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An asymptotically periodic predator-prey model with time delay is investigated. Some sufficient
conditions for the uniformly strong persistence of the system are obtained. Our result is an
important complementarity to the earlier results.

1. Introduction

The dynamical behavior including boundedness, stability, permanence, and existence of
periodic solutions of predator-prey systems has attracted a great deal of attention and many
excellent results have already been derived. For example, Gyllenberg et al. [1] studied limit
cycles of a competitor-competitor-mutualist Lotka-Volterra model. Mukherjee [2] made a
discussion on the uniform persistence in a generalized prey-predator system with parasitic
infection. Aggelis et al. [3] considered the coexistence of both prey and predator populations
of a prey-predator model. Agiza et al. [4] investigated the chaotic phenomena of a discrete
prey-predator model with Holling type II. Sen et al. [5] analyzed the bifurcation behavior
of a ratio-dependent prey-predator model with the Allee effect. Zhang and Luo [6] gave
a theoretical study on the existence of multiple positive periodic solutions for a delayed
predator-prey system with stage structure for the predator. Nindjin and Aziz-Alaoui [7]
focused on the persistence and global stability in a delayed Leslie-Gower-type three species
food chain. Ko and Ryu [8] discussed the coexistence states of a nonlinear Lotka-Volterra-
type predator-prey model with cross-diffusion. Fazly and Hesaaraki [9] dealt with periodic
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solutions of a predator-prey systemwithmonotone functional responses. One can see [10–19]
and so forth for more related studies. However, the research work on asymptotically periodic
predator-prey model is very few at present.

The so-called asymptotically periodic function is that a function a(t) can be expressed
by the form a(t) = a(t)+ã(t), where a(t) is a periodic function and ã(t) satisfies limt→+∞ã(t) =
0.

In 2006, Kar and Batabyal [20] investigated the stability and bifurcation of the
following predator-prey model with time delay

dx

dt
= x

[

r − r

K
x − α1y

a1 + x
− α2z

a2 + x

]

,

dy
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= y

[
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[
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− δz

]

,

(1.1)

with initial conditions x(0) ≥ 0, y(0) ≥ 0, z(0) ≥ 0, where z(t) denotes the densities of prey;
y(t) and z(t) denote the densities of two predators, respectively, at time t; γ and δ denote
the intraspecific competition coefficients of the predators; β1 and β2 denote the conversion
of biomass constant; d1 and d2 are the death rate of first and second predator species,
respectively; α1 is the maximum values of per capita reduction rate of x due to y and α2

is the maximum values of per capita reduction rate of x due to z; a1 and a2 are half saturation
constants. τ is time delay in the prey species. All the parameters are positive constants. For
details, one can see [20].

It will be pointed out that all biological and environment parameters in model (1.1) are
constants in time. However, any biological or environmental parameters are naturally subject
to fluctuation in time. Thus the effects of a periodically varying environment are important
for evolutionary theory as the selective forces on systems in a fluctuating environment
differ from those in a stable environment. Therefore, the assumptions of periodicity of the
parameters are a way of incorporating the periodicity the environment (such as seasonal
effects of weather, food supplies, and mating habits). Inspired by above considerations and
considering the asymptotically periodic function, in this paper, we will modify system (1.1)
as follows:
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a1(t) + ã1(t) + x
− (α2(t) + α̃2(t))z
a2(t) + ã2(t) + x
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(1.2)

with initial conditions x(0) ≥ 0, y(0) ≥ 0, z(0) ≥ 0.
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The principle object of this paper is to explore the uniformly strong persistence of
system (1.2). There are very few papers which deal with this topic, see [10, 21].

In order to obtain our results, we always assume that system (1.2) satisfies (H1) αi(t),
βi(t), ai(t), di(t)(i = 1, 2), r(t), γ(t), δ(t), K(t) are continuous, nonnegative periodic
functions; α̃i(t), ˜βi(t), ãi(t), ˜di(t)(i = 1, 2), ˜R(t), γ̃(t), ˜δ(t), ˜K(t) are continuous, nonnegative
asymptotically items of asymptotically periodic functions.

2. Uniformly Strong Persistence

In this section, we will present some result about the uniformly strong persistence of system
(1.2). For convenience and simplicity in the following discussion, we introduce the notations,
definition, and Lemmas. Let

0 < fl = lim
t→+∞

inf f(t) ≤ lim
t→+∞

sup f(t) = fu < +∞. (2.1)

In view of the definitions of lower limit and upper limit, it follows that for any ε > 0, there
exists T > 0 such that

fl − ε ≤ f(t) ≤ fu + ε, for t ≥ T. (2.2)

Definition 2.1. The system (1.2) is said to be strong persistence, if every solution x(t) of system
(1.2) satisfied

0 < lim
t→+∞

inf x(t) ≤ lim
t→+∞

supx(t) ≤ δ < +∞. (2.3)

Lemma 2.2. Both the positive and nonnegative cones of R2 are invariant with respect to system (1.2).

It follows from Lemma 2.2 that any solution of system (1.2) with a nonnegative initial
condition remains nonnegative.

Lemma 2.3 (see [10]). If a > 0, b > 0, and ẋ(t) ≥ (≤)x(t)(b − axα(t)), where α is a positive
constant, when t ≥ 0 and x(0) > 0, we have

x(t) ≥ (≤)
(

b

a

)1/α[

1 +
(

bx−α(0)
a

− 1
)

e−bαt
]−1/α

. (2.4)

In the following, we will be ready to state our result.

Theorem 2.4. Let P1, P2, P3, and Q1 be defined by (2.7), (2.10), (2.13), and (2.16), respectively.
Assume that conditions (H1) and
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i β
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l
2P2 + al

1a
u
2P3,

(H3) αl
1β

l
1Q1 > du

1 (a
u
1 + P1), αl

2β
l
2Q1 > du
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u
2 + P1)

hold, then system (1.2) is uniformly strong persistence.
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Proof. It follows from (2.2) that for any ε > 0, there exists T1 > 0 such that for t ≥ T1,

rl − ε ≤ r(t) ≤ ru + ε, −ε < r̃(t) < ε,

Kl − ε ≤ K(t) ≤ Ku + ε, −ε < ˜K(t) < ε,

al
1 − ε ≤ a1(t) ≤ au

1 + ε, −ε < ã1(t) < ε,

al
2 − ε ≤ a2(t) ≤ au

2 + ε, −ε < ã2(t) < ε,

αl
1 − ε ≤ α1(t) ≤ αu

1 + ε, −ε < α̃1(t) < ε,

αl
2 − ε ≤ α2(t) ≤ αu

2 + ε, −ε < α̃2(t) < ε.

(2.5)

Substitute (2.5) into the first equation of system (1.2), then we have

dx

dt
= x

[

r(t) + r̃(t) − r(t) + r̃(t)

K(t) + ˜K(t)
x − (α1(t) + α̃1(t))y

a1(t) + ã1(t) + x
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(2.6)

By Lemma 2.3, we get

lim
t→+∞

supx(t) ≤ ruKu

rl
:= P1. (2.7)

Then for any ε > 0, there exists T2 > T1 > 0 such that

x(t) ≤ P1 + ε, t ≥ T2. (2.8)

Similarly, from (2.2) and the second equation of system (1.2), we obtain that for any ε > 0,
there exists T3 > T2 > 0 such that
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(2.9)

In view of Lemma 2.3, we derive

lim
t→+∞
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1β

u
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1

γ l
:= P2. (2.10)
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Then for any ε > 0, there exists T4 > T3 > 0 such that

y(t) ≤ P2 + ε, t ≥ T4. (2.11)

From (2.2) and the third equation of system (1.2), we obtain that for any ε > 0, there exists
T5 > T4 > 0 such that
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a2(t) + ã2(t) + x(t − τ)
−
(

δ(t) + ˜δ(t)
)

z

⎤

⎥

⎦

≤ z(t)
[

−
(

dl
2 − 2ε

)

−
(

δl − 2ε
)

z(t) +
(

βu2 + 2ε
)(

αu
2 + 2ε

)

]

.

(2.12)

In view of Lemma 2.3, we derive
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Then for any ε > 0, there exists T6 > T5 > 0 such that

z(t) ≤ P3 + ε, t ≥ T6. (2.14)

According (2.8), (2.11), (2.14) and the first equation of system (1.2), we obtain that for any
ε > 0, there exists T7 > T6 > 0 such that
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Using Lemma 2.3 again, we have
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Thus for any ε > 0, there exists T8 > T7 > 0 such that

x(t) ≥ Q1 − ε. (2.17)
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According (2.8), (2.11), (2.14) and the second equation of system (1.2), we obtain that for any
ε > 0, there exists T9 > T8 > 0 such that
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Using Lemma 2.3 again, we have
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Thus for any ε > 0, there exists T10 > T9 > 0 such that
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According (2.8), (2.11), (2.14) and the third equation of system (1.2), we obtain that for any
ε > 0, there exists T11 > T10 > 0 such that
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Using Lemma 2.3 again, we have
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Thus the proof of Theorem 2.4 is complete.
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