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We consider the dual of the generalized Erlang(n) risk model with a barrier dividend strategy. We
derive integro-differential equations with boundary conditions satisfied by the expectation of the
sum of discounted dividends until ruin and the moment-generating function of the discounted
dividend payments until ruin, respectively. The results are illustrated by several examples.

1. Introduction

Many interesting results have been obtained on a model that is dual to the classical insurance
risk model in recent years. See, for example, Albrecher et al. [1], Ng [2], Avanzi et al. [3], and
Avanzi and Gerber [4]. In the classical dual model (see Grandell [5]), the surplus at time t is

U(t) = u − ct +
N(t)∑

k=1

Zk ≡ u − ct + S(t), t ≥ 0, (1.1)

where u and c are constants, u ≥ 0 is the initial surplus and c > 0 is the rate of
expenses, S(t) =

∑N(t)
k=1 Zk is the aggregate positive gains process, {Zk}k≥1 is a sequence

of independent and identically distributed nonnegative random variables with a common
probability distribution function P(x), and {N(t)} is a Poisson process with rate λ. Moreover,
it is assumed that {N(t)} and {Zk}k≥1 are independent. In (1.1), the expected increment of
the surplus per unit time is

μ = E[S(1)] − c = λ

∫+∞

0
xp(x)dx − c. (1.2)

It is assumed that μ > 0.
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In the model (1.1), the premium rate is negative, causing the surplus to decrease.
Claims, on the other hand, cause the surplus to jump up. Thus the premium rate should
be viewed as an expense rate and claims should be viewed as profits or gains. While not
very popular in insurance mathematics, this model has appeared in various literature (see
Cramér [6], Seal [7], Tákacs [8], and the references cited therein). In Avanzi et al. [3], the
authors studied the expected total discounted dividends until ruin for the dual model under
the barrier strategy by means of integro-differential equations.

Recently, the research to models with two-sided jumps has been attracting a lot
of attention in applied probability. For example, Perry et al. [9] studied the one- and
two-sided first exit problems for a compound Poisson process with negative and positive
jumps and linear deterministic decrease between jumps and assumed that the jumps
have hyperexponential distributions. Kou and Wang [10] used a double exponential jump
diffusion process to model the asset return. Asmussen et al. [11] considered the stock price
models as an exponential Lévy process with phase-type jumps in two directions. For some
related work see, among others, Jacobsen [12], Dong and Wang [13], Dong and Wang [14],
Cai et al. [15], Zhang et al. [16], Chi and Lin [17], Cai and Kou [18], and the references therein.

Motivated by some related work mentioned above, we consider a more general risk
process. We will assume that the number of gains up to time t is an ordinary renewal process:

N(t) = max{k ≥ 1 : W1 +W2 + · · · +Wk ≤ t}, (1.3)

where the random variables {Wi}i≥1 are independent and identically generalized Erlang(n)-
distributed, that is, the Wi’s are distributed as the sum of n independent and exponentially
distributed random variables:

Wi = ξ1 + ξ2 + · · · + ξn, i = 1, 2, . . . , (1.4)

where ξj (j = 1, 2, . . . , n) may have different exponential parameters λj > 0. We also assumed
that the jumps are two-sided. The upward jumps can be interpreted as the random gains of
the company, while the downward jumps are interpreted as the random loss of the company.
The common density of the jumps is given by

p(x) = pp1(x)I{x≥0} + qp2(−x)I{x<0}, (1.5)

where p1(x) and p2(x) are two arbitrary probability density functions on [0,∞) and p, q ≥ 0
are two constants such that p + q = 1. Denoted are the probability distribution functions of
p1(x) and p2(x), respectively, by P1(x) and P2(x).

We then consider the modification of the surplus process by a barrier strategy with a
barrier b. Whenever the surplus exceeds the barrier, the excess is paid out immediately as a
dividend. But whenU(t) is below b, no dividends are paid. The modified surplus at time t is
given by

X(t) = U(t) −D(t), t ≥ 0, (1.6)
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where D(t) denote the aggregate dividends paid between time 0 and time t, that is,

D(t) =
(
max
0≤s≤t

U(s) − b

)+

. (1.7)

Let

T = inf{t ≥ 0 : X(t) < 0} (1.8)

be the time of ruin for the modified surplus X, and let

D =
∫T

0
e−δtdD(t) (1.9)

be the sum of the discounted dividend payments, where δ > 0 is the force of interest for
valuation.

In this paper, we consider the expectation and the moment-generating function of the
sum of the discounted dividends until ruin. In Section 2, we derive an integro-differential
equation with boundary conditions for the expectation of the discounted dividends until
ruin. In Section 3, we obtain an integro-differential equation with boundary conditions for
the moment-generating function of the discounted dividend payments until ruin.

2. Expectation of the Discounted Dividends

Denote by V (u; b) the expectation of the discounted dividends until ruin if the barrier strategy
with parameter b is applied:

V (u; b) = E[D | X(0) = u], 0 ≤ u ≤ b. (2.1)

Note that

V (u; b) = u − b + V (b; b), u > b. (2.2)

Let ∂/∂u denote the differentiation operator with respect to u. And we define∏1
j=2· = 1.

Theorem 2.1. The function V (u; b) satisfies the following integro-differential equation:

⎡

⎣
n∏

j=1

(
c

λj

∂

∂u
+ 1 +

δ

λj

)⎤

⎦V (u; b) = p

∫b−u

0
V (u + x; b)p1(x)dx

+ p

∫∞

b−u
[1 − P1(x)]dx + pV (b; b)[1 − P1(b − u)]

+ q

∫u

0
V (u − x; b)p2(x)dx, 0 < u < b

(2.3)
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with boundary conditions

V (0; b) = 0, (2.4)
⎡

⎣
k∏

j=2

(
c

λj−1

∂

∂u
+ 1 +

δ

λj−1

)⎤

⎦∂V (u; b)
∂u

∣∣∣∣∣∣
u=b

= 1, k = 1, 2, . . . , n. (2.5)

Proof. We let Vj(u; b) denote the expectation of the discounted dividends if the risk process is
in state j (j = 1, . . . , n). Eventually, we are interested in V (u; b) = V1(u; b). Conditioning on
the occurrence of a (sub-) claim within an infinitesimal time interval, we obtain for 0 ≤ u < b
and j = 1, . . . , n − 1,

Vj(u; b) = e−δdt
{
P
(
ξj > dt

)
Vj(u − cdt; b) + P

(
ξj ≤ dt

)
Vj+1(u − cdt; b)

}
. (2.6)

Note that we have

e−δdt = 1 − δdt + o(dt),

P
(
ξj > dt

)
= 1 − λjdt + o(dt),

P
(
ξj ≤ dt

)
= λjdt + o(dt),

Vj(u − cdt; b) = Vj(u; b) − c
∂Vj(u; b)

∂u
dt + o(dt).

(2.7)

Substituting these formulas into (2.6), after some careful calculations, we have for j =
1, . . . , n − 1

λjVj+1(u; b) =
[(
λj + δ

)
+ c

∂

∂u

]
Vj(u; b). (2.8)

For j = n, we have

Vn(u; b) = e−δdt
[
P(ξn > dt)Vn(u − cdt; b) + P(ξn ≤ dt)

∫∞

−∞
V (u + x; b)p(x)dx

]
+ o(dt)

= Vn(u; b) − (δ + λn)Vn(u; b)dt − c
∂Vn(u; b)

∂u
dt + pλndt

×
[∫b−u

0
V (u + x; b)p1(x)dx +

∫∞

b−u
(u − b + x)p1(x)dx + V (b; b)(1 − P1(b − u))

]

+ qλndt

∫0

−u
V (u + x; b)p2(−x)dx + o(dt)
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= Vn(u; b) − (δ + λn)Vn(u; b)dt − c
∂Vn(u; b)

∂u
dt

+ pλndt

[∫b−u

0
V (u + x; b)p1(x)dx +

∫∞

b−u
[1 − P1(x)]dx + V (b; b)(1 − P1(b − u))

]

+ qλndt

∫u

0
V (u − x; b)p2(x)dx + o(dt),

(2.9)

which leads to

[
(λn + δ) + c

∂

∂u

]
Vn(u; b) = λnp

∫b−u

0
V (u + x; b)p1(x)dx + λnp

∫∞

b−u
[1 − P1(x)]dx

+ λnpV (b; b)[1 − P1(b − u)] + λnq

∫u

0
V (u − x; b)p2(x)dx.

(2.10)

It follows from (2.8) that

Vj+1(u; b) =

[(
λj + δ

)
+ c(∂/∂u)
λj

]
Vj(u; b),

(
j = 1, 2, . . . , n − 1

)
(2.11)

and subsequently

Vn(u; b) =

⎡

⎣
n−1∏

j=1

(
λj + δ

)
+ c(∂/∂u)
λj

⎤

⎦V1(u; b), (2.12)

which together with (2.10) yields (2.3).
Since the ruin is immediate if u = 0, we have the boundary condition (2.4).
For u = b, we obtain analogously for j = 1, 2, . . . , n − 1 that

Vj(b; b) = e−δdt
{
P
(
ξj > dt

)
Vj(b; b) − cdt + P

(
ξj ≤ dt

)
Vj+1(b; b)

}
, (2.13)

which by Taylor expansion leads to

λjVj+1(b; b) =
(
λj + δ

)
Vj(b; b) + c. (2.14)

Comparing these equations with the corresponding ones in (2.8), the continuity of Vj(u; b) at
u = b then implies that

∂Vj(u; b)
∂u

∣∣∣∣∣
u=b

= 1, j = 1, 2, . . . , n − 1. (2.15)
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Similarly, one can verify that (2.15) also holds for j = n. For j = 1, (2.15) is equivalent to (2.5)
with k = 1. It follows from (2.11) that

Vk(u; b) =

⎡

⎣
k∏

j=2

(
λj−1 + δ

)
+ c(∂/∂u)

λj−1

⎤

⎦V (u; b), k = 2, 3, . . . , n. (2.16)

Applying the operator ∂/∂u to both sides of the above equation, we get

⎡

⎣
k∏

j=2

(
λj−1 + δ

)
+ c(∂/∂u)

λj−1

⎤

⎦∂V (u; b)
∂u

∣∣∣∣∣∣
u=b

=
∂Vk(u; b)

∂u

∣∣∣∣
u=b

= 1, k = 2, 3, . . . , n, (2.17)

which is the boundary condition (2.5).

Remark 2.2. When the gains waiting time Wi have an exponential distribution with k(y) =
λe−λy for λ > 0, y ≥ 0, q = 0, p = 1, and p(x) = p1(x), we can get the integro-differential
equation of V (u; b):

cV ′(u; b) + (λ + δ)V (u; b) = λ

∫b−u

0
V (u + x; b)p(x)dx

+ λ

∫∞

b−u
[1 − P(x)]dx + λV (b; b)[1 − P(b − u)].

(2.18)

This is the result (2.3) in Avanzi et al. [3].

Example 2.3. For n = 1, λ1 := λ, let p1(x) = β1e
−β1x, p2(x) = β2e

−β2x, x > 0, where β1 and β2 are
two positive constants. Then

p(x) = pβ1e
−β1xI{x≥0} + qβ2e

β2xI{x<0}. (2.19)

From (2.3), we have

[
c

λ

∂

∂u
+
(
1 +

δ

λ

)]
V (u; b) = pβ1e

β1u

∫b

u

V (x; b)e−β1xdx +
p

β1
e−β1(b−u)

+ pV (b; b)e−β1(b−u) + qβ2e
−β2u
∫u

0
V (x; b)eβ2xdx.

(2.20)

Applying the operator ((∂/∂u) − β1)((∂/∂u) + β2) to both sides of (2.20), we get

(
∂

∂u
− β1

)(
∂

∂u
+ β2

)[
c

λ

∂

∂u
+
(
1 +

δ

λ

)]
V (u; b) =

(
qβ2 − pβ1

)∂V (u; b)
∂u

− (p + q
)
β1β2V (u; b).

(2.21)
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The characteristic equation of (2.21) is

(
r − β1

)(
r + β2

)[ c
λ
r +
(
1 +

δ

λ

)]
=
(
qβ2 − pβ1

)
r − (p + q

)
β1β2. (2.22)

That is,

c

λ
r +
(
1 +

δ

λ

)
=

pβ1
β1 − r

+
qβ2

β2 + r
. (2.23)

The expression on the left-hand side is a linear function of r, while the expression on the
right-hand side is a rational function with poles at r = β1,−β2. By a graphical arguments,
it can be verified that the characteristic equation above has exactly three real roots r1, r2, r3
satisfying

−∞ < r1 < −β2 < r2 < 0 < r3 < β1 < ∞. (2.24)

Hence, we set

V (u; b) = c1e
r1u + c2e

r2u + c3e
r3u, (2.25)

where c1 = c1(b), c2 = c2(b), and c3 = c3(b) are constants need to be determined. It follows
from (2.4) and (2.5) that we have

c1 + c2 + c3 = 0,

c1r1e
r1b + c2r2e

r2b + c3r3e
r3b = 1.

(2.26)

Substituting (2.25) into (2.20), and since this equation must be satisfied for u = b, we have

c1

[(
c

λ
r1 + 1 +

δ

λ
− p

)
er1b − qβ2

er1b − e−β2b

r1 + β2

]
+ c2

[(
c

λ
r2 + 1 +

δ

λ
− p

)
er2b − qβ2

er2b − e−β2b

r2 + β2

]

+ c3

[(
c

λ
r3 + 1 +

δ

λ
− p

)
er3b − qβ2

er3b − e−β2b

r3 + β2

]
− p

β1
= 0,

(2.27)

which can be rewritten as

Δ1c1 + Δ2c2 + Δ3c3 =
p

β1
, (2.28)
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where

Δ1 =
pr1

β1 − r1
er1b +

qβ2
β2 + r1

e−β2b,

Δ2 =
pr2

β1 − r2
er2b +

qβ2
β2 + r2

e−β2b,

Δ3 =
pr3

β1 − r3
er3b +

qβ2
β2 + r3

e−β2b.

(2.29)

Solving system (2.26) and (2.28) gives c1 = A1/A, c2 = A2/A, and c3 = A3/A, where

A =
pr1r2(r2 − r1)(
β1 − r1

)(
β1 − r2

)e(r1+r2)b +
pr1r3(r1 − r3)(
β1 − r1

)(
β1 − r3

)e(r1+r3)b +
pr2r3(r3 − r2)(
β1 − r2

)(
β1 − r3

)e(r2+r3)b

+ qβ2

(
r3e

r3b − r2e
r2b

r1 + β2
+
r1e

r1b − r3e
r3b

r2 + β2
+
r2e

r2b − r1e
r1b

r3 + β2

)
e−β2b,

A1 =
pr22

β1
(
β1 − r2

)er2b − pr23
β1
(
β1 − r3

)er3b + qβ2

(
1

r2 + β2
− 1
r3 + β2

)
e−β2b,

A2 = − pr21
β1
(
β1 − r1

)er1b +
pr23

β1
(
β1 − r3

)er3b + qβ2

(
1

r3 + β2
− 1
r1 + β2

)
e−β2b,

A3 =
pr21

β1
(
β1 − r1

)er1b − pr22
β1
(
β1 − r2

)er2b + qβ2

(
1

r1 + β2
− 1
r2 + β2

)
e−β2b.

(2.30)

Example 2.4. For n = 2, q = 0, p = 1, and p(x) = p1(x) = βe−βx, β > 0, x ≥ 0, we have

⎡

⎣
2∏

j=1

(
c

λj

∂

∂u
+

(
1 +

δ

λj

))⎤

⎦V (u; b) = βeβu
∫b

u

V (x; b)e−βxdx

+
1
β
e−β(b−u) + V (b; b)e−β(b−u).

(2.31)

Applying the operator (∂/∂u) − β to both sides of (2.31), we get

(
∂

∂u
− β

) 2∏

j=1

(
c

λj

∂

∂u
+

(
1 +

δ

λj

))
V (u; b) = −βV (u; b), (2.32)

from which we get the characteristic equation

(cr + λ1 + δ)(cr + λ2 + δ)
λ1λ2

=
β

β − r
. (2.33)
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By a graphical arguments, it can be verified that the characteristic equation above has exactly
three real roots r1, r2, r3 satisfying

r1 < r2 < 0 < r3 < β. (2.34)

Hence we get

V (u, b) = c1e
r1u + c2e

r2u + c3e
r3u, (2.35)

where c1 = c1(b), c2 = c2(b), and c3 = c3(b) are constants. It follows from (2.4) and (2.5) that

c1 + c2 + c3 = 0, (2.36)

c1r1e
r1b + c2r2e

r2b + c3r3e
r3b = 1. (2.37)

Substituting (2.35) into (2.31), and because this equation must be satisfied for all 0 ≤ u ≤ b,
the sum of the coefficients of e−β(u−b) must be zero. Therefore,

c1
r1

r1 − β
er1b + c2

r2
r2 − β

er2b + c3
r3

r3 − β
er3b +

1
β
= 0. (2.38)

It follows from (2.36)–(2.38) that

c1 =
B1

B
, c2 =

B2

B
, c3 =

B3

B
, (2.39)

where

B = β
(
r3 − β

)
(r1 − r2)r1r2e(r1+r2)b + β

(
r2 − β

)
(r3 − r1)r1r3e(r1+r3)b

+ β
(
r1 − β

)
(r2 − r3)r2r3e(r2+r3)b,

B1 =
(
r1 − β

)(
r3 − β

)
r22e

r2b − (r1 − β
)(
r2 − β

)
r23e

r3b,

B2 =
(
r1 − β

)(
r2 − β

)
r23e

r3b − (r2 − β
)(
r3 − β

)
r21e

r1b,

B3 =
(
r2 − β

)(
r3 − β

)
r21e

r1b − (r1 − β
)(
r3 − β

)
r22e

r2b.

(2.40)

3. Moment-Generating Function of the Discounted Dividends

We denote moment-generating function of D by

M
(
u, y, b

)
= E
[
eyD | X(0) = u

]
. (3.1)

Let ∂/∂y denote the differentiation operator with respect to y and correspondingly ∂/∂u the
differentiation operator with respect to u.
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Theorem 3.1. The moment-generating function M(u, y, b) (0 < u < b) satisfies the following
integro-differential equation:

⎡

⎣
n∏

j=1

(
δy

λj

∂

∂y
+

c

λj

∂

∂u
+ 1

)⎤

⎦M
(
u, y, b

)

= p

∫∞

0
M
(
u + x, y, b

)
p1(x)dx + q

∫u

0
M
(
u − x, y, b

)
p2(x)dx + q[1 − P2(u)],

(3.2)

with boundary conditions
⎡

⎣
k∏

j=2

(
δy

∂

∂y
+ c

∂

∂u
+ λj−1

)⎤

⎦∂M
(
u, y, b

)

∂u

∣∣∣∣∣∣
u=b

= y

⎡

⎣
k∏

j=2

(
δy

∂

∂y
+ c

∂

∂u
+ λj−1

)⎤

⎦M
(
u, y, b

)
∣∣∣∣∣∣
u=b

, k = 1, 2, . . . , n.

(3.3)

Proof. As in Albrecher et al. [19], letMj(u, y, b) denote the moment-generating function ofD
if the risk process is in state j (j = 1, . . . , n − 1). Eventually, we are interested in M(u, y, b) :=
M1(u, y, b). Conditioning on the occurrence of a (sub-)claim within an infinitesimal time
interval, we obtain for 0 ≤ u < b and j = 1, . . . , n − 1,

Mj

(
u, y, b

)
= P
(
ξj > dt

)
Mj

(
u − cdt, ye−δdt, b

)
+ P
(
ξj ≤ dt

)
Mj+1

(
u − cdt, ye−δdt, b

)
. (3.4)

It follows from (3.4) that

λjMj+1
(
u, y, b

)
=
[
λj + δy

∂

∂y
+ c

∂

∂u

]
Mj

(
u, y, b

)
. (3.5)

For j = n, we have

[
δy

∂

∂y
+ c

∂

∂u
+ λn

]
Mn

(
u, y, b

)
= pλn

∫∞

0
M1
(
u + x, y, b

)
p1(x)dx

+ qλn

∫0

−u
M1
(
u + x, y, b

)
p2(−x)dx + qλn[1 − P2(u)].

(3.6)

It follows from (3.5) that we have

⎛

⎝
n−1∏

j=1

λj

⎞

⎠Mn

(
u, y, b

)
=

⎡

⎣
n−1∏

j=1

(
δy

∂

∂y
+ c

∂

∂u
+ λj

)⎤

⎦M1
(
u, y, b

)
, (3.7)

which together with (3.6) yields (3.2).



Journal of Applied Mathematics 11

For u = b, we obtain analogously for j = 1, 2, . . . , n − 1

Mj

(
b, y, b

)
=
(
1 − λjdt

)
e−ycdtMj

(
b, ye−δdt, b

)
+ λjdte

−ycdtMj+1

(
b, ye−δdt, b

)
+ o(dt) (3.8)

which leads to

λjMj+1
(
b, y, b

)
=
(
λj + yc

)
Mj

(
b, y, b

)
+ yδ

∂Mj

∂y

(
b, y, b

)
. (3.9)

Comparing these equations with the corresponding equations in (3.5), the continuity of
Mj(u, y, b) at u = b implies

∂Mj

(
u, y, b

)

∂u

∣∣∣∣∣
u=b

= yMj

(
b, y, b

)
, j = 1, 2, . . . , n − 1. (3.10)

Similarly, we can show that (3.10) holds true for j = n. For j = 1, (3.10) is equivalent to (3.3)
for k = 1. Now it just remains to express equations (3.10) for j = 2, . . . , n in terms ofM1 = M,
which is done by virtue of (3.9).

Form ∈ N, we denote themth moment of D by

Wm(u; b) = E[Dm | X(0) = u]. (3.11)

Theorem 3.2. The mth moment Wm(u; b) (0 < u < b) satisfies the following integro-differential
equation

⎡

⎣
n∏

j=1

(
δm

λj
+

c

λj

∂

∂u
+ 1

)⎤

⎦Wm(u; b) = p

∫b−u

0
Wm(u + x; b)p1(x)dx

+ p
m∑

i=0

(
m
i

)
Wi(b; b)

∫∞

b−u
(u − b + x)m−ip1(x)dx

+ q

∫u

0
Wm(u − x; b)p2(x)dx

(3.12)

with boundary conditions

⎡

⎣
k∏

j=2

(
δm + c

∂

∂u
+ λj−1

)⎤

⎦∂Wm(u; b)
∂u

∣∣∣∣∣∣
u=b

= m

⎡

⎣
k∏

j=2

(
δ(m − 1) + c

∂

∂u
+ λj−1

)⎤

⎦Wm−1(u; b)

∣∣∣∣∣∣
u=b

, k = 1, 2, . . . , n.

(3.13)
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Proof. Since

M
(
u, y, b

)
= 1 +

∞∑

m=1

ym

m!
Wm(u, b), (3.14)

the result follows if we equate the coefficients of ym (m = 0, 1, 2, . . .) in (3.2) and (3.3).

Remark 3.3. We remark that when m = 1, W0(u; b) = 1, and W1(u; b) = V (u; b), we reobtained
the result of Theorem 2.1; when n = 1, p = 0, and q = 1, (3.12) reduces to (2.3) of Cheung and
Drekic [20]; when p = 0, q = 1, (3.2) and (3.3) reduce to (2) and (3) of Albrecher et al. [19],
and (3.12) and (3.13) reduce to (9) and (10) of Albrecher et al. [19].

Acknowledgments

The authors would like to thank the anonymous referees for their constructive and insightful
suggestions and comments on the previous version of this paper. This paper is supported by
the National Natural Science Foundation of China (no. 11171179).

References

[1] H. Albrecher, A. L. Badescu, and D. Landriault, “On the dual risk model with tax payments,”
Insurance: Mathematics and Economics, vol. 42, no. 3, pp. 1086–1094, 2008.

[2] A. C. Y. Ng, “On a dual model with a dividend threshold,” Insurance: Mathematics and Economics, vol.
44, no. 2, pp. 315–324, 2009.

[3] B. Avanzi, H. U. Gerber, and E. S. W. Shiu, “Optimal dividends in the dual model,” Insurance:
Mathematics and Economics, vol. 41, no. 1, pp. 111–123, 2007.

[4] B. Avanzi and H. U. Gerber, “Optimal dividends in the dual model with diffusion,” Astin Bulletin,
vol. 38, no. 2, pp. 653–667, 2008.

[5] J. Grandell, Aspects of Risk Theory, Springer, New York, NY, USA, 1991.
[6] H. Cramér, Collective Risk Theory: A Survey of the Theory from the Point of View of the Theory of Stochastic

Processes, A. B. Nordiska Bokhandeln, Stockholm, Sweden, 1955.
[7] H. L. Seal, Stochastic Theory of a Risk Business, Wiley, New York, NY, USA, 1969.
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phase-type Lévy models,” Stochastic Processes and Their Applications, vol. 109, no. 1, pp. 79–111, 2004.
[12] M. Jacobsen, “The time to ruin for a class of Markov additive risk process with two-sided jumps,”

Advances in Applied Probability, vol. 37, no. 4, pp. 963–992, 2005.
[13] Y. H. Dong and G. J. Wang, “Ruin probability for renewal risk model with negative risk sums,” Journal

of Industrial and Management Optimization, vol. 2, no. 2, pp. 229–236, 2006.
[14] Y. H. Dong and G. J. Wang, “On a compounding assets model with positive jumps,” Applied Stochastic

Models in Business and Industry, vol. 24, no. 1, pp. 21–30, 2008.
[15] N. Cai, N. Chen, and X. Wan, “Pricing double-barrier options under a flexible jump diffusion model,”

Operations Research Letters, vol. 37, no. 3, pp. 163–167, 2009.
[16] Z. Zhang, H. Yang, and S. Li, “The perturbed compound Poisson risk model with two-sided jumps,”

Journal of Computational and Applied Mathematics, vol. 233, no. 8, pp. 1773–1784, 2010.
[17] Y. Chi and X. S. Lin, “On the threshold dividend strategy for a generalized jump-diffusion risk

model,” Insurance: Mathematics and Economics, vol. 48, no. 3, pp. 326–337, 2011.



Journal of Applied Mathematics 13

[18] N. Cai and S. G. Kou, “Option pricing under amixed-exponential jump diffusionmodel,”Management
Science, vol. 57, no. 11, pp. 2067–2081, 2011.
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