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This paper deals with the oscillations of numerical solutions for the nonlinear delay differential
equations in physiological control systems. The exponential θ-method is applied to p′(t) =
β0ω

μp(t−τ)/(ωμ+pμ(t−τ))−γp(t) and it is shown that the exponential θ-method has the same order
of convergence as that of the classical θ-method. Several conditions under which the numerical
solutions oscillate are derived. Moreover, it is proven that every nonoscillatory numerical solution
tends to positive equilibrium of the continuous system. Finally, themain results are illustratedwith
numerical examples.

1. Introduction

The nonlinear delay differential equation

p′(t) =
β0ω

μp(t − τ)
ωμ + pμ(t − τ) − γp(t), (1.1)

where

ω > 0, β0 > γ > 0, μ, τ ∈ R+, (1.2)

has been proposed by Mackey and Glass [1] as model of hematopoiesis (blood cell
production). Here, p(t) denotes the density of mature cells in blood circulation, τ is the time
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delay between the production of immature cells in the bone marrow and their maturation
for release in the circulating blood stream, and the production is a single-humped function
of p(t − τ). Equation (1.1) has been recently studied by many authors. Mackey and Heidn
[2] considered the local asymptotic stability of the positive equilibrium by the well-known
technique of linearization. Gopalsamy et al. [3] obtained sufficient and also necessary
conditions for all positive solutions to oscillate about their positive steady states. They also
obtained sufficient conditions for the positive equilibrium to be a global attractor. For more
details of (1.1), we refer to Mackey [4, 5], and Su et al. [6].

Our aim in this paper is to investigate the oscillations of numerical solutions for
(1.1). The oscillatory and asymptotic behavior of solutions of delay differential equations
has been the subject of intensive investigations during the past decades. The strong
interest in this study is motivated by the fact that it has many useful applications in some
mathematical models, such as ecology, biology, and spread of some infectious diseases in
humans. The general theory and basic results for this paper have been thoroughly studied
in [7, 8]. In recent years, much research has been focused on the oscillations of numerical
solutions for delay differential equations [9–12]. Until now, very few results dealing with
the corresponding behavior for nonlinear delay differential equations have been presented
in the literature except for [13]. In [13], the authors investigate the oscillations of numerical
solutions for the nonlinear delay differential equation of population dynamics. Different
from [13], in our paper, we will consider another nonlinear delay differential equation (1.1)
in physiological control systems and obtain some new results. We not only investigate some
sufficient conditions under which the numerical solutions are oscillatory but also consider
the asymptotic behavior of nonoscillatory numerical solutions.

The structure of this paper is as follows. In Section 2, some necessary definitions
and results for oscillations of the analytic solutions are given. In Section 3, we obtain the
numerical discrete equation by applying the θ-methods to the simplified form which comes
from making two transformations on (1.1). Moreover, the oscillations of the numerical
solutions are discussed, and conditions under which the numerical solutions oscillate are
obtained. In Section 4, we investigate the asymptotic behavior of nonoscillatory solutions.
In Section 5, we present numerical examples that illustrate the theoretical results for the
numerical methods.

2. Preliminaries

Let us state some definitions, lemmas, and theorems that will be used throughout this paper.

Definition 2.1. A function p of (1.1) is said to oscillate aboutM∗ if p −M∗ has arbitrarily large
zeros. Otherwise, p is called non-oscillatory. WhenM∗ = 0, we say that p oscillates about zero
or simply oscillates.

Definition 2.2. A sequence {pn} is said to oscillate about {zn} if {pn − zn} is neither eventually
positive nor eventually negative. Otherwise, {pn} is called non-oscillatory. If {zn} = {z} is a
constant sequence, we simply say that {pn} oscillates about {z}. When {zn} = {0}, we say
that {pn} oscillates about zero or simply oscillates.

Definition 2.3. We say that (1.1) oscillates if all of its solutions are oscillatory.
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Theorem 2.4 (see [14]). Consider the difference equation

an+1 − an +
l∑

j=−k
qjan+j = 0, (2.1)

and assume that k, l ∈ N and qj ∈ R for j = −k, . . . , l. Then, the following statements are equivalent:

(1) every solution of (2.1) oscillates;

(2) the characteristic equation λ − 1 +
∑l

j=−k qjλ
j = 0 has no positive roots.

Theorem 2.5 (see [14]). Consider the difference equation

an+1 − an + san−k + qan = 0, (2.2)

where k > 0, p > 0, and q > 0. Then, the necessary and sufficient conditions for the oscillation of all
solutions of (2.2) are q ∈ (0, 1) and

s
(k + 1)k+1

kk
>
(
1 − q)k+1. (2.3)

Lemma 2.6. The inequality ln(1 + x) > x/(1 + x) holds for x > −1 and x /= 0.

Lemma 2.7. The inequality ex < 1/(1 − x) holds for x < −1 and x /= 0.

Lemma 2.8 (see [15]). For allm ≥M0, one has

(1) (1 + a/(m − θa))m ≥ ea if and only if 1/2 ≤ θ ≤ 1 for a > 0, ϕ(−1) ≤ θ ≤ 1 for a < 0;

(2) (1 + a/(m − θa))m < ea if and only if 0 ≤ θ < 1/2 for a < 0, 0 ≤ θ ≤ ϕ(1) for a > 0,

where ϕ(x) = 1/x − 1/(ex − 1) andM0 is a positive constant.

3. Oscillations of Numerical Solutions

3.1. Two Transformations

In order to study (1.1) conveniently, we will impose two transformations on (1.1) in this
subsection.

Together with (1.1), we will consider the initial condition,

p(t) = ψ(t), −τ ≤ t ≤ 0, (3.1)

the initial value problem (1.1), and (3.1) has a unique positive solution for all t ≥ 0.
We introduce a similar method in [3]. The change of variables

p(t) = ωx(t) (3.2)



4 Journal of Applied Mathematics

turns (1.1) into the delay differential equation

x′(t) = β0
x(t − τ)

1 + xμ(t − τ) − γx(t), (3.3)

with positive equilibriumM, which is denoted as

M =
(
β0 − γ
γ

)1/μ

. (3.4)

The following theorem gives oscillations of the analytic solution of (3.3).

Theorem 3.1 (see [3]). Assume that

μ > 1,
β0
γ
>

μ

μ − 1
, (3.5)

eγτ
γ

β0

((
μ − 1

)
β0 − μγ

)
τ >

1
e
, (3.6)

then every positive solution of (3.3) oscillates about its positive equilibriumM.

The following corollary is naturally obtained.

Corollary 3.2. Assume that all the conditions in Theorem 3.1 hold, then every positive solution of
(1.1) oscillates about its positive equilibriumM∗ = ωM.

Next, we introduce an invariant oscillation transformation x(t) = Mey(t), and then
(3.3) can be written as

y′(t) +
β0

1 +Mμ

[
f1
(
y(t)

)
f2
(
y(t − τ)) − f1

(
y(t)

) − f2
(
y(t − τ)) + 2

]
= 0, (3.7)

where

f1(u) = 1 − e−u, f2(u) = 1 +
(1 +Mμ)eu

1 +Mμeμu
. (3.8)

Then, x(t) oscillates aboutM if and only if y(t) oscillates about zero.
Moreover, since

β0
1 +Mμ

= γ, (3.9)
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then (3.6) and (3.7) become

eγτγ

(
μMμ

1 +Mμ
− 1

)
τ >

1
e
, (3.10)

y′(t) = −γf1
(
y(t)

)
f2
(
y(t − τ)) + γf1

(
y(t)

)
+ γf2

(
y(t − τ)) − 2γ, (3.11)

respectively.
For our convenience, denote

Q =
μMμ

1 +Mμ
− 1, (3.12)

then the inequality (3.10) yields

eγτQγτ >
1
e
. (3.13)

3.2. The Difference Scheme

Let h = τ/m be a given stepsize with integer m > 1. The adaptation of the linear θ-method
and the one-leg θ-method to (3.11) leads to the same numerical process of the following type:

yn+1 = yn − hθγf1
(
yn+1

)
f2
(
yn+1−m

) − h(1 − θ)γf1
(
yn

)
f2
(
yn−m

)
+ hθγf1

(
yn+1

)

+ h(1 − θ)γf1
(
yn

)
+ hθγf2

(
yn+1−m

)
+ h(1 − θ)γf2

(
yn−m

) − 2hγ,
(3.14)

where 0 ≤ θ ≤ 1, yn+1 and yn+1−m are approximations to y(t) and y(t − τ) of (3.11) at tn+1,
respectively.

Letting yn = ln(pn/M∗) and using the expressions of f1 and f2, we have

pn+1 = pn exp

⎛
⎜⎝hγωμ(1 +Mμ)

⎛
⎜⎝

θpn+1−m

pn+1
(
ωμ + pμn+1−m

) +
(1 − θ)pn−m

pn
(
ωμ + pμn−m

)

⎞
⎟⎠ − hγ

⎞
⎟⎠. (3.15)

Definition 3.3. We call the iteration formula (3.15) the exponential θ-method for (1.1), where
pn+1 and pn+1−m are approximations to p(t) and p(t − τ) of (1.1) at tn+1, respectively.

The following theorem, for the proof of which we refer to [16], allows us to obtain the
convergence of exponential θ-method.

Theorem 3.4. The exponential θ-method (3.15) is convergent with order

1, when θ /=
1
2
,

2, when θ =
1
2
.

(3.16)
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3.3. Oscillation Analysis

It is not difficult to know that pn oscillates aboutM∗ if and only if yn is oscillatory. In order to
study oscillations of (3.15), we only need to consider the oscillations of (3.14). The following
conditions which are taken from [3]will be used in the next analysis:

uf1(u) > 0, for u/= 0, lim
u→ 0

f1(u)
u

= 1,

f2(u) > 0, for everyu, lim
u→ 0

f2(u) = 2,

f1(u) ≤ u, for u > 0, f1(0) = 0,

f2(u) ≤ 2, for u ≥ 0, μ > 2, Mμ > 1, f2(0) = 2.

(3.17)

The linearized form of (3.14) is given by

yn+1 = yn − hθγyn+1 − h(1 − θ)γyn + hθγ
(
1 − μMμ

1 +Mμ

)
yn+1−m

+ h(1 − θ)γ
(
1 − μMμ

1 +Mμ

)
yn−m.

(3.18)

Then by (3.12), (3.18) gives

yn+1 =
1 − h(1 − θ)γ

1 + hθγ
yn −

hθγQ

1 + hθγ
yn+1−m − h(1 − θ)γQ

1 + hθγ
yn−m. (3.19)

It follows from [14] that (3.14) oscillates if (3.19) oscillates under the condition (3.17).

Definition 3.5. Equation (3.15) is said to be oscillatory if all of its solutions are oscillatory.

Definition 3.6. We say that the exponential θ-method preserves the oscillations of (1.1) if (1.1)
oscillates, then there is a h > 0 or h = ∞, such that (3.15) oscillates for h < h. Similarly, we
say that the exponential θ-method preserves the nonoscillations of (1.1) if (1.1) non-oscillates,
then there is a h > 0 or h = ∞, such that (3.15) nonoscillates for h < h.

In the following, we will study whether the exponential θ-method inherits the
oscillations of (1.1). Equivalently, when Corollary 3.2 holds, wewill investigate the conditions
under which (3.15) is oscillatory.

Lemma 3.7. The characteristic equation of (3.18) is given by

ξ = R
(−hγ(1 +Qξ−m)). (3.20)
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Proof. Letting yn = ξny0 in (3.18), we have

ξn+1y0 = ξny0 − hθγξn+1y0 − h(1 − θ)γξny0 + hθγ
(
1 − μMμ

1 +Mμ

)
ξn+1−my0

+ h(1 − θ)γ
(
1 − μMμ

1 +Mμ

)
ξn−my0,

(3.21)

that is,

ξ = 1 − hθγξ
(
1 −

(
1 − μMμ

1 +Mμ

)
ξ−m

)
− h(1 − θ)γ

(
1 −

(
1 − μMμ

1 +Mμ

)
ξ−m

)
, (3.22)

which is equivalent to

ξ =
1 − h(1 − θ)γ(1 − (

1 − (
μMμ

)
/(1 +Mμ)

)
ξ−m

)

1 + hθγ
(
1 − (

1 − (
μMμ

)
/(1 +Mμ)

)
ξ−m

)

= 1 − hγ
(
1 − (

1 − (
μMμ

)
/(1 +Mμ)

)
ξ−m

)

1 + hθγ
(
1 − (

1 − (
μMμ

)
/(1 +Mμ)

)
ξ−m

) .

(3.23)

In view of [17], we know that the stability function of the θ-method is

R(x) =
1 + (1 − θ)x

1 − θx = 1 +
x

1 − θx . (3.24)

By noticing (3.12), thus the characteristic equation of (3.18) is given by (3.20). The proof is
completed.

Lemma 3.8. If condition (3.13) holds, then the characteristic equation (3.20) has no positive roots for
0 ≤ θ ≤ 1/2.

Proof. Let f(ξ) = ξ − R(−hγ(1 +Qξ−m)). By Lemma 2.8, we know that

R
(−hγ(1 +Qξ−m)) ≤ exp

(−hγ(1 +Qξ−m)) (3.25)

holds for ξ > 0 and 0 ≤ θ ≤ 1/2. In the following, we will prove that g(ξ) = ξ − exp(−hγ(1 +
Qξ−m)) > 0 for ξ > 0. Suppose the opposite, that is, there exists a ξ0 > 0 such that W(ξ0) ≤ 0,
then we get ξ0 ≤ exp(−hγ(1 +Qξ−m0 )), and
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ξm0 ≤ exp
(−γτ − γτQξ−m0

)
. (3.26)

Multiplying both sides of the inequality (3.26) by eγτQγτeξ−m0 , we have

eγτQγτe ≤ Qγτξ−m0 exp
(
1 −Qγτξ−m0

)
(3.27)

Thus, we have the following two cases.

Case 1. If 1 −Qγτξ−m0 = 0, then eγτQγτe ≤ 1, which contradicts the condition (3.13).

Case 2. If 1 −Qγτξ−m0 /= 0, then in view of Lemma 2.7, we obtain

exp
(
1 −Qγτξ−m0

)
<

1
1 − (

1 −Qγτξ−m0
) =

1
Qγτξ−m0

, (3.28)

that is,

Qγτξ−m0 exp
(
1 −Qγτξ−m0

)
< 1, (3.29)

so eγτQγτe < 1, which is also a contradiction to (3.13).
In summary, we have, for ξ > 0,

f(ξ) = ξ − R(−hγ(1 +Qξ−m)) ≥ ξ − exp
(−hγ(1 +Qξ−m)) = g(ξ) > 0, (3.30)

which implies that the characteristic equation (3.20) has no positive roots. The proof is
complete.

Without loss of generality, in the case of 1/2 < θ ≤ 1, we assume thatm > 1.

Lemma 3.9. If condition (3.13) holds and 1/2 < θ ≤ 1, then the characteristic equation (3.20) has
no positive roots for h < ĥ, where

ĥ =

⎧
⎪⎪⎨

⎪⎪⎩

∞, for Qγτ ≥ 1,

τ
(
1 + γτ + lnQγτ

)

1 + γτ
(
1 − lnQγτ

) , for Qγτ < 1.
(3.31)

Proof. Since R(−hγ(1 + Qξ−m)) is an increasing function of θ when ξ > 0, then, for ξ > 0 and
1/2 < θ ≤ 1,

R
(−hγ(1 +Qξ−m)) =

1 − h(1 − θ)γ(1 +Qξ−m)
1 + hθγ(1 +Qξ−m)

≤ 1
1 + hγ(1 +Qξ−m)

. (3.32)
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In the following, we will prove that the inequality

ξ − 1
1 + hγ(1 +Qξ−m)

> 0 (3.33)

holds under certain conditions.
The left side of inequality (3.33) can be rewritten as

ξ − 1
1 + hγ(1 +Qξ−m)

=

(
1 + hγ

)
ξ1−m

1 + hγ(1 +Qξ−m)
Γ(ξ), (3.34)

where

Γ(ξ) = ξm − 1
1 + hγ

ξm−1 +
hγQ

1 + hγ
, (3.35)

so we only need to prove that Γ(ξ) > 0 for ξ > 0. It is easy to know that Γ(ξ) = 0 is the
characteristic equation of the following difference equation

yn+1 − yn +
hγQ

1 + hγ
yn+1−m +

hγ

1 + hγ
yn = 0. (3.36)

By Theorems 2.4 and 2.5, we know that Γ(ξ) has no positive roots if and only if

hγQ

1 + hγ
mm

(m − 1)m−1 >
(
1 − hγ

1 + hγ

)m

, (3.37)

which is equivalent to

lnQγτ + (m − 1) ln
(
1 +

1 + γτ
m − 1

)
> 0. (3.38)

We examine two cases depending on the position of Qγτ : either Qγτ ≥ 1 or Qγτ < 1.

Case 1. If Qγτ ≥ 1, bym > 1, (3.38) holds true.

Case 2. If Qγτ < 1 and

h <
τ
(
1 + γτ + lnQγτ

)

1 + γτ
(
1 − lnQγτ

) , (3.39)
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then by Lemma 2.6, we have

lnQγτ + (m − 1) ln
(
1 +

1 + γτ
m − 1

)
> lnQγτ + (m − 1)

(
1 + γτ

)
/(m − 1)

1 +
(
1 + γτ

)
/(m − 1)

= lnQγτ +
(m − 1)

(
1 + γτ

)

m + γτ
> 0.

(3.40)

Therefore, the inequality (3.33) holds for h < ĥ, where ĥ is defined in (3.31). So, we get that
the following inequality

f(ξ) = ξ − R(−hγ(1 +Qξ−m)) ≥ ξ − 1
1 + hγ(1 +Qξ−m)

> 0 (3.41)

holds for h < ĥ and ξ > 0, which implies that the characteristic equation (3.20) has no positive
roots. This completes the proof.

Remark 3.10. By inequality (3.38) and condition Qγτ < 1, we have

τ
(
1 + γτ + lnQγτ

)

1 + γτ
(
1 − lnQγτ

) > 0, (3.42)

thus ĥ is meaningful.

In view of (3.17), Lemmas 3.8 and 3.9, and Theorem 2.4, we present the first main
theorem of this paper.

Theorem 3.11. If condition (3.13) holds, then (3.15) is oscillatory for

h < h̃ =

⎧
⎪⎨

⎪⎩

∞, when 0 ≤ θ ≤ 1
2
,

ĥ, when
1
2
< θ ≤ 1,

(3.43)

where ĥ is defined in Lemma 3.9.

4. Asymptotic Behavior of Nonoscillatory Solutions

In this section, we will study the asymptotic behavior of non-oscillatory solutions of (3.15).
We first recall the following result about asymptotic behavior of (3.3).

Lemma 4.1 (see [3]). Assume that

τ > 0, μ > 1, β0 > γ, (4.1)
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then every solution x(t) of the initial value problem is

x′(t) = β0
x(t − τ)

1 + xμ(t − τ) − γx(t),

x(t) = ϕ, −τ ≤ t ≤ 0,

(4.2)

which is non-oscillatory aboutM satisfies

lim
t→∞

x(t) =M. (4.3)

From (3.3) and (3.7), we know that the non-oscillatory solution of (3.7) satisfies
limt→∞y(t) = 0 if Lemma 4.1 is satisfied. Furthermore, limt→∞p(t) = M∗ is also obtained.
In the following, we will prove that the numerical solution of (1.1) can inherit this property.

Lemma 4.2. Let yn be a non-oscillatory solution of (3.14), then limn→∞yn = 0.

Proof. Without loss of generality, we assume that yn > 0 for sufficiently large n. Then by
condition (3.17), we have

f1
(
yi
)
> 0, f2

(
yi
) − 1 > 0, f2

(
yi
) − 2 < 0, (4.4)

for sufficiently large i. Moreover, it is can be seen from (3.14) that

yn+1 − yn = − hθγf1
(
yn+1

)[
f2
(
yn+1−m

) − 1
] − h(1 − θ)γf1

(
yn

)[
f2
(
yn−m

) − 1
]

+ hθγ
[
f2
(
yn+1−m

) − 2
]
+ h(1 − θ)γ[f2

(
yn−m

) − 2
]
,

(4.5)

which gives

yn+1 − yn − hθγ
[
f2
(
yn+1−m

) − 2
] − h(1 − θ)γ[f2

(
yn−m

) − 2
]
< 0, (4.6)

thus we have

yn+1 − yn < hθγ
[
f2
(
yn+1−m

) − 2
]
+ h(1 − θ)γ[f2

(
yn−m

) − 2
]
< 0, (4.7)

then the sequence {yn} is decreasing, and, therefore,

lim
n→∞

yn = η ∈ [0,∞). (4.8)

Next, we prove that η = 0. If η > 0, then there exist N ∈ N and ε > 0 such that 0 < η − ε <
yn < η + ε for n −m > N. Thus, yn−m > η − ε and yn−m+1 > η − ε. So, inequality (4.6) yields

yn+1 − yn − hθγ
[
f2
(
η − ε) − 2

] − h(1 − θ)γ[f2
(
η − ε) − 2

]
< 0, (4.9)
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Figure 1: The analytic solution of (5.1).
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Figure 2: The numerical solution of (5.1)withm = 25 and θ = 0.25.

which implies that yn+1 − yn < C < 0, where

C = hγ
[
f2
(
η − ε) − 2

]
= hγ

(eη−ε − 1) +Mμeη−ε
(
1 − e(μ−1)(η−ε))

1 +Mμeμ(η−ε)
. (4.10)

Thus, yn → −∞ as n → ∞, which is a contradiction to (4.8). This completes the proof.

As a consequence, the second main theorem of this paper is as follows.

Theorem 4.3. Letting pn be a positive solution of (3.15), which does not oscillate about M∗, then
limn→∞pn =M∗, whereM∗ is the positive equilibrium of the continuous system (1.1).
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Figure 3: The numerical solution of (5.1)withm = 10 and θ = 0.6.

5. Numerical Examples

In order to verify our results, three numerical examples are examined in this section.

Example 5.1. Consider the following equation:

p′(t) =
3 × 2.65p(t − 2.5)
2.65 + p5(t − 2.5)

− 1.5 p(t), (5.1)

subject to the initial condition

p(t) = 1.7, for t ≤ 0. (5.2)

In (5.1), it can be seen that condition (3.6) holds true and Qγτ ≈ 5.6250 > 1. That is,
the analytic solutions of (5.1) are oscillatory. In Figures 1–3, we draw the figures of the
analytic solutions and the numerical solutions of (5.1), respectively. Set m = 25, θ = 0.25
in Figure 2 and m = 10, θ = 0.6 in Figure 3, respectively. From the two figures, we can see
that the numerical solutions of (5.1) oscillate about M∗ ≈ 2.6, which are in agreement with
Theorem 3.11.

Example 5.2. Let us consider the equation

p′(t) =
1.77 × 1.983p(t − 2)
1.983 + p3(t − 2)

− p(t), (5.3)

with the initial value p(t) = 1.9 for t ≤ 0. In (5.3), it is easy to see that condition (3.6) is fulfilled
andQγτ ≈ 0.6102 < 1. That is, the analytic solutions of (5.3) are oscillatory. In Figures 4–6, we
draw the figures of the analytic solutions and the numerical solutions of (5.3), respectively.
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Figure 4: The analytic solution of (5.3).
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Figure 5: The numerical solution of (5.3)withm = 20 and θ = 0.4.

Set m = 20, θ = 0.4 in Figure 5 and m = 40, θ = 0.7 in Figure 6, respectively. We can see from
the three figures that the numerical solutions of (5.3) oscillate aboutM∗ ≈ 1.8149, which are
consistent with Theorem 3.11. On the other hand, by direct calculation, we get ĥ ≈ 1.2568, so
the stepsize ĥ is not optimal.

Example 5.3. Consider the following equation:

p′(t) =
1.5 × 3.72p(t − 1)
3.72 + p2(t − 1)

− 0.5 p(t), (5.4)
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Figure 6: The numerical solution of (5.3)withm = 40 and θ = 0.7.
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Figure 7: The analytic solution of (5.4).

subject to the initial condition

p(t) = 9, for t ≤ 0. (5.5)

For (5.4), it is easy to see that Qγτeγτ+1 ≈ 0.7469 < 1, so the condition (3.6) is not satisfied.
That is, the analytic solutions of (5.4) are non-oscillatory. In Figures 7–9, we draw the figures
of the analytic solutions and the numerical solutions of (5.4), respectively. In Figure 7, we
can see that p(t) → M∗ ≈ 5.2326 as t → ∞. From Figures 8 and 9, we can also see that
the numerical solutions of (5.4) satisfy pn → M∗ ≈ 5.2326 as n → ∞. That is, the numerical
method inherits the asymptotic behavior of non-oscillatory solutions of (5.4), which coincides
with Theorem 4.3.
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Figure 8: The numerical solution of (5.4)withm = 15 and θ = 0.3.
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Figure 9: The numerical solution of (5.4)withm = 20 and θ = 0.8.

Furthermore, according to Definition 3.6, we can see from these figures that the
exponential θ-method preserves the oscillations of (5.1) and (5.3) and the non-oscillations
of (5.4), respectively.
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