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We develop a new-two-stage finite difference method for computing approximate solutions of
a system of third-order boundary value problems associated with odd-order obstacle problems.
Such problems arise in physical oceanography (Dunbar (1993) and Noor (1994), draining and
coating flow problems (E. O. Tuck (1990) and L. W. Schwartz (1990)), and can be studied in the
framework of variational inequalities. We show that the present method is of order three and give
numerical results that are better than the other available results. Numerical example is presented
to illustrate the applicability and efficiency of the new method.

1. Introduction

Variational inequalities have had a great impact and influence in the development of almost
all branches of pure and applied sciences. It has been shown that the variational inequalities
provide a novel and general framework to study a wide class of problems arising in various
branches of pure and applied sciences. The ideas and techniques of variational inequalities
are being used in a variety of diverse fields and proved to be innovative and productive,
see [1–15] and the references therein. In recent years, variational inequalities have been
extended and generalized in several directions. A useful and important generalization of
variational inequalities is called the general variational inequalities involving two continuous
operators, which was introduced by Noor [10] in 1988. It has been shown that a wide class of
nonsymmetric and odd-order obstacle problems arising in industry, economics, optimization,
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mathematical and engineering sciences can be studied in the unified and general framework
of the general variational inequalities, see [1–5, 11–19] and the references therein. Despite of
their importance, little attention has been given to develop some efficient numerical technique
of solving such type of problems. In principle, the finite difference techniques and other
related methods cannot be applied directly to solve the obstacle-type problems. Using the
technique of the penalty method, one rewrite the general variational inequalities as general
variational equations. We note that, if the obstacle function is known, then one can use the
idea and technique of Lewy and Stampacchia [9] to express the general variational equations
as a system of third-order boundary value problems. This resultant system of equations
can be solved, which is the main advantage of this approach. The computational aspect of
this method is its simple applicability for solving obstacle problems. Such type of penalty
function method in conjunction with spline and finite difference techniques has been used
quite effectively as a basis for solving system of third-order boundary value problems, see [1–
5, 7, 13, 15–17, 19]. Our approach to these problems is to consider them in a general manner
and specialize them later on. To convey an idea of the technique involved, we first introduce
and develop a new two stage finite difference scheme for solving a third-order boundary
value problems. An example involving the order-order obstacle problem is given to illustrate
the efficiency and its comparison with other methods.

For simplicity and to convey an idea of the obstacle problems, we consider a system of
third-order boundary value problem of the type, which was first considered by Noor [11]

u′′′ =

⎧
⎪⎪⎨

⎪⎪⎩

f(x), a ≤ x ≤ c,
p(x)u(x) + f(x) + r, c ≤ x ≤ d,
f(x), d ≤ x ≤ b,

(1.1a)

with the boundary conditions

u(a) = α, u′(a) = β1, u′(b) = β2, (1.1b)

and the continuity conditions of u, u′, and u′′ at c and d. Here, f and p are continuous
functions on [a, b] and [c, d], respectively. The parameters r, α, β1, and β2 are real finite
constants. Using the penalty method technique, one can easily show that a wide class of
unrelated obstacle, unilateral, moving and free boundary value problems arising in various
branches of pure and applied sciences can be characterized by the system of third-order
boundary value problems of type (1.1a) and (1.1b), see, for example, [1–17] and the references
therein. In general, it is not possible to obtain the analytical solution of (1.1a) and (1.1b) for
arbitrary choices of f(x) and p(x). We usually resort to some numerical methods for obtaining
an approximate solution of (1.1a) and (1.1b).

The available finite difference and collocation methods are not suitable for solving
system of boundary value problems of the form defined by (1.1a) and (1.1b). Such methods
have a serious drawback in the accuracy regardless of the order of the convergent of the
method being used, see [2, 4, 7, 13, 16, 17, 19]. On the other hand, Al-Said [1], Al-Said and
Noor [3], Al-Said et al. [5] and Noor and Al-Said [16] have developed first- and second-order
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two-stage difference methods for solving (1.1a) and (1.1b), which gives numerical results
that better than those produced by the first-, second- and, third-order methods considered in
[2, 4, 7, 13, 16, 17, 19].

Motivated by the above works, we suggest a new two-stage numerical algorithm for
solving the system of third-order boundary value problem (1.1a) and (1.1b). We prove that
the present method is of order two, and it outperforms other collocation and finite difference
methods when solving (1.1a) and (1.1b). In Section 2, we derive the numerical method for
solving (1.1a) and (1.1b). Section 3 is devoted for the convergence analysis of the method.
The numerical experiments and comparison with other methods are given in Section 4.

2. Numerical Method

For simplicity, we take c = (3a + b)/4 and d = (a + 3b)/4 in order to develop the numerical
method for solving the system of differential equations (1.1a) and (1.1b). For this purpose
we divide the interval [a, b] into n equal subintervals using the grid points xi = a + ih, i =
0, 1, 2, . . . , n, x0 = a, xn = b and

h =
b − a
n

, (2.1)

where n is a positive integer chosen such that both n/4 and 3n/4 are also positive integers.
Using Taylor series expansions along with the method of undetermined coefficients,

boundary and continuity conditions to develop the following finite difference scheme:

9u1/2 − u3/2 = 8u0 + 3hu′0 −
1
160

h3
[
6u′′′0 + 51u′′′1/2 + 3u′′′3/2

]
+ t1, for i = 1,

− 2u1/2 + 3u3/2 − u5/2 = +hu′0 −
1

1920
h3
[
809u′′′1/2 + 1062u′′′3/2 − 31u′′′5/2

]
+ t2, for i = 2,

ui−5/2 − 3ui−3/2 + 3ui−1/2 − ui+1/2 = 1
6
h3
[
−u′′′i−5/2 + 6u′′′i−3/2 + u

′′′
i+1/2

]
+ ti, for 3 ≤ i ≤ n − 1,

un−5/2 − 3un−3/2 + 2un−1/2=hu′n −
1

1920
h3
[
−31u′′′n−5/2 + 1062u′′′n−3/2 + 809u′′′n−1/2

]
+ tn, for i = n,

(2.2)

where

u′′′i+1/2 =

⎧
⎪⎪⎨

⎪⎪⎩

fi+1/2, for 0 ≤ i ≤ n

4
− 1,

3n
4

≤ i ≤ n − 1

pi+1/2ui+1/2 + fi+1/2 + r, for
n

4
≤ i ≤ 3n

4
− 1,

(2.3)
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fi+1/2 = f(xi+1/2), i = 0, 1, 2, . . . , n−1, the relation (2.2) forms a system of n linear equations in
the unknowns ui−1/2, i = 1, 2, . . . , n. The local truncation errors associate with (2.2) are given
by

ti =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

49
320

h6u
(vi)
0 +O

(
h7
)
, for i = 1,

− 53
3840

h6u
(vi)
0 +O

(
h7
)
, for i = 2,

1523
7680

h6u
(vi)
i +O

(
h7
)
, for 3 ≤ i ≤ n − 1,

− 53
3840

h6u
(vi)
i +O

(
h7
)
, for i = n,

(2.4)

which suggest that the scheme (2.2) is a third-order accurate.

Remark 2.1. The new method can be considered as an improvement of the previous finite
difference methods at the midknots developed in [1, 3, 4, 16] for solving the third-order
obstacle problem. Thus, the matrix remains the same for the sake of comparison with other
methods. We would like to point out that the same goes for the finite difference methods at
the knots for solving third-order boundary value problems, see the references.

3. Convergence Analysis

In this section, we investigate the convergence analysis of the method developed in Section 2.
For this purpose, we first let u = (ui+1/2), w = (wi+1/2), c = (ci), t = (ti), and e = (ei+1/2) be
n-dimensional column vectors. Here ei+1/2 = ui+1/2 − wi+1/2 is the discretization error. Thus,
we can write our method as follow:

Au = c + t, (3.1a)
Aw = c, (3.1b)
Ae = t, (3.1c)

where

A = A0 +
1

1920
h3BP, (3.2)

P = diag(pi−1/2), i = 1, 2, . . . , n, with pi−1/2 /= 0 for n/4 < i ≤ 3n/4,

A0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

9 −1 0 · · · · · · · · · 0
−2 3 −1 0 · · · · · · 0
1 −3 3 −1 0 · · · 0

0
. . . . . . . . . . . . · · · 0

...
. . . . . . . . . . . . . . .

...
0 · · · 0 1 −3 3 −1
0 · · · · · · 0 1 −3 2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (3.3)
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and the lower triangular matrix

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

612 36 0 · · · · · · · · · 0
1062 −31 0 · · · · · · 0

0 320 0 · · · 0

0
. . . . . .

. . . . . . . . . 0
...

. . . . . . . . . . . . . . .
...

0 · · · 0 0 320
0 · · · · · · 0 809

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (3.4)

For the vector c, we have

ci =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

8α + 3hβ1 − 1
160

h3F1, i = 1,

hβ1 − 1
1920

h3F2, i = 2,

−1
6
h3Fi, 3 ≤ i ≤ n

4
− 1,

3n
4

+ 3 ≤ i ≤ n − 1,

−1
6
h3[Fi + r], i =

n

4
, i =

n

4
+ 1,

−1
6
h3[Fi + 7r], i =

n

4
+ 2,

−1
6
h3[Fi + 6r],

n

4
+ 3 ≤ i ≤ 3n

4
− 1,

−1
6
h3[Fi + 5r], i =

3n
4
, i =

3n
4

+ 1,

− 1
12
h3[Fi − r], i =

3n
4

+ 2,

hβ2 − 1
1920

h3Fn, i = n,

(3.5)

where

Fi =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

51f1/2 + 3f3/2, i = 1,

809f1/2 + 1062f3/2 − 3125f5/2, i = 2,

−fi−5/2 + 8fi−3/2 + fi+1/2, 3 ≤ i ≤ n − 1,

−31fn−5/2 + 1062fn−3/2 + 908fn−1/2, i = n.

(3.6)
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Our main purpose now is to derive a bound on ‖e‖, where ‖ · ‖ represents the∞-norm.
It has been shown in [1] that A−1

0 exits and satisfies the equation

∥
∥
∥A−1

0

∥
∥
∥ =

4n3 − n + 3
48

, (3.7)

which upon using (2.1)we obtain

∥
∥
∥A−1

0

∥
∥
∥ =

3h3 − (b − a)h2 + 4(b − a)3
48h3

. (3.8)

Thus, using (3.1a)–(3.1c) and (3.2) and the fact that ‖B‖ = 2560 and ‖P‖ ≤ |p(x)|, we get

‖e‖ ≤ 1523λM6h
3

2560
[
3 − 4λ

∣
∣p(x)

∣
∣
] ∼= O

(
h3
)
, (3.9)

where λ = (1/48)[h3 − (b − a)h2 + (b − a)3] andM6 = max |y(vi)(x)|, see [1] for more details.
Relation (3.9) indicates that (3.1b) is a third-order convergent method.

Remark 3.1. The matrixA0 and its inverse were first introduced in [1]. The derivation of (3.7)
(the elements of A−1

0 ) given in [1]was derived using the definition of the matrix inverse. The
derivation involves a long and complicated algebraic manipulations. The interested reader
may try to derive it.

4. Applications and Computational Results

To illustrate the application of the numerical method developed in the previous sections, we
consider the third-order obstacle boundary value problem of finding u such that

−u′′′ ≥ f, on Ω = [0, 1],

u ≥ ψ, on Ω = [0, 1],
[−u′′′ − f][u − ψ] = 0, on Ω = [0, 1],

u(0) = 0, u′(0) = 0, u′(1) = 0,

(4.1)

where f(x) is a continuous function and ψ(x) is the obstacle function. We study the problem
(4.1) in the framework of variational inequality approach. To do so, we first define the set K
as

K =
{
v : v ∈ H2

0(Ω) : v ≥ ψ on Ω
}
, (4.2)
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which is a closed convex set inH2
0(Ω), whereH2

0(Ω) is a Sobolev (Hilbert) space, see [8]. One
can easily show that the energy functional associated with the problem (4.1) is

I[v] = −
∫1

0

(
d3v

dx3

)(
dv

dx

)

dx − 2
∫1

0
f(x)

(
dv

dx

)

dx, ∀ dv
dx

∈ K

=
∫1

0

(
d2v

dx2

)2

dx − 2
∫1

0
f(x)

(
dv

dx

)

dx

=
〈
Tv, g(v)

〉 − 2
〈
f, g(v)

〉
,

(4.3)

〈
Tu, g(v)

〉
=
∫1

0

(
d2u

dx2

)(
d2v

dx2

)

dx,

〈
f, g(v)

〉
=
∫1

0
f(x)

dv

dx
dx,

(4.4)

and g = d/dx is the linear operator.
It is clear that the operator T defined by (4.4) is linear, g-symmetric, and g-positive.

Using the technique of Noor [13, 15], one can easily show that the minimum u ∈ H of the
functional I[v] defined by (4.3) associated with the problem (4.1) on the closed convex setK
can be characterized by the inequality of the type

〈
Tu, g(v) − g(u)〉 ≥ 〈

f, g(v) − g(u)〉, ∀g(v) ∈ K, (4.5)

which is exactly the general variational inequality, considered by Noor [10] in 1988. It is
worth mentioning that a wide class of unrelated odd-order and nonsymmetric equilibrium
problems arising in regional, physical, mathematical, engineering, and applied sciences can
be studied in the unified and general framework of the general variational inequalities, see
[1–20].

Using the penalty function technique of Lewy and Stampacchia [9], we can character-
ize the problem (4.1) as

−u′′′ + ν{(u − ψ)}(u − ψ) = f, 0 < x < 1,

u(0) = u′(0) = u′(1) = 0,
(4.6)

where

ν{t} =

{
1, for t ≥ 0,
0, for t < 0

(4.7)
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is a discontinuous function and is known as the penalty function and ψ is the given obstacle
function defined by

ψ(x) =

⎧
⎪⎪⎨

⎪⎪⎩

−1, for 0 ≤ x ≤ 1
4
,
3
4
≤ x ≤ 1,

1, for
1
4
≤ x ≤ 3

4
.

(4.8)

From equations (4.3)–(4.8), we obtain the following system of differential equations:

u′′′ =

⎧
⎪⎪⎨

⎪⎪⎩

f, for 0 ≤ x ≤ 1
4
,
3
4
≤ x ≤ 1,

u + f − 1, for
1
4
≤ x ≤ 3

4
,

(4.9)

with the boundary conditions

u(0) = u′(0) = u′(1) = 0 (4.10)

and the condition of continuity of u, u′ and u′′ at x = 1/4 and 3/4. Note that the system of
differential equations (4.7) is a special form of the system (1.1a)with p(x) = 1 and r = −1.

Example 4.1. For f = 0, the system of differential equations (4.9) reduces to

u′′′ =

⎧
⎪⎪⎨

⎪⎪⎩

0, for 0 ≤ x ≤ 1
4
,
3
4
≤ x ≤ 1,

u − 1, for
1
4
≤ x ≤ 3

4
,

(4.11)

with the boundary conditions (4.10). The analytical solution for this problem is

u(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1
2
a1x

2, 0 ≤ x ≤ 1
4
,

1 + a2ex + e−x/2
[

a3 cos
√
3
2
x + a4 sin

√
3
2
x

]

,
1
4
≤ x ≤ 3

4
,

1
2
a5x(x − 2) + a6,

3
4
≤ x ≤ 1.

(4.12)

We can find the constants ai, i = 1, 2, . . . , 6, by solving a system of linear equations con-
structed by applying the continuity conditions of u, u′, and u′′ at x = 1/4 and 3/4, see [3] for
more details.

For different values of h, the boundary value problem defined by (4.10) and (4.11)was
solved using the numerical methods developed in the previous sections and the observed
maximum errors ‖e‖ are listed in Table 1. Also, we give in Table 1 the numerical results for
the finite difference methods at midkonts introduced in [1, 3, 5, 16]. It is clear from this table
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Table 1: Observed maximum errors ‖e‖.

h New method [1] [3] [5] [16]

1/20 4.05 ×10−5 4.96 ×10−5 1.48 ×10−4 6.74 ×10−4 1.04 ×10−3
1/40 9.78 ×10−6 1.24 ×10−5 3.70 ×10−5 3.04 ×10−4 2.60 ×10−4
1/80 2.31 ×10−6 3.10 ×10−6 9.24 ×10−6 1.37 ×10−4 6.49 ×10−5

Table 2: Observed maximum errors.

h New method [2] [7] [17] [19]

1/32 2.57 ×10−5 5.53 ×10−4 5.30 ×10−4 5.32 ×10−4 4.05 ×10−4
1/64 6.38 ×10−6 2.61 ×10−4 2.52 ×10−4 2.56 ×10−4 2.24 ×10−4
1/128 1.47 ×10−6 1.27 ×10−4 1.23 ×10−4 1.26 ×10−4 1.15 ×10−4

that our present method produced better results than the other ones. However, the numerical
results may indicate that we have second-order approximations. This is due to the fact that
the third derivative is not continuous across the interfaces.

Now, let wi−1/2 be an approximate value of ui−1/2, for i = 1, 2, . . . , n, computed by the
numerical method developed in the previous sections. Then having the values of wi−1/2, for
i = 1, 2, . . . , n, we can compute wi ≈ ui using the second-order interpolating

ui =
1
2
[ui+1/2 + ui−1/2] +O

(
h2
)
, (4.13)

for i = 1, 2, . . . , n. Note that we make use of the boundary condition u′(1) = 0 to compute
the value of wn. The computations of wi, i = 1, 2, . . . , n, give us the opportunity for a fare
comparisons with the other methods discussed in [2, 7, 17, 19], which approximate the
solution of problems (4.11) at the nodes. In Table 2, we list the maximum value for the errors
maxi|ui −wi| for different h values for our present method and the others. From Table 2, it can
be noted that our present method gives the best results. We mentioned here in passing that
the numerical results for the method developed in [4] are worse than those given in Table 2
and are not presented here.

5. Conclusion

As mentioned in [1, 3, 5, 16]where two-stage first- and second-order method was developed,
we have noticed from our experiments that the maximum value of the error occurs near
the center of the interval and not around x = 1/4 nor 3/4, where the solution satisfies the
extraconditions. On the other hand, it was noticed from the experiments done by the authors
in [2, 4, 17] that the maximum error occurs at near the indicated values of x. Thus, we can
conclude that the extra conditions at x = 1/4 and 3/4 have little effect on the performance of
the methods that first approximate the solution at the midknots, whereas for the other two
methods these added conditions introduce a serious drawback in the accuracy.
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