l
⎞

⎠

1/p

=

⎛

⎝
1

min
t∈Γ

|t|pν

⎞

⎠

1/p

= c1.

(5.25)
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From (5.21), (5.24), and (5.11), and from the inequality

∥
∥x − xn,ρ

∥
∥
p,ν

≤
∥
∥
∥M−1f −M−1

ρ

∥
∥
∥
p,ν

+
∥
∥xρ − xn,ρ

∥
∥
p,ν (5.26)

we obtain the relation (5.8). Thus Theorem 5.3 is proved.

Theorem 5.4. Let all conditions of Theorem 5.3 be satisfied. Then the SLAE (3.10) has a unique
solution ξk,ρ, k = −n, . . . , n for numbers n ≥ n2(≥ n1) large enough and for numbers ρ small enough
(ρ satisfies the relation (5.6)). The approximate solutions xn,ρ(t) converge when n → ∞ and ρ → 0

in the norm
◦
W

(ν)

p to the exact solution x(t) of the problem (3.1)–(3.3) and the following estimation
for the convergence is true:

∥
∥x − xn,ρ

∥
∥
p,ν

= δn +O
(

ωτ

(

h;
1
n

))

. (5.27)

Proof. It is easy to verify that SLAE (3.10) is equivalent to the operational equation

Un

{
ν∑

r=0

[

Ar(t)
(

Px
(r)
n,ρ

)

(t) + Br(t)
(

Qx
(r)
n,ρ

)

(t)

+
1

2πi

∫

Γ

1
τ
U

(τ)
n

[

τν+1−rKρ(t, τ)
](

Px
(r)
n,ρ

)

(τ)dτ

+
1

2πi

∫

Γ

1
τ
U

(τ)
n

[

τ−r−1Kρ(t, τ)
](

Qx
(r)
n,ρ

)

(τ)dτ
]}

= Unf,

(5.28)

which after the application of integral representation (5.19) is equivalent (in the same sense
of solvability) to the operator equation

Un

{

C(t)vn,ρ(t) +D(t)
(

Svn,ρ
)

(t) +
1

2πi

∫

Γ

1
τ
U

(τ)
n

[

τhρ(t, τ)
] · vn,ρ(τ)dτ

}

= Unf, (5.29)

where the functions C(t), D(t), and hρ(t, τ) are determined above. The equation (5.28)
represents an equation of the mechanical quadrature method for (5.14). It is easy to verify
(as in the proof of Theorem 5.3), that the conditions of Theorem 5.4 provide the validity of
all conditions of Theorem 2 from [19, 26] (for the mechanical quadrature method). It follows
that (5.29) is uniquely solvable for n ≥ n2 and ρ small enough. Moreover, the approximate
solutions vn,ρ(t) ∈ Xn of this equation converge to the exact solution vρ(t) of SIE (4.2) in the
norm Lp(Γ) as n → ∞ and the following estimation is true:

∥
∥vρ − vn,ρ

∥
∥
p
= O
(

1
nα

)

+O
(

ω

(

f ;
1
n

))

+O
(

ωτ

(

h;
1
n

))

+O
(

ωt

(

h;
1
n

))

. (5.30)

The function xn,ρ(t) can be expressed via the function vn,ρ(t) by formula (5.19). Using the
definition of the norm in the space Lp(Γ), and the relations (4.6), (5.30), and equality (5.26)
we obtain (5.27). Theorem 5.4 is proved.
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6. Conclusion

In this paper, we have proposed the numerical schemes of the collocation method and
mechanical quadrature method for solving of weakly SIDE. The equations are defined on an
arbitrary smooth closed contour. The convergence of these methods was proved in Lebesgue
spaces.
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