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Let X,X1, X2, . . . be a sequence of independent and identically distributed random variables in
the domain of attraction of a normal law. An almost sure limit theorem for the self-normalized
products of sums of partial sums is established.

1. Introduction

Let {X,Xn}n∈N
be a sequence of independent and identically distributed (i.i.d.) positive

random variables with a nondegenerate distribution function and EX = μ > 0. For each
n ≥ 1, the symbol Sn/Vn denotes self-normalized partial sums, where Sn =

∑n
i=1 Xi and

V 2
n =

∑n
i=1(Xi − μ)2. We say that the random variable X belongs to the domain of attraction of

the normal law if there exist constants an > 0, bn ∈ R such that

Sn − bn
an

d−→ N, as n −→ ∞, (1.1)

here and in the sequel N is a standard normal random variable. We say that {X,Xn}n∈N
sat-

isfies the central limit theorem (CLT).
It is known that (1.1) holds if and only if

lim
x→∞

x2
P(|X| > x)

EX2I(|X| ≤ x)
= 0. (1.2)
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In contrast to the well-known classical central limit theorem, Gine et al. [1] obtained the
following self-normalized version of the central limit theorem: (Sn−ESn)/Vn

d→ N as n → ∞
if and only if (1.2) holds.

Brosamler [2] and Schatte [3] obtained the following almost sure central limit theorem
(ASCLT): let {Xn}n∈N

be i.i.d. random variables with mean 0, variance σ2 > 0, and partial
sums Sn. Then

lim
n→∞

1
Dn

n∑

k=1

dkI

{
Sk

σ
√
k
< x

}

= Φ(x) a.s. ∀x ∈ R, (1.3)

with dk = 1/k and Dn =
∑n

k=1 dk; here and in the sequel I denotes an indicator function, and
Φ(x) is the standard normal distribution function. Some ASCLT results for partial sums were
obtained by Lacey and Philipp [4], Ibragimov and Lifshits [5], Miao [6], Berkes and Csáki
[7], Hörmann [8], Wu [9, 10], and Ye and Wu [11]. Huang and Pang [12] and Zhang and
Yang [13] obtained ASCLT results for self-normalized version. However, ASCLT results for
self-normalized products of sums of partial sums have not been reported yet.

Under mild moment conditions, ASCLT follows from the ordinary CLT, but in general
the validity of ASCLT is a delicate question of a totally different character as CLT. The
difference between CLT and ASCLT lies in the weight in ASCLT. The terminology of
summation procedures (see e.g., Chandrasekharan and Minakshisundaram [14], page 35)
shows that the larger the weight sequence {dk; k ≥ 1} in (1.3) is, the stronger the relation
becomes. By this argument, one should also expect to get stronger results if we use larger
weights. And it would be of considerable interest to determine the optimal weights.

On the other hand, by the Theorem 1 of Schatte [3], (1.3) fails for weight dk = 1. The
optimal weight sequence remains unknown.

The purpose of this paper is to study and establish the ASCLT for self-normalized
products of sums of partial sums of random variables in the domain of attraction of the
normal law, we will show that the ASCLT holds under a fairly general growth condition
on dk = k−1 exp((ln k)α), 0 ≤ α < 1/2.

In the following, we assume that {X,Xn}n∈N
is a sequence of i.i.d. positive random

variables in the domain of attraction of the normal law with EX = μ > 0 and define Sk =
∑k

i=1 Xi, Vk =
∑k

i=1(Xi − μ)2, Tk =
∑k

i=1 Si. Let bn,k =
∑n

j=k 1/j, cn,k = 2
∑n

j=k(j + 1 − k)/(j(j + 1)),
and dn,k = (n + 1 − k)/(n + 1) for 1 ≤ k ≤ n. I(A) denotes the indicator function of set A,
and an ∼ bn denotes an/bn → 1, n → ∞. The symbol c stands for a generic positive constant,
which may differ from one place to another. Let

l(x) = E
(
X − μ

)2
I
{∣
∣X − μ

∣
∣ ≤ x

}
, b = inf{x ≥ 1; l(x) > 0},

ηj = inf
{

s; s ≥ b + 1,
l(s)
s2

≤ 1
j

}

for j ≥ 1.
(1.4)

By the definition of ηj , we have jl(ηj) ≤ η2
j and jl(ηj − ε) > (ηj − ε)2 for any ε > 0. It im-

plies that

nl
(
ηn
) ∼ η2

n, as n → ∞, ηn < n + 1. (1.5)

Our theorem is formulated in a more general setting.
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Theorem 1.1. Let {X,Xn}n∈N
be a sequence of i.i.d. positive random variables in the domain of

attraction of the normal law with EX = μ > 0. Suppose

l
(
ηn
) ∼ l

(
ηn
lnn

)

. (1.6)

For 0 ≤ α < 1/2, set

dk =
exp

(
lnαk

)

k
, Dn =

n∑

k=1

dk. (1.7)

Then

lim
n→∞

1
Dn

n∑

k=1

dkI

⎛

⎜
⎝

⎛

⎝
k∏

j=1

(
Tj

j
(
j + 1

)
μ/2

)⎞

⎠

μ/Vk

≤ x

⎞

⎟
⎠ = F(x) a.s., (1.8)

for any x ∈ R, where F is the distribution function of the random variable exp(
√
10/3N).

By the terminology of summation procedures, we have the following corollary.

Corollary 1.2. Theorem 1.1 remains valid if we replace the weight sequence {dk}k∈N
by {d∗

k}k∈N
such

that 0 ≤ d∗
k ≤ dk,

∑∞
k=1 d

∗
k = ∞.

Remark 1.3. If EX2 = σ2 < ∞, then X is in the domain of attraction of the normal law and l(x) →
σ2, η2

n ∼ σ2n, thus (1.6) holds. Therefore, the class of random variables in Theorems 1.1 is of very
broad range.

Remark 1.4. Whether Theorem 1.1 holds for 1/2 ≤ α < 1 remains open.

2. Proofs

Furthermore, the following four lemmas will be useful in the proof, and the first is due to
Csörgo et al. [15].

Lemma 2.1. Let X be a random variable with EX = μ, and denote l(x) = E(X − μ)2I{|X − μ| ≤ x}.
The following statements are equivalent:

(i) l(x) is a slowly varying function at ∞;

(ii) X is in the domain of attraction of the normal law;

(iii) x2
P(|X − μ| > x) = o(l(x));

(iv) xE(|X − μ|I(|X − μ| > x)) = o(l(x));

(v) E(|X − μ|αI(|X − μ| ≤ x)) = o(xα−2l(x)) for α > 2.
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Lemma 2.2. Let {ξ, ξn}n∈N
be a sequence of uniformly bounded random variables. If there exist

constants c > 0 and δ > 0 such that

∣
∣Eξkξj

∣
∣ ≤ c

(
k

j

)δ

, for 1 ≤ k < j, (2.1)

then

lim
n→∞

1
Dn

n∑

k=1

dkξk = 0 a.s., (2.2)

where dk and Dn are defined by (1.7).

Proof. We can easily apply the similar arguments of (2.1) in Wu [16] to get Lemma 2.2, and
we omit the details here.

The following Lemma 2.3 can be directly verified.

Lemma 2.3. (i) cn,i = 2(bn,i − dn,i);

(ii)
n∑

i=1
b2n,i = 2n − bn,1 ∼ 2n;

(iii)
n∑

i=1
d2
n,i =

n

3
− n

6(n + 1)
∼ n

3
;

(iv)
n∑

i=1
c2n,i =

10n
3

− 4bn,1 +
10n

3(n + 1)
∼ 10n

3
.

For every 1 ≤ i ≤ k ≤ n, let

Xki =
(
Xi − μ

)
I
(∣
∣Xi − μ

∣
∣ ≤ ηk

)
, Sk,i =

i∑

j=1

ck,jXkj , V
2
k =

k∑

j=1

X
2
kj . (2.3)

Lemma 2.4. Suppose that the assumptions of Theorem 1.1 hold. Then

lim
n→∞

1
Dn

n∑

k=1

dkI

⎧
⎪⎨

⎪⎩

Sk,k − ESk,k
√
10kl

(
ηk
)
/3

≤ x

⎫
⎪⎬

⎪⎭
= Φ(x) a.s. for any x ∈ R, (2.4)

lim
n→∞

1
Dn

n∑

k=1

dk

(

I

(
k⋃

i=1

(∣
∣Xi − μ

∣
∣ > ηk

)
)

− EI

(
k⋃

i=1

(∣
∣Xi − μ

∣
∣ > ηk

)
))

= 0 a.s., (2.5)

lim
n→∞

1
Dn

n∑

k=1

dk

⎛

⎝f

⎛

⎝ V
2
k

kl
(
ηk
)

⎞

⎠ − Ef

⎛

⎝ V
2
k

kl
(
ηk
)

⎞

⎠

⎞

⎠ = 0 a.s., (2.6)

where dk and Dn are defined by (1.7) and f is a nonnegative, bounded Lipschitz function.
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Proof. By E(X − μ) = 0, Lemma 2.1 (iv), we have

∣
∣
∣EXni

∣
∣
∣ ≤ E

∣
∣X − μ

∣
∣I
(∣
∣X − μ

∣
∣ > ηn

)
=

o
(
l
(
ηn
))

ηn
. (2.7)

Thus, by (1.5) and Lemma 2.3 (iv),

VarXni = EX
2
ni −

(
EXni

)2 ∼ l
(
ηn
)
,

n∑

i=1

Var
(
cn,iXni

)
∼ 10n

3
l
(
ηn
)
:= B2

n. (2.8)

By (1.5) and Lemma 2.3 (i),

max
1≤i≤n

cn,i ≤ 2max
1≤i≤n

bn,i ≤ 2bn,1 ∼ 2 lnn,
lnn max1≤i≤n

∣
∣
∣EXni

∣
∣
∣

Bn
−→ 0. (2.9)

Thus by combining Lemma 2.3 (iv), (1.6), and (2.8), Lindeberg condition

1
B2
n

n∑

i=1

E

(
cn,iXni

)2
I(|cn,iXni−Ecn,iXni|>εBn) ∼

c

nl
(
ηn
)

n∑

i=1

c2n,iEX
2
niI(|Xni−EXni|>εBn/2 lnn)

≤ c

nl
(
ηn
)

n∑

i=1

c2n,iEX
2
niI(|Xni|>εBn/4 lnn)

=
c

nl
(
ηn
)

n∑

i=1

c2n,iE
(
X − μ

)2
I(cηn/ lnn<|X−μ|≤ηn)

= c
l
(
ηn
) − l

(
cηn/ lnn

)

l
(
ηn
) −→ 0, as n −→ ∞

(2.10)

hold.
Hence, it follows that

Sn,n − ESn,n

Bn

d−→ N, as n −→ ∞. (2.11)

This implies that for any g(x), which is a nonnegative, bounded Lipschitz function,

Eg

(
Sn,n − ESn,n

Bn

)

−→ Eg(N), as n −→ ∞. (2.12)
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Hence, we obtain

lim
n→∞

1
Dn

n∑

k=1

dkEg

(
Sk,k − ESk,k

Bk

)

= Eg(N) (2.13)

from the Toeplitz lemma.
On the other hand, note that (2.4) is equivalent to

lim
n→∞

1
Dn

n∑

k=1

dkg

(
Sk,k − ESk,k

Bk

)

= Eg(N) a.s., (2.14)

from Theorem 7.1 of Billingsley [17] and Section 2 of Peligrad and Shao [18]. Hence, to prove
(2.4), it suffices to prove

lim
n→∞

1
Dn

n∑

k=1

dk

(

g

(
Sk,k − ESk,k

Bk

)

− Eg

(
Sk,k − ESk,k

Bk

))

= 0 a.s., (2.15)

for any g(x)which is a nonnegative, bounded Lipschitz function.
Let

ξk = g

(
Sk,k − ESk,k

Bk

)

− Eg

(
Sk,k − ESk,k

Bk

)

, for k ≥ 1. (2.16)

Clearly, there is a constant c > 0 such that

∣
∣g(x)

∣
∣ ≤ c,

∣
∣g(x) − g

(
y
)∣
∣ ≤ c

∣
∣x − y

∣
∣ for any x, y ∈ R, |ξk| ≤ 2c, for any k.

(2.17)

For any 1 ≤ k < l, note that

Sl,l − Sl,k =
l∑

i=1

cl,iXli −
k∑

i=1

cl,iXli =
l∑

i=k+1

cl,iXli. (2.18)
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For any 1 ≤ k < j, note that g((Sk,k−ESk,k)/Bk) and g((Sj,j−ESj,j−(Sj,k−ESj,k))/Bj) are
independent, g(x) is a nonnegative, bounded Lipschitz function,

∑k
i=1 c

2
k,i ∼ 10k/3, c2j,i ≤ 4b2j,i,

∑k
i=1 b

2
k,i

∼ 2k, and lnx ≤ 4x1/4, x ≥ 1. By the definition of ηj , we get

∣
∣Eξkξj

∣
∣ =

∣
∣
∣
∣
∣
Cov

(

g

(
Sk,k − ESk,k

Bk

)

, g

(
Sj,j − ESj,j

Bj

))∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
Cov

⎛

⎜
⎝g

(
Sk,k − ESk,k

Bk

)

, g

(
Sj,j − ESj,j

Bj

)

− g

⎛

⎜
⎝

Sj,j − ESj,j −
(
Sj,k − ESj,k

)

Bj

⎞

⎟
⎠

⎞

⎟
⎠

∣
∣
∣
∣
∣
∣
∣

≤ c
E

∣
∣
∣
∑k

i=1 cj,i
(
Xji − EXji

)∣
∣
∣

√
jl
(
ηj
) ≤ c

√

E

(∑k
i=1 cj,i(Xji − EXji)

)2

√
jl
(
ηj
)

≤ c

√
∑k

i=1 b
2
j,iEX

2
ji

√
jl
(
ηj
) ≤ c

√
∑k

i=1
(
bk,i + bj,k+1

)2
l
(
ηj
)

√
jl
(
ηj
)

= c

√∑k
i=1 b

2
k,i +

∑k
i=1 b

2
j,k+1

√
j

≤ c

√
k + k ln2(j/k

)

√
j

≤ c

(
k

j

)1/4

.

(2.19)

By Lemma 2.2, (2.15) holds.
Now we prove (2.5). Let

Zk = I

(
k⋃

i=1

(∣
∣Xi − μ

∣
∣ > ηk

)
)

− EI

(
k⋃

i=1

(∣
∣Xi − μ

∣
∣ > ηk

)
)

for any k ≥ 1. (2.20)

It is known that I(A∪B)− I(B) ≤ I(A) for any setsA and B; then for 1 ≤ k < j, by Lemma 2.1
(iii) and (1.5), we get

P
(∣
∣X − μ

∣
∣ > ηj

)
= o(1)

l
(
ηj
)

η2
j

=
o(1)
j

. (2.21)
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Hence for 1 ≤ k < j,

∣
∣EZkZj

∣
∣ =

∣
∣
∣
∣
∣
Cov

(

I

(
k⋃

i=1

(∣
∣Xi − μ

∣
∣ > ηk

)
)

, I

(
j⋃

i=1

(∣
∣Xi − μ

∣
∣ > ηj

)
))∣

∣
∣
∣
∣

=

∣
∣
∣
∣
∣
Cov

(

I

(
k⋃

i=1

(∣
∣Xi − μ

∣
∣ > ηk

)
)

, I

(
j⋃

i=1

(∣
∣Xi − μ

∣
∣ > ηj

)
)

−I
(

j⋃

i=k+1

(∣
∣Xi − μ

∣
∣ > ηj

)
))∣

∣
∣
∣
∣

≤ E

∣
∣
∣
∣
∣
I

(
j⋃

i=1

(∣
∣Xi − μ

∣
∣ > ηj

)
)

− I

(
j⋃

i=k+1

(∣
∣Xi − μ

∣
∣ > ηj

)
)∣
∣
∣
∣
∣

≤ EI

(
k⋃

i=1

(∣
∣Xi − μ

∣
∣ > ηj

)
)

≤ kP
(∣
∣X − μ

∣
∣ > ηj

)

≤ k

j
.

(2.22)

By Lemma 2.2, (2.5) holds.
Finally, we prove (2.6). Let

ζk = f

⎛

⎝ V
2
k

kl
(
ηk
)

⎞

⎠ − Ef

⎛

⎝ V
2
k

kl
(
ηk
)

⎞

⎠ for any k ≥ 1. (2.23)

For 1 ≤ k < j,

∣
∣Eζkζj

∣
∣ =

∣
∣
∣
∣
∣
∣
Cov

⎛

⎝f

⎛

⎝ V
2
k

kl
(
ηk
)

⎞

⎠, f

⎛

⎝
V

2
j

jl
(
ηj
)

⎞

⎠

⎞

⎠

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
Cov

⎛

⎝f

⎛

⎝ V
2
k

kl
(
ηk
)

⎞

⎠, f

⎛

⎝
V

2
j

jl
(
ηj
)

⎞

⎠ − f

⎛

⎝
V

2
j −

∑k
i=1

(
Xi − μ

)2
I
(∣
∣Xi − μ

∣
∣ ≤ ηj

)

jl
(
ηj
)

⎞

⎠

⎞

⎠

∣
∣
∣
∣
∣
∣

≤ c
E

(∑k
i=1

(
Xi − μ

)2
I
(∣
∣Xi − μ

∣
∣ ≤ ηj

))

jl
(
ηj
) = c

kE
(
X − μ

)2
I
(∣
∣X − μ

∣
∣ ≤ ηj

)

jl
(
ηj
) = c

kl
(
ηj
)

jl
(
ηj
)

= c
k

j
.

(2.24)

By Lemma 2.2, (2.6) holds. This completes the proof of Lemma 2.4.
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Proof of Theorem 1.1. Let Zj = Tj/(j(j + 1)μ/2); then (1.8) is equivalent to

lim
n→∞

1
Dn

n∑

k=1

dkI

⎛

⎝

√
3μ√
10Vk

k∑

j=1

lnZj ≤ x

⎞

⎠ = Φ(x), a.s. for any x, (2.25)

where Φ(x) is the distribution function of the standard normal random variable N.
Let q ∈ (4/3, 2), then E|X|q < ∞. Using Marcinkiewicz-Zygmund strong large number

law, we have

Sk − μk = o
(
k1/q

)
a.s. (2.26)

Thus,

|Zi − 1| =

∣
∣
∣
∑i

j=1 Sj − i(i + 1)μ/2
∣
∣
∣

i(i + 1)μ/2
≤
∑i

j=1

∣
∣Sj − μj

∣
∣

i(i + 1)μ/2
≤

∑i
j=1 j

1/q

i(i + 1)μ/2
≤ c

i1/q+1

i2

= i1/q−1 −→ 0, a.s.

(2.27)

Hence by | ln(1 + x) − x| = O(x2) for |x| < 1/2, for any 0 < ε < 1,

∣
∣
∣
∣
∣

1√
1 ± εBk

k∑

i=1

lnZi − 1√
1 ± εBk

k∑

i=1

(Zi − 1)

∣
∣
∣
∣
∣
≤ c

1
√
kl
(
ηk
)

k∑

i=1

(Zi − 1)2 ≤ c
√
kl
(
ηk
)

k∑

i=1

i2(1/q−1)

≤ c
1

k3/2−2/q
√
l
(
ηk
) −→ 0 a.s. k −→ ∞,

(2.28)

from 3/2 − 2/q > 0, l(x) is a slowly varying function at ∞, and ηk ≤ k + 1.
Hence for almost every event ω and any δ > 0, there exists k0 = k0(ω, δ, x) such that

for k > k0,

I

(
μ√

1 ± εBk

k∑

i=1

(Zi − 1) ≤ x − δ

)

≤ I

(
μ√

1 ± εBk

k∑

i=1

lnZi ≤ x

)

≤ I

(
μ√

1 ± εBk

k∑

i=1

(Zi − 1) ≤ x + δ

)

.

(2.29)
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Note that under condition |Xj − μ| ≤ ηk, 1 ≤ j ≤ k,

μ
k∑

i=1

(Zi − 1) =
k∑

i=1

∑i
l=1 Sl − μ

∑i
l=1 l

i(i + 1)/2
=

k∑

i=1

1
i(i + 1)/2

i∑

l=1

l∑

j=1

(
Xj − μ

)

=
k∑

i=1

1
i(i + 1)/2

i∑

j=1

i∑

l=j

(
Xj − μ

)
=

k∑

i=1

i∑

j=1

2
(
i + 1 − j

)

i(i + 1)
(
Xj − μ

)

=
k∑

j=1

k∑

i=j

2
(
i + 1 − j

)

i(i + 1)
Xkj =

k∑

j=1

ck,jXkj

= Sk,k.

(2.30)

Thus, for any given 0 < ε < 1, δ > 0, combining (2.29), we have for k > k0

I

(√
3μ

∑k
i=1 lnZi√

10Vk

≤ x

)

≤ I

⎛

⎜
⎝

√
3μ

∑k
i=1 lnZi

√
10(1 + ε)kl

(
ηk
) ≤ x

⎞

⎟
⎠ + I

(
V

2
k > (1 + ε)kl

(
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V
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)
)

≤ I

(
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for x ≥ 0,
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≤ I
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(∣
∣Xi − μ
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)

for x < 0,
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(
ηk
))

− 2I

(
k⋃
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Journal of Applied Mathematics 11

I

(√
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i=1 lnZi√
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≤ x

)

≥ I

(
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1 + εBk

≤ x − δ

)

− I
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(
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))

− 2I

(
k⋃
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(∣
∣Xi − μ

∣
∣ > ηk

)
)

, for x < 0.

(2.31)

Therefore, to prove (2.25), it suffices to prove

lim
n→∞

1
Dn

n∑

k=1

dkI

(
Sk,k

Bk
≤
√
1 ± εx ± δ1

)

= Φ
(√

1 ± εx ± δ1
)

a.s., (2.32)

lim
n→∞

1
Dn

n∑

k=1

dkI

(
k⋃

i=1

(∣
∣Xi − μ

∣
∣ > ηk

)
)

= 0 a.s., (2.33)

lim
n→∞

1
Dn

n∑

k=1

dkI
(
V

2
k > (1 + ε)kl

(
ηk
))

= 0 a.s., (2.34)

lim
n→∞

1
Dn

n∑

k=1

dkI
(
V

2
k < (1 − ε)kl

(
ηk
))

= 0 a.s, (2.35)

for any 0 < ε < 1 and δ1 > 0.
Firstly, we prove (2.32). Let 0 < β < 1/2 and h(·) be a real function, such that for any

given x ∈ R,

I
(
y ≤

√
1 ± εx ± δ1 − β

)
≤ h

(
y
) ≤ I

(
y ≤

√
1 ± εx ± δ1 + β

)
. (2.36)

By E(Xi − μ) = 0, Lemma 2.1(iv) and (1.5), we have

∣
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∣
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∣
∣
∣
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= 2
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∣
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)
=

k∑

j=1

j∑

i=1

1
j

o
(
l
(
ηk
))

ηk

= o

(√
kl
(
ηk
)
)

.

(2.37)

This, combining with (2.4), (2.36) and the arbitrariness of β in (2.36), (2.32) holds.



12 Journal of Applied Mathematics

By (2.5), (2.21) and the Toeplitz lemma,

0 ≤ 1
Dn

n∑

k=1

dkI

(
k⋃

i=1

(∣
∣Xi − μ

∣
∣ > ηk

)
)
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∣
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) −→ 0 a.s.

(2.38)

That is, (2.33) holds.
Now we prove (2.34). For any given ε > 0, let f be a nonnegative, bounded Lipschitz

function such that

I(x > 1 + ε) ≤ f(x) ≤ I
(
x > 1 +

ε

2

)
. (2.39)

From EV
2
k = kl(ηk), Xki is i.i.d., E(X

2
ki − EX

2
ki) = 0, Lemma 2.1 (v), and (1.5),
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(2.40)

Therefore, combining (2.6) and the Toeplitz lemma,
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(
V

2
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(
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(
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−→ 0 a.s.

(2.41)

Hence, (2.34) holds. By similar methods used to prove (2.34), we can prove (2.35). This
completes the proof of Theorem 1.1.
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[1] E. Giné, F. Götze, and D.M.Mason, “When is the Student t-statistic asymptotically standard normal?”
The Annals of Probability, vol. 25, no. 3, pp. 1514–1531, 1997.

[2] G. A. Brosamler, “An almost everywhere central limit theorem,” Mathematical Proceedings of the
Cambridge Philosophical Society, vol. 104, no. 3, pp. 561–574, 1988.

[3] P. Schatte, “On strong versions of the central limit theorem,” Mathematische Nachrichten, vol. 137, pp.
249–256, 1988.

[4] M. T. Lacey and W. Philipp, “A note on the almost sure central limit theorem,” Statistics & Probability
Letters, vol. 9, no. 3, pp. 201–205, 1990.

[5] I. Ibragimov and M. Lifshits, “On the convergence of generalized moments in almost sure central
limit theorem,” Statistics & Probability Letters, vol. 40, no. 4, pp. 343–351, 1998.

[6] Y. Miao, “Central limit theorem and almost sure central limit theorem for the product of some partial
sums,” Indian Academy of Sciences Proceedings C, vol. 118, no. 2, pp. 289–294, 2008.
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