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This work is concerned with an initial boundary value problem for a nonlocal porous medium
equation with inner absorption and weighted nonlocal boundary condition. We obtain the roles of
weight function on whether determining the blowup of nonnegative solutions or not and establish
the precise blow-up rate estimates under some suitable condition.

1. Introduction

Our main interest lies in the following nonlocal porous medium equation with inner
absorption term:

ut = Δum + up
∫
Ω
uq

(
y, t

)
dy − kur, (x, t) ∈ Ω × (0,+∞), (1.1)

subjected to weighted linear nonlocal boundary and initial conditions,

u(x, t) =
∫
Ω
f
(
x, y

)
u
(
y, t

)
dy, (x, t) ∈ ∂Ω × (0,+∞), (1.2)

u(x, 0) = u0(x), x ∈ Ω, (1.3)

where m > 1, p ≥ 0, q > 0, p + q ≥ 1, r ≥ 1, k > 0, and Ω ⊂ RN (N ≥ 1) is a bounded
domain with smooth boundary. The weight function f(x, y) /≡ 0 is a nonnegative continuous



2 Abstract and Applied Analysis

function defined on ∂Ω × Ω, and
∫
Ω f(x, y)dy > 0 on ∂Ω. The initial value u0(x) ∈ C2+α(Ω)

with 0 < α < 1 is a nonnegative continuous function satisfying the compatibility condition on
∂Ω.

Many natural phenomena have been formulated as nonlocal diffusive equation (1.1),
such as the model of non-Newton flux in the mechanics of fluid, the model of population,
biological species, and filtration (we refer to [1, 2] and the references therein). For instance,
in the diffusion system of some biological species with human-controlled distribution,
u(x, t), Δum, up

∫
Ω u

q(y, t)dy, and −k represent the density of the species, the mutation, the
human-controlled distribution, and the decrement rate of biological species at location x and
time t, respectively. Due to the effect of spatial inhomogeneity, the arising of nonlocal term
denotes that the evolution of the species at a point of space depends not only on the density
of species in partial region but also on the total region (we refer to [3–5]). However, there
are some important phenomena formulated as parabolic equations which are coupled with
weighted nonlocal boundary conditions in mathematical models, such as thermoelasticity
theory. In this case, the solution u(x, t) describes entropy per volume of the material (we
refer to [6, 7]).

To motivate our work, let us recall some results of global and blow-up solutions to
the initial boundary value problems with nonlocal terms or with nonlocal terms in boundary
conditions (we refer to [8–16]). For the study of the initial boundary value problems for the
parabolic equations with local terms which subject to the weighted nonlocal linear boundary
condition (1.2), one can see [8–10]. For example, Friedman [8] studied the linear parabolic

ut −Au = 0, (x, t) ∈ Ω × (0, T), (1.4)

subjected to the nonlocal Dirichlet boundary condition (1.2), where A is an elliptic operator,

A =
n∑

i,j=1

ai,j(x)
∂2

∂xi∂xj
+

n∑
i=1

bi(x)
∂

∂xi
+ c(x), c(x) ≤ 0. (1.5)

He proved that when
∫
Ω f(x, y)dy ≤ ρ < 1, the solution tends to 0 monotonously and

exponentially as t → ∞. With regard to more general discussions on initial boundary value
problem for linear parabolic equation with nonlocal Neumann boundary condition, one can
see [9] by Pao where the following problem was considered:

ut − Lu = g(x, u), x ∈ Ω, t > 0,

Bu =
∫
Ω
f
(
x, y

)
u
(
y, t

)
dy, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

(1.6)

where

Lu =
n∑

i,j=1

aij(x)uxixj +
n∑
j=1

bj(x)uxj , Bu = α0
∂u

∂n
+ u. (1.7)
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He studied the asymptotic behavior of solutions and found the influence of weight function
on the existence of global and blow-up solutions. Wang et al. [10] studied porous medium
equation with power form source term

ut = Δum + up, (x, t) ∈ Ω × (0,+∞), (1.8)

subjected to nonlocal boundary condition (1.2). By virtue of the method of upper-lower
solutions, they obtained global existence, blow-up properties, and blow-up rate of solutions.

For the study of the initial boundary value problems for the parabolic equations with
nonlocal terms which subjected to the weighted nonlocal linear boundary condition (1.2), we
refer to [11–16]. Lin and Liu [11] considered the semilinear parabolic equation

ut = Δu +
∫
Ω
g(u)dx, (x, t) ∈ Ω × (0,+∞), (1.9)

with nonlocal boundary condition (1.2). They established local existence, global existence,
and blow-up properties of solutions. Moreover, they derived the uniform blow-up estimates
for special g(u) under suitable assumption; Cui and Yang [12] discussed the nonlocal slow
diffusion equation

ut = Δum + aup
∫
Ω
uq

(
y, t

)
dy, (x, t) ∈ Ω × (0,+∞), (1.10)

and they built global existence, blow-up properties, and blow-up rate of solutions. For the
system of equations, we refer readers to [13] and the references therein.

Recently, Wang et al. [14] studied the following semilinear parabolic equation with
nonlocal sources and interior absorption term:

ut = Δu +
∫
Ω
uqdx − αur, (x, t) ∈ Ω × (0,+∞), (1.11)

with weighted linear nonlocal boundary condition (1.2) and initial condition (1.3), where
q ≥ 1, r ≥ 1, and α > 0. By using comparison principle and the method of upper-lower
solutions, they got the following results.

(a) If 1 ≤ q < r, then the solution of the problem exists globally.

(b) If q > r ≥ 1, the problem has solutions blowing up in finite time as well as global
solutions. That is,

(i) if
∫
Ω f(x, y)dy ≤ 1, and u0(x) ≤ (α/|Ω|)1/(r−q), then the solution exists globally;

(ii) if
∫
Ω f(x, y)dy > 1, and u0(x) > (α/(|Ω| − α))1/r (|Ω| > α), then the solution

blows up in finite time;
(iii) for any f(x, y) ≥ 0, there exists a2 > 0 such that the solution blows up in

finite time provided that u0(x) > a2φ(x), where φ(x) is the corresponding
normalized eigenfunction of −Δ with homogeneous Dirichlet boundary
condition, and

∫
Ω φ(x)dx = 1.
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(c) If q = r > 1.

(i) The solution blows up in finite time for any f(x, y) ≥ 0 and large enough u0.
(ii) If

∫
Ω f(x, y)dy < 1, the solution exists globally for u0(x) ≤ a1Φ(x) for some

a1 > 0, where Φ(x) solves the following problem:

−ΔΦ(x) = δ0, x ∈ Ω,

Φ(x) =
∫
Ω
f
(
x, y

)
dy, x ∈ ∂Ω,

(1.12)

here δ0 is a positive constant such that 0 ≤ Φ(x) ≤ 1.
In addition, for the initial boundary value problem of (1.11) with weighted nonlinear

boundary condition and Dirichlet boundary condition, we refer to [15, 16] and references
therein, respectively.

The aim of this paper is to obtain the sufficient condition of global and blow-up
solutions to problem (1.1)–(1.3) and to extend the results of the semilinear equation (1.11)
to the quasilinear ones. The difficulty lies in finding the roles of weighted function in the
boundary condition and the competitive relationship of nonlocal source and inner absorption
on whether determining the blowup of solutions or not. Our detailed results are as follows.

Theorem 1.1. Suppose that p + q > r. If
∫
Ω f(x, y)dy ≥ 1 for x ∈ ∂Ω, and the initial data u0(x) >

(k/(|Ω| − k))1/(p+q) (|Ω| > k), then the solution of problem (1.1)–(1.3) blows up in finite time.

Remark 1.2. There may exist a global solution of problem (1.1)–(1.3) for small enough initial
data under the condition of Theorem 1.1. Unfortunately, since the weight function satisfies
the condition

∫
Ω f(x, y)dy ≥ 1 on the boundary, we cannot construct a suitable supersolution

of problem (1.1)–(1.3).

Theorem 1.3. Suppose that p + q > r, if
∫
Ω f(x, y)dy ≤ 1 for x ∈ ∂Ω, then the solution of problem

(1.1)–(1.3) exists globally for the initial data u0(x) < (k/|Ω|)1/(p+q−r). If p + q ≥ max{m, r}, then
the solution of problem (1.1)–(1.3) blows up in finite time for large enough initial data and arbitrary
f(x, y) > 0.

Theorem 1.4. Suppose that p + q < r,then the solution of problem (1.1)–(1.3) exists globally for
arbitrary f(x, y) > 0.

Theorem 1.5. Suppose that p + q = r.
∫
Ω f(x, y) ≤ ρ < 1 for x ∈ ∂Ω, where ρ is a positive constant

and ρ < 1.

(1) Ifm > p + q, then every nonnegative solution of problem (1.1)–(1.3) exists globally.

(2) Ifm = p+ q, then for |Ω| < k + (δ/M1)(1−ρm), the solution of problem (1.1)–(1.3) exists
globally, where δ,M1 > 0 are as defined in (3.13).

(3) If m < p + q, the solution of problem (1.1)–(1.3) exists globally for sufficient small initial
data while it blows up in finite time for large enough initial data.

In order to show blow-up rate estimate of the blow-up solution, we need the following
assumptions on the initial data u0(x):

(C1) Δum0 + up0
∫
Ω u

q

0(y, t)dy − kur0 > 0, for x ∈ Ω;
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(C2) there exists a constant δ′ > 0, such that

Δum0 + up0

∫
Ω
u
q

0

(
y, t

)
dy − kur0 − δ′u

p+q
0 ≥ 0, (1.13)

where δ′ will be determined later.

Theorem 1.6. Suppose that p + q > max{m, r}, ∫Ω f(x, y)dy ≤ 1 for x ∈ ∂Ω, and the initial data
satisfies the conditions (C1)-(C2), then

c(T − t)−1/(p+q−1) ≤ u(x, t) ≤ C(T − t)−1/(p+q−1), (1.14)

where c = [|Ω|(p + q − 1)]−1/(p+q−1), C = [δ(p + q − 1)/m]−1/(p+q−1).

The rest of our paper is organized as follows. In Section 2, with the definitions of weak
upper and lower solutions, we will give the comparison principle of problem (1.1)–(1.3),
which is an important tool in our research. The proofs of results of global existence and blow-
up of solutions will be given in Section 3. And in Section 4, we will give the blow-up rate
estimate of the blow-up solutions.

2. Comparison Principle and Local Existence

In this section, we establish a suitable comparison principle for problem (1.1)–(1.3). LetQT =
Ω × (0, T), QT = Ω × (0, T), and ST = ∂Ω × (0, T). Firstly, we start with the precise definitions
of upper solution and lower solution of problem (1.1)–(1.3).

Definition 2.1. Suppose that u(x, t) ∈ C2,1(QT ) ∩ C(QT ) is nonnegative and satisfies

ut ≤ Δum + up
∫
Ω
uqdy − kur, (x, t) ∈ QT, (2.1)

u(x, t) ≤
∫
Ω
f
(
x, y

)
u
(
y, t

)
dy, (x, t) ∈ ST , (2.2)

u(x, 0) ≤ u0(x), x ∈ Ω, (2.3)

then we call u(x, t) is the lower solution of problem (1.1)–(1.3), in QT .

Similarly, a nonnegative function u(x, t) ∈ C2,1(QT ) ∩ C(QT ) is an upper solution if it
satisfies (2.1)–(2.3) in the reverse order. We say u(x, t) is a solution of problem (1.1)–(1.3) in
QT if it is both an upper solution and a lower solution of problem (1.1)–(1.3) in QT which is
called classical solution.

The following comparison principle plays a crucial role in our proofs which can be
obtained by establishing suitable test function and Gronwall’s inequality.

Proposition 2.2 (comparison principle). Suppose that u(x, t) and u(x, t) are the nonnegative sub-
solution and supersolution of problem (1.1)–(1.3), respectively. Moreover u(x, 0)≤ u(x, 0), u(x, 0) ≥
0, and u(x, 0) ≥ δ > 0 in Ω, then u(x, t) ≤ u(x, t) in QT .
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Proof. Let ψ(x, t) ∈ C2,1(QT ) be a nonnegative function with ψ = 0 on ST . Multiplying the
inequality in (2.1) by ψ(x, t) and integrating it on QT , we get

∫∫
QT

utψdx dt ≤
∫∫

QT

uψt + umΔψ + ψ
(
up

∫
Ω
uqdy − kur

)
dx dt

−
∫ t

0

∫
∂Ω

∂ψ

∂n

(∫
Ω
f
(
x, y

)
udy

)m

dSdt,

(2.4)

and similarly, the upper solution satisfies the reversed inequality,

∫∫
QT

utψdx dt ≤
∫∫

QT

uψt + u
mΔψ + ψ

(
up

∫
Ω
uqdy − kur

)
dx dt

−
∫ t

0

∫
∂Ω

∂ψ

∂n

(∫
Ω
f
(
x, y

)
udy

)m

dSdt.

(2.5)

Let ω(x, t) = u(x, t) − u(x, t), we have

∫∫
QT

ωtψdx dt ≤
∫∫

QT

[
ψt + Φ1(x, t)Δψ +

(
Φ2(x, t)

∫
Ω
uqdy − kΦ3(x, t)

)
ψ

]
ωdxdt

+
∫∫

QT

upψ

(∫
Ω
Φ4ωdy

)
dx dt −

∫ t

0

∫
∂Ω

∂ψ

∂n
mξm−1

(∫
Ω
f
(
x, y

)
ωdy

)
dSdt,

(2.6)

where

Φ1(x, t) =
∫1

0
m
(
θu(x, t) + (1 − θ)u(x, t))m−1

dθ,

Φ2(x, t) =
∫1

0
p
(
θu(x, t) + (1 − θ)u(x, t))p−1dθ,

Φ3(x, t) =
∫1

0
r
(
θu(x, t) + (1 − θ)u(x, t))r−1dθ,

Φ4(x, t) =
∫1

0
q
(
θu(x, t) + (1 − θ)u(x, t))q−1dθ,

(2.7)

and ξ is a function between
∫
Ω f(x, y)udy and

∫
Ω f(x, y)udy. Noticing that u(x, t) and u(x, t)

are bounded functions, it follows fromm > 1, p ≥ 1, q ≥ 1, and r ≥ 1 thatΦi (i = 1, 2, 3, 4) are
bounded nonnegative functions. If 0 ≤ p < 1 or 0 < q < 1, we have Φ2 ≤ δp−1 and Φ4 ≤ δq−1 by
the condition that u(x, 0) ≥ 0 or u(x, 0) ≥ δ > 0. Thus, we may choose an appropriate ψ(x, t)
as in [17, p. 118–123] to obtain

∫
Ω
ω+dx ≤ C1

∫
Ω
ω(x, 0)+dx + C2

∫∫
QT

ω(x, t)dx dt, (2.8)
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where ω+ = max{ω, 0} and C1, C2 > 0. It follows from u(x, 0) ≤ u(x, 0) that
∫
Ω
ω+dx ≤ C2

∫∫
QT

ω(x, t)dx dt. (2.9)

By Gronwall’s inequality, we know that (u − u)+ ≤ 0, that is, u(x, t) ≤ u(x, t) in QT .
For x ∈ ∂Ω, y ∈ Ω, t > 0,

u − u ≤
∫
Ω
f
(
x, y

)(
u − u)dy ≤ 0. (2.10)

This completes the proof.

Next, we state the local existence and uniqueness theorem without proof.

Theorem 2.3 (local existence and uniqueness). Suppose that the nonnegative initial data u0(x) ∈
C2+α(Ω) ∩ C(Ω) (0 < α < 1) satisfies the compatibility condition. Then, there exists a constant
T ∗ > 0 such that the problem (1.1)–(1.3) admits nonnegative solution u(x, t) ∈ C2,1(QT ) ∩ C(ΩT )
for each T < T ∗. Furthermore, either T ∗ = ∞ or

lim
t→ T∗

sup ‖u(x, t)‖∞ = ∞. (2.11)

Remark 2.4. The existence of local nonnegative solutions in time to problem (1.1)–(1.3) can be
obtained by using the fixed point theorem (see [18]) or the regular theory to get the suitable
estimate in a standard limiting process (see [19, 20]). By the previous comparison principle,
we can get the uniqueness of solution to the problem (1.1)–(1.3) in the case of p+q ≥ 1, r ≥ 1.

3. Global Existence and Blowup of Solutions

Comparing problems with the general homogeneous Dirichlet boundary condition, the exis-
tence of weight function on the boundary has a great influence on the global and nonglobal
existence of solutions.

Proof of Theorem 1.1. Consider the following problem:

v′(t) = |Ω|vp+q − kvr, v(0) = v0. (3.1)

As p + q > r, we know that vp+q + 1 > vr , and |Ω|vp+q − kvr ≥ (|Ω| − k)vp+q − k. Therefore, the
solution of (3.1) is an upper solution of the following problem:

v′(t) = (|Ω| − k)vp+q − k, v(0) = v0. (3.2)

When |Ω| > k and p + q > 1, it is known that the solution to the problem (3.2) blows up in
finite time if v0 > (k/(|Ω| − k))1/(p+q).
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It is obvious that the solution of problem (3.1) is a lower solution of problem (1.1)–
(1.3) when

∫
Ω f(x, y)dy ≥ 1 and u0(x) > v0. By Proposition 2.2, u(x, t) is a blow-up solution

of problem (1.1)–(1.3).

Proof of Theorem 1.3. (1) The case of p + q > r. Let u = (k/|Ω|)1/(p+q−r). It is easy to show
that if

∫
Ω f(x, y)dy < 1 and u0(x) < (k/|Ω|)1/(p+q−r), u(x, t) is the upper solution of problem

(1.1)–(1.3), then we can draw the conclusion.
(2) The case of p + q ≥ max{m, r}. We need to establish a self-similar blow-up solution

in order to prove the blow-up result. We first suppose that ω ∈ C1(Ω), ω(x) ≥ 0, and ω(x) is
not identically zero, and ω(x)|∂Ω = 0. Without loss of generality, we assume that 0 ∈ Ω and
ω(0) > 0.

Let u(x, t) = (T − t)−γV 1/m(ξ), V (ξ) = (1 − ξ2/2A)+, and ξ = |x|(T − t)−μ, where A >
1, 0 < T < 1, γ and μ > 0. We know that

suppu+(·, t) = B
(
0, R(T − t)μ) ⊂ B(0, RTμ) ⊂ Ω, (3.3)

for sufficiently small T > 0 and R =
√
A(A + 2). Calculating the derivative of u, we obtain

ut =
mγV 1/m(ξ) + μξV ′(ξ)V (1−m)/m

m(T − t)γ+1
,

Δum = − N

A(T − t)mγ+2μ
,

up
∫
Ω
uq

(
y, t

)
dy =

V p/m

(T − t)(p+q)γ
∫
B(0,R(T−t)μ)

V q/m

( |x|
(T − t)μ

)
dx

≥ M

(T − t)(p+q)γ−Nμ
,

(3.4)

whereM =
∫
B(0,R) V

q/m(|ξ|)dξ > 0.

It is easy to see that V ′(ξ) ≤ 0 and V < 1, and

ut −Δum − up
∫
Ω
uq

(
y, t

)
dy + kur

≤ mγV 1/m(ξ) + μξV ′(ξ)V (1−m)/m

m(T − t)γ+1
+

N

A(T − t)mγ+2μ

− M

(T − t)(p+q)γ−Nμ
+ k(T − t)−rγV r/m(ξ)

≤ γ

(T − t)γ+1
+

N

A(T − t)mγ+2μ
− M

(T − t)(p+q)γ−Nμ
+

k

(T − t)rγ .

(3.5)
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Since p + q ≥ m > 1, choosing γ > 0 such thatm < (1 + γ)/γ < p + q, and μ is sufficiently small
such that

μ < min

{(
p + q − 1

)
γ − 1

N
,

(
p + q − r)γ

N
,
p + q −m
2 +N

}
. (3.6)

Then, for small enough T > 0, we have

ut −Δum − up
∫
Ω
uq

(
y, t

)
dy + kur ≤ 0. (3.7)

If x ∈ ∂Ω, ω(0) > 0, and ω is continuous, it is known that there exist positive ε and ρ
such that ω ≥ ε for x ∈ B(0, ρ). We can get B(0, RTσ) ⊂ B(0, ρ) ⊂ Ω if T is small enough. Then,
u ≤ ∫

Ω f(x, y)udy on ∂Ω × (0, T). It follows from (3.3) that u(x, 0) ≤ K0ω(x) for sufficiently
large K0. Therefore, one can observe that the solution to (1.1)–(1.3) exists no later than t = T
provided that u0 ≥ K0ω(x). This implies that the solution blows up in finite time for large
enough initial data.

Proof of Theorem 1.4. Suppose that λ1 > 0 is the first eigenvalue of −Δ with homoge-
neous Dirichlet boundary condition, and φ(x) is the corresponding eigenfunction. Let
M

∫
Ω(1/(φ(y) + ε))dy ≤ 1 for some 0 < ε < 1, whereM = maxx∈∂Ω,y∈Ωf(x, y).

Now, we assume that um = v, then (1.1)–(1.3) becomes that

(vn)t −Δv = vnp
∫
Ω
vqndy − kvnr, x ∈ Ω, t > 0, (∗)

v(x, t) =
(∫

Ω
f
(
x, y

)
vn

(
y, t

)
dy

)m

, x ∈ ∂Ω, t > 0, (∗∗)

v(x, 0) = v0(x) = um0 (x), x ∈ Ω, (∗ ∗ ∗)

where n = 1/m.
Set v(x, t) = Ceγt/n/(φ(x) + ε), where C is determined later, then it follows that

(
vn

)
t =

Cnγeγt(
φ(x) + ε

)n ,

∇v =
−Ceγt/n∇φ(x)(
φ(x) + ε

)2 = − ∇φ
φ(x) + ε

v,

Δv =

(
φ + ε

)(−vΔφ − ∇φ · ∇v) + v∇φ · ∇φ(
φ + ε

)2

=
λ1φv − ∇φ · ∇v

φ + ε
+

∣∣∇φ∣∣2(
φ + ε

)2v =

(
λ1φ

φ + ε
+

2
∣∣∇φ∣∣2(
φ + ε

)2
)
v.

(3.8)
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And, we can get

(
vn

)
t −Δv − vpn

∫
Ω
vqndy − kvnr

=
Cnγeγt(
φ(x) + ε

)n −
(

λ1φ

φ + ε
+

2
∣∣∇φ∣∣2(
φ + ε

)2
)
v

−
(
Ceγt/n

)n(p+q)
(
φ + ε

)np
∫
Ω

1(
φ + ε

)nq
dy

+ k
(
Ceγt/n

)nr(
φ + ε

)nr

=

[(
C

φ + ε

)n−1
γe(γ−γ/n)t −

(
λ1φ

φ + ε
+

2
∣∣∇φ∣∣2(
φ + ε

)2
)]

v

−
(
Ceγt/n

)n(p+q)
(
φ + ε

)np
∫
Ω

1(
φ + ε

)nq
dy

+ kCnreγrt
(
φ + ε

)nr
.

(3.9)

Choosing C > max{supΩ[((φ + ε)n(r−p)/k)
∫
Ω(1/(φ + ε)nqdy)]1/n(r−p−q), sup(φ + ε)u0(x)} and

the proper λ1 such that

γ

(
C

φ + ε

)n−1
>

λ1φ

φ + ε
+

2
∣∣∇φ∣∣2(
φ + ε

)2 , (3.10)

then

(
vn

)
t −Δv − vpn

∫
Ω
vqndy − kvnr ≥ 0. (3.11)

For x ∈ ∂Ω, t > 0,

v(x, t) =
Ceγt/n

ε
≥
∫
Ω

Ceγt/nM

φ
(
y
)
+ ε

dy ≥
∫
Ω
f
(
x, y

)
vdy, (3.12)

sowe can obtain that v(x, t) is the upper solution of problem (∗)–(∗ ∗ ∗). From Proposition 2.2,
we know that there exists global solution of problem (∗)–(∗ ∗ ∗). Since the problem (1.1)–(1.3)
has the same solution with problem (∗)–(∗ ∗ ∗). We know that there exists a global solution of
problem (1.1)–(1.3). This completed the proof.

Proof of Theorem 1.5. Suppose that Φ(x) solves the following problem:

−ΔΦ = δ, x ∈ Ω,

Φ(x) = 0, x ∈ ∂Ω,
(3.13)

where δ is a positive constant such that 0 ≤ Φ(x) ≤ 1. Then, letM1 = maxx∈ΩΦ(x) ≤ 1.
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Set ω(x, t) = A(ρm/(1 − ρm) + Φ(x)/M1)
1/m, here A > 0 will be determined later and

0 < ρ < 1,

ωt −Δωm −ωp

∫
Ω
ωq(y, t)dy + kωr

=
Amδ

M1
−Ap+q

(
ρm

1 − ρm +
Φ(x)
M1

)p/m ∫
Ω

(
ρm

1 − ρm +
Φ(x)
M1

)q/m

dx

+ kAp+q
(

ρm

1 − ρm +
Φ(x)
M1

)(p+q)/m

≥ Amδ

M1
−Ap+q|Ω|

(
ρm

1 − ρm +
Φ(x)
M1

)(p+q)/m

+ kAp+q
(

ρm

1 − ρm +
Φ(x)
M1

)(p+q)/m

=
Amδ

M1
+Ap+q(k − |Ω|)

(
ρm

1 − ρm +
Φ(x)
M1

)(p+q)/m

.

(3.14)

It is obvious that the global existence result holds for k ≥ |Ω|. For k < |Ω|, sinceΦ(x)/M1 ≤ 1,
we know that ρm/(1 − ρm) + Φ(x)/M1 ≤ ρm/(1 − ρm) + 1 = 1/(1 − ρm), then

ωt −Δωm −ωp

∫
Ω
ωq(y, t)dy + kωr ≥ Amδ

M1
−Ap+q(|Ω| − k)

(
1

1 − ρm
)(p+q)/m

. (3.15)

(1) Ifm > p + q, choosingA = max{max |u0(x)|, (|Ω| − k)(M/δ)(1/(1− ρm))(p+q)/m},we
have

ωt −Δωm −ωp

∫
Ω
ωq(y, t)dy + kωr ≥ 0. (3.16)

(2) Ifm = p + q, selecting |Ω| < k + (δ/M1)(1 − ρm), and A = maxu0(x),we get

ωt −Δωm −ωp

∫
Ω
ωq(y, t)dy + kωr ≥ 0. (3.17)

(3) If m < p + q, we choose maxu0(x) ≤ A ≤ (|Ω| − k)(M1/δ)(1/(1 − ρm))−(p+q)/m such
that

ωt −Δωm −ωp

∫
Ω
ωq(y, t)dy + kωr ≥ 0. (3.18)

For x ∈ ∂Ω,

ω(x, t) = A
(

ρm

1 − ρm
)1/m

= A
(

ρm

1 − ρm + 1
)1/m

ρ

≥ A
(

ρm

1 − ρm +
Φ(x)
M1

)1/m ∫
Ω
f
(
x, y

)
dy

=
∫
Ω
ω
(
y, t

)
f
(
x, y

)
dy.

(3.19)

Through the previous discussion, we know that the global existence results hold.
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For the blow-up case ofm < p + q, it holds clearly from the second part of the proof of
Theorem 1.3.

4. Blow-Up Rate Estimates

Next, we will get the following precise blow-up rate estimates for slow diffusion case under
some suitable conditions.

Let v = um, we just need to consider the problem (∗)–(∗ ∗ ∗), and let pn = p1, qn = q1,
and rn = r1, then (∗) becomes

(vn)t = Δv + vp1
∫
Ω
vq1

(
y, t

)
dy − kvr1 , x ∈ Ω, t > 0. (4.1)

Suppose that v(x, t) is the blow-up solution of problem (∗)–(∗ ∗ ∗) in finite time T , and
set V (t) = maxx∈Ωv(x, t).

Proof of Theorem 1.6. (1) We can easily know that V (t) is Lip continuous and differential
almost everywhere,

(V n)t ≤ V p1

∫
Ω
V q1dy − kV r1 ≤ V p1+q1 |Ω| − kV r1 ≤ V p1+q1 |Ω|. (4.2)

Then, it follows that

Vt ≤ 1
n
|Ω|V p1+q1+1−n. (4.3)

Integrating it over (t, T), we get

V (t) ≥
[
1
n
|Ω|(p1 + q1 − n)

]−1/(p1+q1−n)
(T − t)−1/(p1+q1−n), (4.4)

then

u(x, t) ≥ c(T − t)−1/(p+q−1), (4.5)

where c = [|Ω|(p + q − 1)]−1/(p+q−1).
(2) Next, we set J = vt − δvp1+q1+1−n, where δ > 0, then

Jt = vtt − δ
(
p1 + q1 + 1 − n)vp1+q1−nvt

=
1 − n
n

v−n(vn)tvt +
1
n
v1−n

(
Δv + vp1

∫
Ω
vq1dy − kvr1

)
t

− δ(p1 + q1 + 1 − n)vp1+q1−nvt
= (1 − n)v−1(vt)2 +

1
n
v1−nΔvt +

p1
n
vp1−nvt

∫
Ω
vq1dy +

q1
n
vp1+1−n

∫
Ω
vq1−1vtdy

− kr1
n
vr1−nvt − δ

(
p1 + q1 + 1 − n)vp1+q1−nvt,
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Jt − v1−n

n
ΔJ −

[
2δ(1 − n)vp1+q1−n + p1v

p1−n

n

∫
Ω
vq1dy − kr1

n
vr1−n

]
J − q1v

p1+1−n

n

∫
Ω
vq1−1Jdy

= (1 − n)v−1J2 + δ2(1 − n)v2p1+2q1−2n+1 +
[
p1δ

n
− δ

n

(
p1 + q1 + 1 − n)

]
v2p1+q1−2n+1

∫
Ω
vq1dy

+
[
kδ

n

(
p1 + q1 + 1 − n) − kr1δ

n

]
vp1+q1+r1−2n+1 +

δ

n

(
p1 + q1 − n + 1

)(
p1 + q1 − n

)|∇v|2

+
q1δ

n
vp1+1−n

∫
Ω
vp1+2q1−ndy

≥ δ2(1 − n)v2p1+2q1−2n+1

+
δ

n

(
q1 + 1 − n)v2p1+q1−2n+1

∫
Ω
vq1dy +

kδ

n

(
p1 + q1 + 1 − n − r1

)
vp1+q1+r1−2n+1

+
q1δ

n
vp1+1−n

∫
Ω
vp1+2q1−ndy

= δ2(1 − n)v2p1+2q1−2n+1 +
δ

n
vp1−n+1

[
q1

∫
Ω
vp1+2q1−ndy − (

q1 + 1 − n)vp1+q1−n
∫
Ω
vq1dy

]

+
kδ

n

(
p1 + q1 + 1 − n − r1

)
vp1+q1+r1−2n+1.

(4.6)

Since q1/(p1 + 2q1 − n) + (p1 + q1 − n)/(p1 + 2q1 − n) = 1, by Hölder’s inequality, we know that

∫
Ω
vq1dy ≤

(∫
Ω
vp1+2q1−n

)q1/(p1+2q1−n)
, (4.7)

and by Young inequality, we have

vp1+q1−n
(∫

Ω
vp1+2q1−n

)q1/(p1+2q1−n)

≤ p1 + q1 − n
p1 + 2q1 − n

(
vp1+q1−n

)(p1+2q1−n)/(p1+q1−n) + q1
p1 + 2q1 − n

∫
Ω
vp1+2q1−n

=
p1 + q1 − n
p1 + 2q1 − nv

p1+2q1−n +
q1

p1 + 2q1 − n
∫
Ω
vp1+2q1−n.

(4.8)

Since p1 + q1 > r1, we get p1 + 2q1 −n > q1 + 1−n and p1 + q1 − r1 > 0, then by (4.7)-(4.8),

Jt − v1−n

n
ΔJ −

[
2δ(1 − n)vp1+q1−n + p1v

p1−n

n

∫
Ω
vq1dy − kr1

n
vr1−n

]
J − q1v

p1+1−n

n

∫
Ω
vq1−1Jdy

≥ δ2(1 − n)v2p1+2q1−2n+1 +
kδ

n

(
p1 + q1 + 1 − n − r1

)
vp1+q1+r1−2n+1 − δp1 + q1 − n

n
v2p1+2q1−2n+1

≥
[
δ(1 − n) − p1 + q1 − n

n

]
δv2p1+2q1−2n+1.

(4.9)
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Choosing δ ≥ (p1 + q1 − n)/n(1 − n), such that

Jt − v1−n

n
ΔJ −

[
2δ(1 − n)vp1+q1−n + p1v

p1−n

n

∫
Ω
vq1dy − kr1

n
vr1−n

]
J − q1v

p1+1−n

n

∫
Ω
vq1−1Jdy

≥ 0.
(4.10)

For (x, t) ∈ ST , because of vt = J + δvp1+q1+1−n, we then have

J = vt − δvp1+q1+1−n

= m
(∫

Ω
f
(
x, y

)
v1/mdy

)m−1 ∫
Ω
f
(
x, y

)(
v1/m

)
t
dy − δ

(∫
Ω
f
(
x, y

)
v1/mdy

)m(p1+q1+1−n)

=
(∫

Ω
f
(
x, y

)
v1/mdy

)m−1[
m

∫
Ω
f
(
x, y

)(
v1/m

)
t
dy − δ

(∫
Ω
f
(
x, y

)
v1/mdy

)p+q]

=
(∫

Ω
f
(
x, y

)
v1/mdy

)m−1[∫
Ω
f
(
x, y

)
v(1−m)/mJdy

+δ
(∫

Ω
f
(
x, y

)
v(p+q)/mdy −

(∫
Ω
f
(
x, y

)
v1/mdy

)p+q)]
.

(4.11)

Noticing that 0 < F(x) =
∫
Ω f(x, y)dy ≤ 1 for x ∈ ∂Ω, p + q > max{m, r}, and applying

Jensen’s inequality to the last part in the previous inequality, we can get

∫
Ω
f
(
x, y

)
v(p+q)/mdy −

(∫
Ω
f
(
x, y

)
v1/mdy

)p+q

≥ F(x)
(∫

Ω
f
(
x, y

)
v1/m dy

F(x)

)p+q

−
(∫

Ω
f
(
x, y

)
v1/mdy

)p+q

.

(4.12)

Hence, we can get

J ≥
(∫

Ω
f
(
x, y

)
v1/mdy

)m−1 ∫
Ω
f
(
x, y

)
v(1−m)/mJdy ≥ 0. (4.13)

Since u0(x) satisfies the conditions (C1)-(C2) and v = um,

J(x, t) = mum−1ut − δum(p1+q1+1−n)

= mum−1
(
Δum + up

∫
Ω
uq

(
y, t

)
dy − kur − δ′up+q

)
,

(4.14)

where δ′ = δ/m, then J(x, 0) ≥ 0. Combining (4.10)-(4.13), we can know that J(x, t) ≥ 0 for
(x, t) ∈ QT , that is, vt ≥ δvp1+q1+1−n.
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Integrating it over (t, T), we have

v ≤ [
δ
(
p1 + q1 − n

)]−1/(p1+q1−n)(T − t)−1/(p1+q1−n), (4.15)

then it follows that

u(x, t) ≤ C(T − t)−1/(p+q−1), (4.16)

where C = [δ(p + q − 1)/m]−1/(p+q−1). This completed the proof.
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