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Under the assumption of two coupled parallel subsuper solutions, the existence of at least six
solutions for a kind of second-order m-point differential equations system is obtained using the
fixed point index theory. As an application, an example to demonstrate our result is given.

1. Introduction

In this paper, we consider the following second-order m-point boundary value problems of
nonlinear equations system

−ϕ′′(t) = f1
(
ϕ(t)
)
+ f2
(
ψ(t)

)
, t ∈ [0, 1],

−ψ ′′(t) = g1
(
ψ(t)

)
+ g2
(
ϕ(t)
)
, t ∈ [0, 1],

ϕ′(0) = 0, ϕ(1) =
m−2∑

i=1

αiϕ(ξi),

ψ ′(0) = 0, ψ(1) =
m−2∑

i=1

αiψ(ξi),

(1.1)

where fi, gi : R
1 → R

1(i = 1, 2) are continuous and αi, ξi satisfying
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(H0)
∑m−2

i=1 αi ∈ (0, 1) with αi ∈ (0,+∞) for i = 1, 2, . . . , m − 2 and 0 < ξ1 < ξ2 < · · · <
ξm−2 < 1.

Multipoint boundary value problems arise in many applied sciences for example, the
vibrations of a guy wire composed of N parts with a uniform cross-section throughout, but
different densities in different parts can be set up as a multipoint boundary value problems
(see [1]). Many problems in the theory of elastic stability can be modelled by multipoint
boundary value problems (see [2]). The study of multipoint boundary value problems for
linear second-order ordinary differential equations was initiated by Il’in and Moiseev [3].
Subsequently, Gupta [4] studied certain three-point boundary value problems for nonlinear
second-order ordinary differential equations. Since then, the solvability of more general
nonlinear multipoint boundary value problems has been discussed by several authors using
various methods. We refer the readers to [5–12] and the references therein.

In the recent years, many authors have studied existence and multiplicity results for
solutions of multipoint boundary value problems via the well-ordered upper and lower
solutions method, see [8, 13, 14] and the references therein. However, only in very recent
years, some authors considered the multiplicity of solutions under conditions of non-well-
ordered upper and lower solutions. For some abstract results concerning conditions of non-
well-ordered upper and lower solutions, the readers are referred to recent works [15–18].

In [19], Xu et al. considered the following second-order three-point boundary value
problem

y′′(t) + f
(
t, y
)
= 0, t ∈ [0, 1],

y(0) = 0, y(1) − αy(η) = 0,
(1.2)

where 0 < η < 1, 0 < α < 1, f ∈ C([0, 1] × R
1,R1). He obtained the following result. First, let

us give the following condition (H0)
′ to be used later.

(H0)
′ There existsM > 0 such that

f(t, x2) − f(t, x1) ≥ −M(x2 − x1), t ∈ [0, 1], x2 ≥ x1. (1.3)

Let the function e be e = e(t) = t for t ∈ [0, 1].

Theorem 1.1. Suppose that (H0)
′ holds, u1 and u2 are two strict lower solutions of (1.2), v1 and v2

are two strict upper solutions of (1.2), and u1 < v1, u2 < v2, u2 � v1, u1 � v2. Moreover, assume

−ξ0e ≤ u2 − u1 ≤ ξ0e,
−ξ0e ≤ v2 − v1 ≤ ξ0e,

(1.4)

for some ξ0 > 0. Then, the three-point boundary value problem (1.2) has at least six solutions.



Journal of Applied Mathematics 3

We would also like to mention the result of Yang [20], in [20]. Yang studied the follow-
ing integral boundary value problem

−(au′)′ + bu = g(t)f(t, u),

(
cos γ0

)
u(0) − (sin γ0

)
u′(0) =

∫1

0
u(τ)dα(τ),

(
cos γ1

)
u(1) +

(
sin γ1

)
u′(1) =

∫1

0
u(τ)dβ(τ),

(1.5)

where γ0 ∈ [0, π/2] and γ1 ∈ [0, π/2],
∫1
0 u(τ)dα(τ) and

∫1
0 u(τ)dβ(τ) denote the Riemann-

Stieltjes integrals of u with respect to α and β, respectively. Some sufficient conditions for
the existence of either none, or one, or more positive solutions of the problem (1.5)were esta-
blished. Themain tool used in the proofs of existence results is a fixed point theorem in a cone,
due to Krasnoselskii and Zabreiko.

At the same time, we note that Webb and Lan [21] have considered the first eigenvalue
of the following linear problem

u′′(t) + λu(t) = 0, 0 < t < 1,

u(0) = 0, u(1) =
m−2∑

i=1

αiu
(
ηi
)
,

(1.6)

they also investigated the existence and multiplicity of positive solutions of several related
nonlinear multipoint boundary value problems. Furthermore, Ma and O’Regan [22] studied
the spectrum structure of the problem (1.6), and the authors obtained the concrete computa-
tional method and the corresponding properties of real eigenvalue of (1.6) by constructing an
auxiliary function. Their work is very fundamental to further study for multipoint boundary
value problems. By extending and improving the work in [22], Rynne [23] showed that the
associated Sturm-Liouville problem consisting of (1.6) has a strictly increasing sequence of
simple eigenvalues {λn}∞n=0 with eigenfunctions φn(t) = sin(

√
λnt).

Very recently, Kong et al. [24] were concerned with the general boundary value pro-
blem with a variable w

u′′(t) +w(t)f(u) = 0, t ∈ (a, b),

cosαu(a) − sinαu′(a) = 0, α ∈ [0, π), u(b) =
m−2∑

i=1

kiu
(
ηi
) (1.7)

By relating (1.7) to the eigenvalues of a linear Sturm-Liouville problemwith a two-point sepa-
rated boundary condition, the existence and nonexistence of nodal solutions of (1.7)were ob-
tained. We also point out that Webb [25]made the excellent remark on some existence results
of symmetric positive solutions obtained in some recent papers and the author also corrected
the values of the principle eigenvalue previously given in some examples.

In this paper, by means of two coupled parallel subsuper solutions, we obtain some
sufficient conditions for the existence of six solutions for (1.1) and our main tool is based on
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the fixed point index theory. At the end of this paper, we will give an example which illus-
trates that our work is true. Our method stems from the paper [18].

2. Preliminaries and a Lemma

In the section, we shall give some preliminaries and a lemmawhich are fundamental to prove
our main result.

Let E be an ordered Banach space in which the partial ordering ≤ is induced by a cone
P ⊂ E. A cone P is said to be normal if there exists a constantN > 0, such that θ ≤ x ≤ y im-
plies ‖x‖ ≤ N‖y‖, the smallest N is called the normal constant of P . P is called solid, if
intP /= ∅, that is, P has nonempty interior. Every cone P in E defines a partial ordering in E
given by x ≤ y if and only if y−x ∈ P . If x ≤ y and x /=y, we write x < y; if cone P is solid and
y −x ∈ intP , we write x � y. P is called total if E = P − P . Let B : E → E be a bounded linear
operator. B is said to be positive if B(P) ⊂ P . An operator A is strongly increasing, that is,
x < y implies Ax � Ay. If A is a linear operator, A is strongly increasing implying A is
strongly positive.

Let E be an ordered Banach space, P a total cone in E, the partial ordering ≤ induced
by P . B : E → E is a positive completely continuous linear operator. Let r(B) > 0 the spectral
radius of B, B∗ the conjugated operator of B, and P ∗ the conjugated cone of P . Since P ⊂ E is
a total cone (i.e., E = P − P), according to the famous Krein-Rutman theorem (see [26]), we
infer that if r(B)/= 0, then there exist ϕ ∈ P \ {θ} and g∗ ∈ P ∗ \ {θ}, such that

Bϕ = r(B)ϕ,

B∗g∗ = r(B)g∗.
(2.1)

Fixed ϕ ∈ P \ {θ}, g∗ ∈ P ∗ \ {θ} such that (2.1) holds. For δ > 0, let

P
(
g∗, δ

)
=
{
x ∈ P, g∗(x) ≥ δ‖x‖}, (2.2)

then P(g∗, δ) is also a cone in E. One can refer [26–28] for definition and properties about the
cones.

Definition 2.1 (see [29]). Let B be a positive linear operator. The operator B is said to satisfy
condition H, if there exist ϕ ∈ P \ {θ}, g∗ ∈ P ∗ \ {θ}, and δ > 0 such that (2.1) holds, and B
maps P into P(g∗, δ).

Lemma 2.2 (see [10]). Suppose that d = 1 −∑m−2
i=1 αi /= 0. Then, the BVP

−u′′(t) = 0, t ∈ (0, 1),

u′(0) = 0, u(1) =
m−2∑

i=1

αiu(ξi),
(2.3)
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has Green’s function

G(t, s) = G̃(t, s) +
∑m−2

i=1 αiG̃(ξi, s)

1 −∑m−2
i=1 αi

, (2.4)

where

G̃(t, s) =

⎧
⎨

⎩

1 − t, 0 ≤ s ≤ t ≤ 1,

1 − s, 0 ≤ t ≤ s ≤ 1.
(2.5)

For convenience, we list the following hypotheses which will be used in our main
result.

(H1) fi, gi(i = 1, 2) are strictly increasing;

(H2) there exist constants k > 0, l > 0 and D > 0 such that

(i) |f1(±k) ± l| < N−1k,

(ii) |g1(±k) ±D| < N−1k,
(iii) |f2(±k)| ≤ l, and
(iv) |g2(±k)| ≤ D, whereN = maxt∈[0,1]

∫1
0 G(t, s)ds;

(H3) there exist constants 0 < c1 < k, −k < c2 < 0, 0 < c3 < k, −k < c4 < 0, such that, for
all t ∈ [0, 1], we have

(i) c1 <
∫1
0 G(t, s)f1(c1)ds −Nl,

(ii) c2 >
∫1
0 G(t, s)g1(c2)ds +ND,

(iii) c3 <
∫1
0 G(t, s)g1(c3)ds −ND, and

(iv) c4 >
∫1
0 G(t, s)f1(c4)ds +Nl;

(H4)

(i) lim|ϕ|→+∞(f1(ϕ) + f2(ψ))/ϕ ≥ 2λ1 uniformly for ψ ∈ R,
(ii) lim|Ψ|→+∞(g1(ψ) + g2(ϕ))/ψ ≥ 2λ1 uniformly for ϕ ∈ R, where λ1 is the first

eigenvalue of the following boundary value problem:

−u′′(t) = λu, t ∈ (0, 1),

u′(0) = 0, u(1) =
m−2∑

i=1

αiu(ξi).
(2.6)

It is well known that λ1 = r−1(H), where linear operatorH : C[0, 1] → C[0, 1] is defin-
ed as Hu(t) =

∫1
0 G(t, s)u(s)ds.
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3. Main Results

Theorem 3.1. Assume (H0), (H1)–(H4) hold, then BVP (1.1) has at least six distinct continuous
solutions.

Proof. It is easy to check that BVP (1.1) is equivalent to the following integral equation sys-
tems:

ϕ(t) =
∫1

0
G(t, s)

[
f1
(
ϕ(s)

)
+ f2
(
ψ(s)

)]
ds,

ψ(t) =
∫1

0
G(t, s)

[
g1
(
ψ(s)

)
+ g2
(
ϕ(s)

)]
ds,

(3.1)

where G(t, s) is defined as in Lemma 2.2. By (H0), we know that G(t, s) ≥ 0, for all t, s ∈
[0, 1].

Let E = C[0, 1] × C[0, 1], define the norm in E as ‖(ϕ, ψ)‖ = ‖ϕ‖ + ‖ψ‖. Then, E is a
Banach space with this norm. Let P = {(ϕ, ψ) ∈ E | ϕ(t) ≥ 0, ψ(t) ≥ 0, for all t ∈ [0, 1]}, Q =
{ϕ ∈ C[0, 1] | ϕ(t) ≥ 0, for all t ∈ [0, 1]}. Then, P = Q × Q is a normal and solid cone. Set
T : E → E, such that

T
(
ϕ, ψ
)
=

(∫1

0
G(t, s)

[
f1
(
ϕ(s)

)
+ f2
(
ψ(s)

)]
ds,

∫1

0
G(t, s)

[
g1
(
ψ(s)

)
+ g2
(
ϕ(s)

)]
ds

)

, (3.2)

it is clear that the solutions of (1.1) are equivalent to the fixed points of T .
Set 0 < ξ1 ≤ λ1, let

f
(
ϕ, ψ
)
=

(
f1
(
ϕ
)
+ f2
(
ψ
)
, g1
(
ψ
)
+ g2
(
ϕ
))

λ1 + ξ1
,

K
(
ϕ, ψ
)
=
(
(λ1 + ξ1)Hϕ, (λ1 + ξ1)Hψ

)
=
(
H1ϕ,H1ψ

)
,

(3.3)

whereH1 = (λ1 + ξ1)H, then T = Kf . It is easy to see thatH is a strongly positive completely
continuous operator, and it follows from G(t, s) ≥ 0 and the continuity of G(t, s) that K is
a strongly positive completely continuous operator. Since fi, gi : R1 → R1(i = 1, 2) are
strictly increasing continuous functions, we know that f is a strictly increasing continuous
bounded operator. By T = Kf , we can prove that T is completely continuous. We infer from
the increasing properties of K and f that T is increasing.

Let ϕ1 ≡ c1, ψ1 ≡ −k, ϕ2 ≡ k, ψ2 ≡ c2, ϕ3 ≡ −k, ψ3 ≡ c3, ϕ4 ≡ c4, ψ4 ≡ k, then
(ϕi, ψi)(i = 1, 2, 3, 4) satisfy

(
ϕ1, ψ1

)
<
(
ϕ2, ψ2

)
,

(
ϕ3, ψ3

)
<
(
ϕ4, ψ4

)
,

(
ϕ1, ψ1

)
�
(
ϕ4, ψ4

)
,

(
ϕ3, ψ3

)
�
(
ϕ2, ψ2

)
.

(3.4)
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By (H2)(iii) and (H3)(i), we have

∫1

0
G(t, s)

[
f1
(
ϕ1
)
+ f2
(
ψ1
)]
ds ≥

∫1

0
G(t, s)f1(c1)ds −Nl > c1 = ϕ1. (3.5)

It follows from (H2)(ii),(iv), and the increasing property of g2 that

∫1

0
G(t, s)

[
g1
(
ψ1
)
+ g2
(
ϕ1
)]
ds > (−k)N−1

∫1

0
G(t, s)ds ≥ (−k)N−1N = −k = ψ1. (3.6)

Equations (3.2), (3.5), and (3.6) imply that

(
ϕ1, ψ1

)
< T
(
ϕ1, ψ1

)
. (3.7)

Similarly, by (H1)–(H3), we obtain

T
(
ϕ2, ψ2

)
<
(
ϕ2, ψ2

)
,

(
ϕ3, ψ3

)
< T
(
ϕ3, ψ3

)
, T

(
ϕ4, ψ4

)
<
(
ϕ4, ψ4

)
. (3.8)

By [20, Lemma 3], we get that H1 satisfies condition H. Therefore, there exist j∗0 ∈
Q∗ \ {θ}, δ > 0, such that

H∗
1 j

∗
0 = r(H1)j∗0 , (3.9)

j∗0
(
H1ϕ

) ≥ δ∥∥H1ϕ
∥∥, ∀ϕ ∈ Q. (3.10)

By the definition of spectral radius of completely continuous operator, we have r(K) = r(H1),
and combining (3.9), we infer that

H∗
1j

∗
0 = r(K)j∗0 . (3.11)

Let j∗((ϕ, ψ)) = j∗0(ϕ) + j
∗
0(ψ), for all (ϕ, ψ) ∈ E, then j∗ ∈ P ∗ \ {θ}. According to the proof in

[18], we can get that K satisfies condition H.
By condition (H4), we obtain that there exists C > 0, such that

f1
(
ϕ
)
+ f2
(
ψ
) ≥ (λ1 + ξ1)ϕ, ϕ ≥ C, ψ ∈ R, (3.12)

f1
(
ϕ
)
+ f2
(
ψ
) ≤ (λ1 + ξ1)ϕ, ϕ ≤ −C, ψ ∈ R, (3.13)

g1
(
ψ
)
+ g2
(
ϕ
) ≥ (λ1 + ξ1)ψ, ψ ≥ C, ϕ ∈ R, (3.14)

g1
(
ψ
)
+ g2
(
ϕ
) ≤ (λ1 + ξ1)ψ, ψ ≤ −C, ϕ ∈ R. (3.15)

Equations (3.12)–(3.15) imply

(
f1
(
ϕ
)
+ f2
(
ψ
)
, g1
(
ψ
)
+ g2
(
ϕ
)) ≥ (λ1 + ξ1)

(
ϕ, ψ
)
, ∀ ϕ, ψ ≥ C, (3.16)

(
f1
(
ϕ
)
+ f2
(
ψ
)
, g1
(
ψ
)
+ g2
(
ϕ
)) ≤ (λ1 + ξ1)

(
ϕ, ψ
)
, ∀ϕ, ψ ≤ −C. (3.17)
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Since f1(ϕ), g1(ψ) are continuous in [−(c1+k), C], so they are bounded, then there exists h > 0
such that

f1
(
ϕ
) ≥ −h, g1

(
ψ
) ≥ −h, −∥∥(ϕ1, ψ1

)∥∥ = −(c1 + k) ≤ ϕ, ψ ≤ C. (3.18)

By virtue of (3.18) and the increasing properties of f2 and g2, one shows

(
f1
(
ϕ
)
+ f2
(
ψ
)
, g1
(
ψ
)
+ g2
(
ϕ
))

≥ (−h − ∣∣f2
(−∥∥(ϕ1, ψ1

)∥∥)
∣
∣,−h − ∣∣g2

(−∥∥(ϕ1, ψ1
)∥∥)
∣
∣), −∥∥(ϕ1, ψ1

)∥∥ ≤ ϕ, ψ ≤ C.
(3.19)

In addition, if ϕ, ψ satisfy ϕ ≥ C, −‖(ϕ1, ψ1)‖ ≤ ψ ≤ C, then it follows from (3.12),
(3.18), and the increasing property of g2 that

(
f1
(
ϕ
)
+ f2
(
ψ
)
, g1
(
ψ
)
+ g2
(
ϕ
))

≥ ((λ1 + ξ1)ϕ,−h + g2
(−∥∥(ϕ1, ψ1

)∥∥))

≥(λ1 + ξ1)
(
ϕ, ψ
)−((λ1 + ξ1)C + h +

∣∣g2
(−∥∥(ϕ1, ψ1

)∥∥)∣∣, (λ1 + ξ1)C+ h +
∣∣g2
(−∥∥(ϕ1, ψ1

)∥∥)∣∣)

= (λ1 + ξ1)
(
ϕ, ψ
) − (d1, d1),

(3.20)

where

d1 = (λ1 + ξ1)C + h +
∣∣g2
(−∥∥(ϕ1, ψ1

)∥∥)∣∣. (3.21)

Similarly, if ϕ, ψ satisfy ψ ≥ C, −‖(ϕ1, ψ1)‖ ≤ ϕ ≤ C, then combining the increasing property
of f2 with (3.14) and (3.18), we know that

(
f1
(
ϕ
)
+ f2
(
ψ
)
, g1
(
ψ
)
+ g2
(
ϕ
)) ≥ (λ1 + ξ1)

(
ϕ, ψ
) − (d2, d2), (3.22)

where d2 = (λ1 + ξ1)C + h + |f2(−‖(ϕ1, ψ1)‖)|. Let d = max{d1, d2}. By (3.21) and (3.22), we get
that if ϕ ≥ C, −‖(ϕ1, ψ1)‖ ≤ ψ ≤ C or ψ ≥ C, −‖(ϕ1, ψ1)‖ ≤ ϕ ≤ C, it is obvious that

(
f1
(
ϕ
)
+ f2
(
ψ
)
, g1
(
ψ
)
+ g2
(
ϕ
)) ≥ (λ1 + ξ1)

(
ϕ, ψ
) − (d, d). (3.23)

It follows from (3.16), (3.19), and (3.23) that

(
f1
(
ϕ
)
+ f2
(
ψ
)
, g1
(
ψ
)
+ g2
(
ϕ
)) ≥ (λ1 + ξ1)

(
ϕ, ψ
) − (d, d), ϕ, ψ ≥ −∥∥(ϕ1, ψ1

)∥∥. (3.24)

In a similar way, from (3.12) and (3.14), we can show that there exists e > 0 such that

(
f1
(
ϕ
)
+ f2
(
ψ
)
, g1
(
ψ
)
+ g2
(
ϕ
)) ≥ (λ1 + ξ1)

(
ϕ, ψ
) − (e, e), ϕ, ψ ≥ −∥∥(ϕ3, ψ3

)∥∥. (3.25)
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Let a = max{d, e}. It follows from (3.24) and (3.25) that if ϕ, ψ ≥ −‖(ϕ1, ψ1)‖ or ϕ, ψ ≥
−‖(ϕ3, ψ3)‖, then

(
f1
(
ϕ
)
+ f2
(
ψ
)
, g1
(
ψ
)
+ g2
(
ϕ
)) ≥ (λ1 + ξ1)

(
ϕ, ψ
) − (a, a). (3.26)

In a similar way, from (3.13) and (3.15), we can prove that there exists constant ã such that if
ϕ, ψ ≤ ‖(ϕ2, ψ2)‖ or ϕ, ψ ≤ ‖(ϕ4, ψ4)‖, then

(
f1
(
ϕ
)
+ f2
(
ψ
)
, g1
(
ψ
)
+ g2
(
ϕ
)) ≤ (λ1 + ξ1)

(
ϕ, ψ
) − (ã, ã). (3.27)

Let P((ϕ1, ψ1)) = {(u, v) ∈ E | (u, v) ≥ (ϕ1, ψ1)}, P((ϕ3, ψ3)) = {(u, v) ∈ E | (u, v) ≥ (ϕ3, ψ3)},
P((ϕ2, ψ2)) = {(u, v) ∈ E | (u, v) ≤ (ϕ2, ψ2)}, P((ϕ4, ψ4)) = {(u, v) ∈ E | (u, v) ≤ (ϕ4, ψ4)},
for all (ϕ, ψ) ∈ P((ϕ1, ψ1)) ∪ P((ϕ3, ψ3)), then ϕ(t), ψ(t) ≥ −‖(ϕ1, ψ1)‖ or ϕ(t), ψ(t) ≥
−‖(ϕ3, ψ3)‖, for all t ∈ [0, 1]; therefore, in virtue of expression of B, f , and (3.26), we have

Kf
(
ϕ(t), ψ(t)

)

≥ K(ϕ(t), ψ(t)) − (λ1 + ξ1)a
(λ1 + ξ1)

(∫1

0
G(t, s)ds,

∫1

0
G(t, s)ds

)

=
(
r−1(K) + ε

)
K
(
ϕ(t), ψ(t)

) − (u1(t), v1(t)),

(3.28)

where ε = 1 − r−1(K), (u1(t), v1(t)) = a(
∫1
0 G(t, s)ds,

∫1
0 G(t, s)ds). Since 0 < ξ1 ≤ λ1, one can

show

0 < ε = 1 − λ1
λ1 + ξ1

=
ξ1

λ1 + ξ1
≤ λ1
λ1 + ξ1

= r−1(K). (3.29)

This implies that there exist (u1, v1) ∈ E and 0 < ξ2 ≤ r−1(K) such that

Kf
(
ϕ, ψ
) ≥
(
r−1(K) + ξ2

)
K
(
ϕ, ψ
) − (u1, v1), ∀(ϕ, ψ) ∈ P((ϕ1, ψ1

)) ∪ P((ϕ3, ψ3
))
. (3.30)

Similarly, we get by (3.27) that there exist (u2, v2) ∈ E and 0 < ξ3 ≤ r−1(K) such that

Kf
(
ϕ, ψ
) ≤
(
r−1(K) + ξ3

)
K
(
ϕ, ψ
) − (u2, v2), ∀(ϕ, ψ) ∈ P((ϕ2, ψ2

)) ∪ P((ϕ4, ψ4
))
. (3.31)

We get by (3.7) that

T : P
((
ϕ1, ψ1

)) −→ P
((
ϕ1, ψ1

))
. (3.32)
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Let E1 = {(u, v) ∈ E | (ϕ1, ψ1) ≤ (u, v) ≤ (ϕ2, ψ2)}. Since P is normal, then E1 is bounded (see
[28]). ChooseM1 > 0 such that

M1 > max

{
1
ξ2δ

(
ξ2δ
∥∥(ϕ1, ψ1

)∥∥ + ξ2δ
∥∥T
(
ϕ1, ψ1

)∥∥ + r−1(K)g∗((u1, v1)) − ξ2g∗(T
(
ϕ1, ψ1

)))
,

sup
(u,v)∈E1

‖(u, v)‖ + ∥∥(ϕ1, ψ1
)∥∥
}

.

(3.33)

Let Ω1 = {(u, v) ∈ P((ϕ1, ψ1)) | ‖(u, v) − (ϕ1, ψ1)‖ < M1, (u, v)/≥(ϕ3, ψ3)}, then E1 ⊂ Ω1 and Ω1

is a bounded open set. By the proof of Theorem 2.1 in [18], we can show that

(u, v) − T(u, v)/=λK(u, v), ∀λ ≥ 0, (u, v) ∈ ∂Ω1, (3.34)

where (u, v) satisfies K(u, v) = r(K)(u, v).
Equation (3.34) implies that T has no fixed point on ∂Ω1. It is easy to prove that

P((ϕ1, ψ1)) is a retract of E, which together with (3.32) implies that the fixed point index
i(T,Ω1, P((ϕ1, ψ1))) over Ω1 with respect to P((ϕ1, ψ1)) is well defined, and a standard proof
yields

i
(
T + sK(u, v),Ω1, P

((
ϕ1, ψ1

)))
= 0. (3.35)

Set H(t, (u, v)) = (1 − t)T(u, v) + t(T(u, v) + sK(u, v)), (t, (u, v)) ∈ [0, 1] × Ω1, then for any
(u, v) ∈ Ω1, t ∈ [0, 1], we have H(t, (u, v)) ∈ P((ϕ1, ψ1)). It follows from (3.34) that
H(t, (u, v))/= (u, v), for all (t, (u, v)) ∈ [0, 1] × ∂Ω1, and by (3.35) and the homotopy invari-
ance of the fixed point index, we get

i
(
T,Ω1, P

((
ϕ1, ψ1

)))
= i
(
T + sK(u, v),Ω1, P

((
ϕ1, ψ1

)))
= 0. (3.36)

Let W1 = {(u, v) ∈ P((ϕ1, ψ1)) | (u, v) � (ϕ2, ψ2)}. By means of usual method (see [30]), we
get that

i
(
T,W1, P

((
ϕ1, ψ1

)))
= 1. (3.37)

It is evident thatA has no fixed point on ∂W1, by (3.36), (3.37), and the additivity of the fixed
point index, we have

i
(
T,Ω1 \W1, P

((
ϕ1, ψ1

)))
= i
(
T,Ω1, P

((
ϕ1, ψ1

))) − i(T,W1, P
((
ϕ1, ψ1

)))
= 0 − 1 = −1.

(3.38)
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Set E2 = {(u, v) ∈ E | (ϕ3, ψ3) ≤ (u, v) ≤ (ϕ4, ψ4)}, and chooseM2 > 0 such that

M2 > max

{
1
ξ2δ

(
ξ2δ
∥
∥(ϕ3, ψ3

)∥∥ + ξ2δ
∥
∥T
(
ϕ3, ψ3

)∥∥ + r−1(K)g∗((u1, v1)) − ξ2g∗(T
(
ϕ3, ψ3

)))
,

sup
(u,v)∈E2

‖(u, v)‖ + ∥∥(ϕ3, ψ3
)∥∥
}

.

(3.39)

Let

Ω2 =
{
(u, v) ∈ P((ϕ3, ψ3

)) | ∥∥(u, v) − (ϕ3, ψ3
)∥∥ < M2, (u, v)/≥

(
ϕ1, ψ1

)}
,

W2 =
{
(u, v) ∈ P((ϕ3, ψ3

)) | (u, v) � (ϕ4, ψ4
)}
.

(3.40)

Similarly to the proof of (3.37) and (3.38), we get that

i
(
T,W2, P

((
ϕ3, ψ3

)))
= 1,

i
(
T,Ω2 \W2, P

((
ϕ3, ψ3

)))
= −1.

(3.41)

ChooseM3,M4 > 0 such that

M3 > max

{
1
ξ3δ

(
ξ3δ
∥∥(ϕ2, ψ2

)∥∥ + ξ3δ
∥∥T
(
ϕ2, ψ2

)∥∥ + r−1(K)g∗((u2, v2)) − ξ3g∗(T
(
ϕ2, ψ2

)))

sup
(u,v)∈E1

‖(u, v)‖ + ∥∥(ϕ2, ψ2
)∥∥
}

,

M4 > max

{
1
ξ3δ

(
ξ3δ
∥∥(ϕ4, ψ4

)∥∥ + ξ3δ
∥∥T
(
ϕ4, ψ4

)∥∥ + r−1(K)g∗((u2, v2)) − ξ3g∗(T
(
ϕ4, ψ4

)))
,

sup
(u,v)∈E2

‖(u, v)‖ + ∥∥(ϕ4, ψ4
)∥∥
}

.

(3.42)

Set

Ω3 =
{
(u, v) ∈ P((ϕ2, ψ2

)) | ∥∥(u, v) − (ϕ2, ψ2
)∥∥ < M3, (u, v) �

(
ϕ4, ψ4

)}
,

Ω4 =
{
(u, v) ∈ P((ϕ4, ψ4

)) | ∥∥(u, v) − (ϕ4, ψ4
)∥∥ < M4, (u, v) �

(
ϕ2, ψ2

)}
,

W3 =
{
(u, v) ∈ P((ϕ2, ψ2

)) | (ϕ1, ψ1
)� (u, v)

}
,

W4 =
{
(u, v) ∈ P((ϕ4, ψ4

)) | (ϕ2, ψ2
)� (u, v)

}
.

(3.43)
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By virtue of (3.31) and the same method as that for (3.34), we have

(u, v) − T(u, v)/= − μK(u, v), ∀μ ≥ 0, (u, v) ∈ ∂Ω3 ∪ ∂Ω4. (3.44)

By (3.44), similarly to the proof of (3.38), we can prove that

i
(
T,Ω3 \W3, P

((
ϕ2, ψ2

)))
= i
(
T,Ω4 \W4, P

((
ϕ4, ψ4

)))
= −1. (3.45)

Equations (3.37)–(3.41), (3.45) imply that T has at least six distinct fixed points, that is, the
system of differential equations (1.1) has at least six solution in C[0, 1] × C[0, 1].

4. An Example

In this section, we present a simple example to explain our results.
Consider the following second-order three-point BVP for nonlinear equations system:

−ϕ′′(t) = f1
(
ϕ(t)
)
+ f2
(
ψ(t)

)
, t ∈ [0, 1],

−ψ ′′(t) = g1
(
ψ(t)

)
+ g2
(
ϕ(t)
)
, t ∈ [0, 1],

ϕ′(0) = 0, ϕ(1) =
1
2
ϕ

(
1
4

)
,

ψ ′(0) = 0, ψ(1) =
1
2
ψ

(
1
4

)
,

(4.1)

where f1(ϕ) = (ϕ3/30000) + 5ϕ1/3, g1(ψ) = (ψ3/30000) + 4ψ1/5, f2(ψ) = (1/6) · 5
√
100 +

1/12 arctan 6ψ, g2(ϕ) = (1/16) · 3
√
100 + (1/30) arctan 7ϕ, α1 = 1/2, ξ1 = 1/4, N = maxt∈[0,1]∫1

0 G(t, s)ds = 31/32, fi, gi : R
1 → R

1 are strictly increasing continuous functions, and condi-
tion (H1) is satisfied. Choose k = 100, l = 5/12 + π/24, D = 5/16 + π/60. Some direct calcu-
lations show

∣∣f1(±100) ± l
∣∣ ≤ 106

3 · 104 + 5 · 3
√
100 +

5
12

+
π

24

<
32
31

· 100 =N−1k,

∣∣g1(±100) ±D
∣∣ ≤ 100

3
+ 4 · 5

√
100 +

5
16

+
π

60

< 34 + 4 · 5
2
<

32
31

· 100 =N−1k,

∣∣f2(±100)
∣∣ ≤ 1

6
· 5
√
100 +

1
12

arctan 6 · 100
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<
1
6
· 5
2
+

1
12

· π
2

=
5
12

+
π

24
= l,

∣
∣g2(±100)

∣
∣ ≤ 1

16
· 3
√
100 +

1
30

arctan 7 · 100

<
1
16

· 5 + 1
30

· π
2

=
5
16

+
π

60
= D, (4.2)

Therefore, condition (H2) is satisfied.
Choosing c1 = 1/8, c2 = −1, c3 = 1/4, c4 = −1, it is easy to check that

∫1

0
G(t, s)f1(c1)ds −Nl ≥ 15

32

(
1

83 · 3 · 104 +
5
2

)
− 31
32

(
5
12

+
π

24

)

≥ 15
32

· 5
2
−
(

5
12

+
1
6

)
=

75
64

− 7
12

>
1
8
= c1,

∫1

0
G(t, s) g1(c2)ds +ND ≤ 15

32

( −1
3 · 104 − 4

)
+
31
32

(
5
16

+
π

60

)

≤ 15
32

· (−4) + 6
16

= −3
2
< −1 = c2,

∫1

0
G(t, s)g1(c3)ds −ND ≥ 15

32

[
1

43 · 3 · 104 + 4
(
1
4

)1/5
]

− 31
32

(
5
16

+
π

60

)

≥ 15
32

· 4 5

√
1
4
− 3
8
≥ 15

32
· 4 · 3

4
− 3
8

=
23
32

>
1
4
= c3,

∫1

0
G(t, s)f1(c4)ds +Nl ≤ 15

32

( −1
3 · 104 − 5

)
+
31
32

(
5
12

+
π

24

)

≤ 15
32

(−5) + 7
12

=
−75
32

+
7
12

< −1 = c4.

(4.3)

Therefore, condition (H3) is satisfied. At last, we will check condition (H4), by the method of
[9, 31], and we consider the linear eigenvalue problem

u′′ + λu = 0, 0 < t < 1,

u′(0) = 0, u(1) =
1
2
u

(
1
4

)
.

(4.4)

Let Γ(s) = cos s−(1/2) cos(s/4). By the paper [31], we know that the sequence of positive eig-
envalue of (4.4) is exactly given by λn = s2n, n = 1, 2, . . ., where sn is the sequence of positive
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solutions of Γ(s) = 0. In [31], Han obtained that s1 = 1.0675, moreover λ1 = s21 = 1.1396. It is
easy to know that

lim
|x|→∞

f1(x) + f2
(
y
)

x
= lim

|x|→∞

(
x3/30000

)
+ 5x1/3 + (1/6) · 5

√
100 + (1/12) arctan 6y

x

= +∞ ≥ 2 · 1.1396 = 2λ1,

(4.5)

uniformly for y ∈ R,

lim
|y|→∞

g1
(
y
)
+ g2(x)
y

= lim
|y|→∞

(
y3/30000

)
+ 4y1/5 + (1/16) · 3

√
100 + (1/30) arctan 7x

y

= +∞ ≥ 2 · 1.1396 = 2λ1,

(4.6)

uniformly for x ∈ R. Therefore, condition (H4) is also satisfied. Consequently, all conditions
of Theorem 3.1 are satisfied, and we get the system of differential equations (4.1) has at least
six solutions in C[0, 1] × C[0, 1].
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