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This paper addresses the issue of vibration characteristics of nonlinear systems with impulsive
effects. By utilizing a T-S fuzzy model to represent a nonlinear system, a general strict practical
stability criterion is derived for nonlinear impulsive systems.

1. Introduction

In recent years, nonlinear vibration and its control have been widely studied due to
undesirable or harmful behaviors under many circumstances [1–6]. Furthermore, during
working condition, plates usually work with disturbances which can be described with
impulsive effects, and impulsive differential equations usually used to dealt with this kind of
problem. A number of papers have deal with the theory of impulsive differential equations
[7–10] and its applications to many kind of systems [11, 12]. Impulsive control has been
demonstrated to be an effective and attractive control method to stabilize linear and nonlinear
systems [11, 13], especially to stabilize various chaotic vibration systems (e.g., see [14–16]).

Furthermore, a highly nonlinear system can usually be represented by the T-S fuzzy
model [17]. The T-S fuzzy model is described by fuzzy IF-THEN rules where the consequent
parts represent local linear models for nonlinear systems. Then we can use linear theory to
analyze chaotic systems by means of T-S fuzzy models at a certain domain [18, 19].

In the study of the Lyapunov stability, an interesting set of problems deals with
bringing sets close to a certain state, rather than the state x = 0 [20]. The desired state of
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system may be mathematically unstable and yet the system may oscillate sufficiently near
this state that its performance is acceptable. Many problems fall into this category including
the travel of a space vehicle between two points, an aircraft or a missile which may oscillate
around a mathematically unstable course yet its performance may be acceptable, and the
problem in a chemical process of keeping the temperature within certain bounds. Such
considerations led to the notion of practical stability which is neither weaker nor stronger
than the Lyapunov stability [21, 22]. In a practical control problem, one aims at controlling
a system into a certain region of interest instead of an exact point. If one wants to control a
system to an exact point, the expense may be prohibitively high in some cases.

In this paper, we study the practical stability for the nonlinear impulsive system based
on T-S fuzzymodel. After a general strictly practical stability criterion is derived, some simple
and easily verified sufficient conditions are given to stabilize the nonlinear vibration system.

Notation: A > 0 (< 0) means A is a symmetrical positive (negative) definite matrix.
R+, R+, and N stand for, respectively, the set of all positive real numbers, nonnegative real
numbers, and the set of natural numbers. ‖x‖ denotes the Euclidian norm of vector x, and
λmin(A) and λmax(A)mean the minimal and maximal eigenvalues of matrix A, respectively.

2. Problem Formulation

Consider the following nonlinear system

ẋ(t) = f(x(t)), (2.1)

where x(t) ∈ Rn is the state variable, f ∈ C[Rn, Rn]. We can construct the fuzzy model for
(2.1) as follows: rule (i): if z1(t) isMi1, . . ., and zp(t) isMip, THEN x(t) = Aix(t), i = 1, 2, . . . , r,
in which zi(t), . . . , zp(t) are the premise variables, eachMij (j = 1, 2, . . . , p) is a fuzzy set, and
Ai ∈ Rn×n is a constant matrix. With a center-average defuzzifier, the overall fuzzy system is
represented as

ẋ(t) =
r∑

i=1

hi(t)Aix(t), (2.2)

where r is the number of fuzzy implications, hi(t) = wi(t)/(
∑r

i=1 wi(t)), wi(t) =∏p

l=1Mil(zl(t)), and Mil(zl(t)) is the grade of membership of zl(t) in Mil. Of course, hi(t) ≥ 0
and

∑r
i=1 hi(t) = 1. Note that system (2.2) can locally represent system (2.1).
Disturbances, acting on system (2.1), are given by a sequence {tk, Ik(x(tk))}, where

0 < t1 < t2 < · · · < tk < · · · , tk → ∞ as k → ∞, and Ik ∈ C[Rn, Rn] denotes the incremental
change of the state at time tk. Thus, the following impulsive differential equation is obtained

ẋ(t) =
r∑

i=1

hi(t)Aix(t), ∀t ≥ 0, t /= tk,

Δx(t) = Ik(x(t)), t = tk, k ∈ N,

(2.3)

in which Δx(t) = x(t+
k
) − x(tk), x(t+k) = lim

t→ t+
k

x(tk), k ∈ N.
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Assume that Ik(0) ≡ 0 for all k so that the trivial solution of (2.3) exists. Denote S(ρ) =
{x ∈ Rn : ‖x‖ < ρ}.

We will introduce the following classes of function spaces, definitions, and theorems
for future use:

K = {a ∈ C[R+, R+] : a is strictly increasing and a(0) = 0}.

CK = {a ∈ C[R2
+, R+] : a(t, u) ∈ K for each t ∈ R+}.

Definition 2.1. Let V : R+ × Rn → R+, then V is said to belong to class υ0 if:

(1) V is continuous in (tk−1, tk] × Rn and for each x ∈ Rn, k = 1, 2, . . .,

lim
(t,y)→(t+k ,x)

V
(
t, y

)
lim = V

(
t+k, x

)
(2.4)

exits;

(2) V is locally Lipschitzian in x.

Definition 2.2. For (t, x) ∈ (tk−1, tk] × Rn, we define the derivatives of V (t, x) as

D+V (t, x) = lim
s→ 0+

sup
1
s

[
V
(
t + s, x + sf(t, x)

) − V (t, x)
]
, (2.5)

D−V (t, x) = lim
s→ 0−

inf
1
s

[
V
(
t + s, x + sf(t, x)

) − V (t, x)
]
. (2.6)

Definition 2.3. The trivial solution of the system (2.1) is said to be

(1) practically stable, if given (λ,A) with 0 < λ < A, one has ‖x0‖ < λ implies ‖x(t)‖ <
A, t ≥ t0 for some t0 ∈ R+;

(2) strictly stable, if (1) holds and for every μ ≤ λ there exists B < μ such that ‖x0‖ > μ
implies ‖x(t)‖ > B, t ≥ t0.

Theorem 2.4 (see [23]). Suppose that

(1) 0 < λ < A < ρ;

(2) there exists V1 : R+ × S(ρ) → R+, V1 ∈ v0, a1 ∈ CK, b1 ∈ K such that a1(t0, λ) ≤ b1(A)
for some t0 ∈ R+, and for (t, x) ∈ R+ × S(ρ),

b1(‖x‖) ≤ V1(t, x) ≤ a1(t0, ‖x‖),

D+V1(t, x) ≤ 0, t /= tk,

V1(t+, x + Ik(x)) ≤ V1(t, x), t = tk,

(2.7)
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(3) there exists V2 : R+ × S(ρ) → R+, V2 ∈ v0, a2, b2 ∈ K such that for (t, x) ∈ R+ × S(ρ),

b2(‖x‖) ≤ V2(t, x) ≤ a2(‖x‖)

D−V2(t, x) ≥ 0, t /= tk,

V2(t+, x + Ik(x)) ≥ V2(t, x), t = tk.

(2.8)

Then, the trivial solution of (2.1) is strictly practically stable.

3. Main Results

In this section, wewill give some strict practical stability criteria of nonlinear vibration system
(2.3).

Theorem 3.1. The trivial solution of system (2.3) is strictly practically stable if there exists a matrix
P > 0, α ≤ 0 and the following conditions hold:

PAi +AT
i P ≤ αI, i = 1, . . . , r, (3.1)

‖x(tk) + Ik(x(tk))‖2 ≤ λmin(P)
λmax(P)

‖x(tk)‖2, k ∈ N. (3.2)

Proof. Consider the Lyapunov function V1(x(t)) = (1/2)xT (t)Px(t) and V2(x(t)) =
exp(−xT (t)Px(t)). It yields that

1
2
λmin(P)‖x(t)‖2 ≤ V1(x(t)) ≤ 1

2
λmax(P)‖x(t)‖2,

exp
(
−λmin(P)‖x(t)‖2

)
≥ V2(x(t)) ≥ exp

(
−λmax(P)‖x(t)‖2

)
.

(3.3)

When t /= tk, since PAi +AT
i P ≤ αI, i = 1, 2, . . . , r and α ≤ 0, the derivatives of them are

D+V1(x(t)) =
1
2
ẋT (t)Px(t) + xT (t)Pẋ(t)

=
1
2

r∑

i=1

hi(t)xT (t)
{
PAi +AT

i P
}
x(t)

≤ α

2
‖x(t)‖2

≤ 0, t ∈ (tk−1, tk), k ∈ N, x ∈ S
(
ρ
)
,

(3.4)

D−V2(x(t)) = − exp
(
−xT (t)Px(t)

)(
ẋT (t)Px(t) + xT (t)Pẋ(t)

)

= − exp
(
−xT (t)Px(t)

)( r∑

i=1

hi(t)xT (t)
{
PAi +AT

i P
}
x(t)

)



Journal of Applied Mathematics 5

≥ −α exp
(
−xT (t)Px(t)

)
‖x(t)‖2

≥ 0, t ∈ (tk−1, tk), k ∈ N, x ∈ S
(
ρ
)
.

(3.5)

Let a1(x) = xT (t)Px(t), b1(x) = (1/4)V1(x(t)), a2(x) = 2 exp(−xT (t)Px(t)), and b2(x) =
exp(−xT (t)Px(t)), we can easily obtain

b1(‖x‖) ≤ V1(x(t)) ≤ a1(t0, ‖x‖),
b2(‖x‖) ≤ V2(x(t)) ≤ a2(‖x‖).

(3.6)

When t = tk, according to (3.2) and (3.6), we have

V1(x(t) + Ik(x(t))) =
1
2
(x(t) + Ik(x(t)))TP(x(t) + Ik(x(t)))

≤ 1
2
λmax(P)‖(x(t) + Ik(x(t)))‖2

≤ 1
2
λmin(P)‖(x(t))‖2

≤ V1(x(t)),

(3.7)

V2(x(t) + Ik(x(t))) = exp
(
(−(x(t) + Ik(x(t)))

TP(x(t) + Ik(x(t)))
)

≥ exp (−λmax(P)‖(x(t) + Ik(x(t)))‖)2

≥ exp
(
−λmin(P)‖(x(t))‖2

)

≥ V2(x(t)).

(3.8)

Then, with Theorem 2.4, the trivial solution of system (2.3) is strictly practical stable.

Remark 3.2. If system (2.3) is practically stabilizable, we can design a general linear or
nonlinear impulsive control law {tk, Ik(x(tk))} for system (2.1), which can make the system
oscillate sufficiently near the aimed state and the performance is considered acceptable, that
is, the vibration of system (2.1) is depressed in the sense of practical stability under the
impulsive control.

If Ik(x(tk)) = Ckx(tk), k ∈ N, where each Ck ∈ Rn×n is constant matrix, then system
(2.3) is rewritten by

ẋ(t) =
r∑

i=1

hi(t)Aix(t), ∀t ≥ 0, t /= tk,

Δx(t) = Ckx(t), t = tk, k ∈ N.

(3.9)
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From (3.2), it is easily obtained that

‖I + Ck‖2 ≤ λmin(P)
λmax(P)

, k ∈ N. (3.10)

Then, we have the following corollary.

Corollary 3.3. The trivial solution of system (3.9) is strictly practically stable if there exist a matrix
P > 0, α ≤ 0 and the conditions (3.1) and (3.10) hold.

4. Conclusions

In this paper, some strict practical stability criteria have been put forward for nonlinear
impulsive systems based on their T-S models. The reported results are helpful to consider
the vibration characteristics of nonlinear systems with impulsive disturbances and also to
control the vibration of nonlinear system via the impulsive control law.

Acknowledgments

This work was supported by the National Natural Science Foundation of China under
Grants no. 50905018 and 51075033, the Foundation of Science and Technology on Vehicle
Transmission Laboratory, the Fundamental Research Funds for the Central Universities
under Grant no. ZYGX2009J088, and Sichuan Science & Technology Plan under Grant no.
2011JY0001.

References

[1] B. Lehman, J. Bentsman, S. Verduyn Lunel, and E. I. Verriest, “Vibrational control of nonlinear time
lag systems with bounded delay: averaging theory, stabilizability, and transient behavior,” IEEE
Transactions on Automatic Control, vol. 39, no. 5, pp. 898–912, 1994.

[2] A. E. Alshorbagy, M. A. Eltaher, and F. F. Mahmoud, “Free vibration characteristics of a functionally
graded beam by finite element method,” Applied Mathematical Modelling, vol. 35, no. 1, pp. 412–425,
2011.

[3] B. Farshi and A. Assadi, “Development of a chaotic nonlinear tuned mass damper for optimal
vibration response,” Communications in Nonlinear Science and Numerical Simulation, vol. 16, no. 11, pp.
4514–4523, 2011.

[4] B. K. Eshmatov, “Nonlinear vibrations and dynamic stability of viscoelastic orthotropic rectangular
plates,” Journal of Sound and Vibration, vol. 300, no. 3–5, pp. 709–726, 2007.

[5] X. Zhou, Y. Wu, Y. Li, and Z. Wei, “Hopf bifurcation analysis of the Liu system,” Chaos, Solitons &
Fractals, vol. 36, no. 5, pp. 1385–1391, 2008.

[6] X. Zhou, Y. Wu, Y. Li, and H. Xue, “Adaptive control and synchronization of a novel hyperchaotic
system with uncertain parameters,” Applied Mathematics and Computation, vol. 203, no. 1, pp. 80–85,
2008.

[7] V. Lakshmikantham, D. D. Bainov, and P. S. Simeonov, Theory of Impulsive Differential Equations, Series
in Modern Applied Mathematics, World Scientific, Singapore, 1989.

[8] Q. Zhong, J. Bao, Y. Yu, and X. Liao, “Exponential stabilization for discrete Takagi-Sugeno fuzzy
systems via impulsive control,” Chaos, Solitons & Fractals, vol. 41, no. 4, pp. 2123–2127, 2009.

[9] X. H. Tang, Z. He, and J. S. Yu, “Stability theorem for delay differential equations with impulses,”
Applied Mathematics and Computation, vol. 131, no. 2-3, pp. 373–381, 2002.



Journal of Applied Mathematics 7

[10] T. Yang, “Impulsive control,” IEEE Transactions on Automatic Control, vol. 44, no. 5, pp. 1081–1083,
1999.

[11] Q. Zhong, J. Bao, Y. Yu, and X. Liao, “Impulsive control for T-S fuzzy model-based chaotic systems,”
Mathematics and Computers in Simulation, vol. 79, no. 3, pp. 409–415, 2008.

[12] M.De La Sen andN. Luo, “A note on the stability of linear time-delay systemswith impulsive inputs,”
IEEE Transactions on Circuits and Systems. I, vol. 50, no. 1, pp. 149–152, 2003.

[13] X. Liu and G. Ballinger, “Uniform asymptotic stability of impulsive delay differential equations,”
Computers & Mathematics with Applications, vol. 41, no. 7-8, pp. 903–915, 2001.

[14] X. Liu, “Impulsive stabilization and control of chaotic system,” Nonlinear Analysis: Theory, Methods &
Applications, vol. 47, no. 2, pp. 1081–1092, 2001.

[15] J. Sun, “Impulsive control of a new chaotic system,” Mathematics and Computers in Simulation, vol. 64,
no. 6, pp. 669–677, 2004.

[16] Q. S. Zhong, J. F. Bao, Y. B. Yu, and X. F. Liao, “Impulsive control for fractional-order chaotic systems,”
Chinese Physics Letters, vol. 25, no. 8, pp. 2812–2815, 2008.

[17] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications to modeling and
control,” IEEE Transactions on Systems, Man and Cybernetics, vol. 15, no. 1, pp. 116–132, 1985.

[18] Y.W.Wang, Z. H. Guan, andH. O.Wang, “Impulsive synchronization for Takagi-Sugeno fuzzymodel
and its application to continuous chaotic system,” Physics Letters, Section A, vol. 339, no. 3–5, pp. 325–
332, 2005.

[19] Y.-W. Wang, Z.-H. Guan, H. O. Wang, and J.-W. Xiao, “Impulsive control for T-S fuzzy system and
its application to chaotic systems,” International Journal of Bifurcation and Chaos in Applied Sciences and
Engineering, vol. 16, no. 8, pp. 2417–2423, 2006.

[20] I. M. Stamova, “Vector Lyapunov functions for practical stability of nonlinear impulsive functional
differential equations,” Journal of Mathematical Analysis and Applications, vol. 325, no. 1, pp. 612–623,
2007.

[21] V. Lakshmikantham, S. Leela, and A. A. Martynyuk, Practical Stability of Nonlinear Systems, World
Scientific, Teaneck, NJ, USA, 1990.

[22] T. Yang, J. A. K. Suykens, and L. O. Chua, “Impulsive control of nonautonomous chaotic systems
using practical stabilization,” International Journal of Bifurcation and Chaos in Applied Sciences and
Engineering, vol. 8, no. 7, pp. 1557–1564, 1998.

[23] S. Li, X. Song, and A. Li, “Strict practical stability of nonlinear impulsive systems by employing two
Lyapunov-like functions,” Nonlinear Analysis: Real World Applications, vol. 9, no. 5, pp. 2262–2269,
2008.


