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We study an antiperiodic boundary value problem of nonlinear fractional differential equations of
order g € (4,5]. Some existence results are obtained by applying some standard tools of fixed-point
theory. We show that solutions for lower-order anti-periodic fractional boundary value problems
follow from the solution of the problem at hand. Our results are new and generalize the existing
results on anti-periodic fractional boundary value problems. The paper concludes with some
illustrating examples.

1. Introduction

In the preceding years, there has been a great advancement in the study of fractional calculus.
A variety of results on initial and boundary value problems of fractional order, ranging
from the theoretical aspects of existence and uniqueness of solutions to the analytic and
numerical methods for finding solutions, have appeared in the literature. It is mainly due
to the extensive application of fractional differential equations in many engineering and
scientific disciplines such as physics, chemistry, biology, economics, control theory, signal
and image processing, biophysics, blood flow phenomena, aerodynamics, and fitting of
experimental data [1-5]. For an updated account of mathematical tools for fractional models
and methods of solutions for fractional differential equations, we refer the reader to a recent
text [6] by Baleanu et al. Fractional derivatives are also regarded as an excellent tool for
the description of memory and hereditary properties of various materials and processes
[7]. These characteristics of the fractional derivatives make the fractional-order models more
realistic and practical than the classical integer-order models. For more details and examples,
see [8-20].

Antiperiodic boundary value problems occur in the mathematical modeling of a
variety of physical processes and have received a considerable attention. Examples include
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antiperiodic trigonometric polynomials in the study of interpolation problems, antiperiodic
wavelets, antiperiodic boundary conditions in physics, and so forth (for details, see [21]
and the references therein). Some recent work on antiperiodic boundary value problems of
fractional-order can be found in [21-27] and references therein.

In this paper, we consider an antiperiodic boundary value problems of fractional
differential equations of order g € (4,5] given by

Dix(t) = f(t,x(t), te[0,T], T>0, 4<q<5,
x(0) = —x(T), x'(0) = -x'(T), x"(0) = -x"(T), (1.1)

X"(0) = —x"(T), A (i) 0) = _x(iv)(T)l

where D7 denotes the Caputo fractional derivative of order g and f is a given continuous
function.

The main objective of the present work is to develop the existence theory for problem
(1.1) and relate problem (1.1) with lower-order fractional antiperiodic boundary value
problems. Our results are new and give further insight into the characteristics of fractional-
order antiperiodic boundary value problems.

2. Preliminaries

Definition 2.1 (see [4]). The Riemann-Liouville fractional integral of order g for a continuous
function g is defined as

1t g(s)

q =
I7g(t) @) Jo too)

ds, q>0, (2.1)

provided the integral exists.

Definition 2.2 (see [4]). For at least mn-times continuously differentiable function
g :[0,00) — R, the Caputo derivative of fractional order g is defined as

¢
‘Dig(t) = 1"(111——11) .[0 (t-s)"T'¢gM(s)ds, n-1<q<n n=][q]+1, (2.2)

where [g] denotes the integer part of the real number g.

To study the nonlinear problem (1.1), we need the following lemma, which deals with
a linear variant of problem (1.1).
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Lemma 2.3. For any y € C[0,T], the unique solution of the boundary value problem:

‘Dix(t)=y(t), tel[0,T], 4<q<5
x(0) = —x(T), x'(0) = —x'(T), x"(0) = —x"(T), (2.3)
xm(o) - _ xm(T)’ x(iv)(o) — _x(iv)(T)

T
x(t) = fo G(t,s)y(s)ds, (2.4)

where G(t, s) is the Green’s function given by

(2(t— )T = (T - )1 L T-20(T - )12 LHT-B)(T - )13

2r'(q) 4r(q-1) 4T (q-2)
612T — 43 — T3)(T - 5)7™* 3_ i _yTIV(T _ )45
( YT -9 @IE-F )T
48['(q-3) 48T (q - 4)
G(t,s) = <
(T-9T (T2 -9 KT BT —s)"
20(q) AT (q-1) 4T(q-2)
612T — 413 — T3)(T - 5)7* 3_ A _ 473\ (T _ o\d-5
( YT -9 QIE-£-m)T-s
48T'(q - 3) 48T (q - 4)
(2.5)
Proof. It is well known [4] that the solution of “D7x(t) = y(t) can be written as
L(t-s) s s
x(t) = | ————y(s)ds —b, — bit — byt” — b3t> — but*, (2.6)
I'(q)

where b,, b1, by, b3, and by € R are arbitrary constants. Using the boundary conditions for
problem (2.3) in (2.6), we find that

(T—s)“ T (T(T-9"
f T YO or< )
(T (T-9T"
48 ), T(q-3)

y(s)ds

y(s)ds,



T -2 -3 -5
by = 1J‘ (T —s)1 (s)ds (- s)1” (T—s)q

2), T-1) Y "or< ) YOET G, T

Y (Nt LA R C il i
R e G g e s O

1 (T(T-s)"

T (T(T-9"
12Jy T(q-3)

b = - Aol
} 24 ), T(g-4)

y(s)ds y(s)ds,

T (T _ S)q—5

b= — [ S y(s)ds.
“= 18 ), T(g-a) YO

Substituting the values of b,, b1, by, b3, and by in (2.6), we obtain

Ft—s)1! T —s)7!
v S
L (T2 T(T-5)T2 KT —t) (T (T-5)T°
4 Jo I(q-1) 4 Jo I'(q-2)
(62T — 4+ —T3) (T (T —s)7™* QT -t —tT3%) (T (T -5)7°
’ 48 0 T(q-3) 48 r( —4)

x(t) = y(s)ds

y(s)ds + y(s)ds

y(s)ds +
T

= f G(t,s)y(s)ds,
0

where G(t, s) is given by (2.5). This completes the proof.

2.1. Relationship with Lower-Order Problems

——~y(s)ds,

y(s)ds
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2.7)

(2.8)

We observe that the first term in expressions for G(t,s) given by (2.5) corresponds to the

Green’s function for the problem:

Dix(t) = f(t,x(t)), t€[0,T], T>0, 0<qg<]1,
x(0) = —x(T);

the first two terms in (2.5) form Green's function for the problem [21]:

Dix(t) = f(t,x(t)), te€[0,T], T>0, 1<g<2,
x(0) = —x(T), x'(0) = —x'(T);

(2.9)

(2.10)
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the first three terms in (2.5) give the Green’s function for the problem [22]:

‘Dix(t) = f(t,x(t)), te[0,T], T>0,2<q<3,
211
x(0) =-x(T),  x'(0)=-x(T),  x"(0)=-x"(T); 1D

while the first four terms in (2.5) yield the Green’s function for the antiperiodic problem [23]:

Dix(t) = f(t,x(t), te[0,T], T>0, 3<q<4,
2.12
x(0) = —x(T), x'(0) = -x'(T), x"(0) = -x"(T), x"(0) = —x"(T). (212

From the above deductions, it can easily be concluded that Green’s function (2.5) for an
antiperiodic boundary value problem of fractional order g € (4,5] contains Green’s function
(or solution) for lower-order fractional antiperiodic problems. We can further interpret that
the last term in expressions for Green’s function (2.5) arises due to consideration of the
order g € (4,5], whereas the remaining terms correspond to the lower-order problems.
This observation gives a useful insight into the study of antiperiodic fractional boundary
value problems that a unit-increase in the fractional order of the problem gives rise to a new
term in expressions for Green'’s function, preserving the terms corresponding to lower-order
antiperiodic problems. In other words, one can say that Green’s function (or solution) for a
higher-order antiperiodic fractional boundary value problem inherits all the characteristics
of lower-order fractional antiperiodic problems. Hence, our results generalize the existing
results on antiperiodic fractional boundary value problems ([21-23]).

3. Existence Results

Let & := C([0,T], R) denotes the Banach space of all continuous functions defined on [0, T] xR
endowed with a topology of uniform convergence with the norm ||x|| = SUP;e(o.1] [x()].

To prove the existence results for problem (1.1), we need the following known results
[28].

Theorem 3.1. Let X be a Banach space. Assume that T : X — X is completely continuous operator
and the set

V={ueX|u=uTu0<pu<1} (3.1)

is bounded. Then T has a fixed point in X.

Theorem 3.2. Let X be a Banach space. Assume that Q is an open-bounded subset of X with 6 € Q
and let T : Q — X be a completely continuous operator such that

[ITull <lul, VueoQ. (3.2)

Then T has a fixed point in Q.
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By Lemma 2.3, we define an operator  : £ — & as

—5)7! s)i1
I'(q) T'(q)
(T-2t) (T (T-5)T> HT -t) (T (T-35)"°
L ) T(a=1) f(s,x(s))ds + 1 o T(7-2)
(6t2T 48 -T%) (T (T -s)1™*
18 o T(q-3)
TP -t —1t1°) (T (T -5)7°
* 48 o T(g-4)

(0)(1) = j =97 £, x(s))ds - 2 f T fs,x(s))d

f(s,x(s))ds
(3.3)

f(s,x(s))ds

f(s,x(s))ds, te]0,T].

Observe that the problem (1.1) has a solution if and only if the operator equation Ux =
x has a fixed point.

Theorem 3.3. Assume that there exists a positive constant Ly such that |f(t,x)| < Ly for t €
[0,T], x € R. Then the problem (1.1) has at least one solution.

Proof. First of all, we show that the operator % is completely continuous. Note that the
operator U is continuous in view of the continuity of f. Let B C & be a bounded set. By
the assumption that |f (¢, x)| < Ly, for x € B, we have

- g-1
(W) ()] < J' (tr(s)) |£(s,x(s))]ds + = I (TF(S)> |£(s,x(s))|ds
+}1|T—2t| . (T( 0 |f(s x(s))|ds

+}L|t(T—t)| i (T(_S 2 |f(s,x(s))|ds

62T — 43 — T3| (T (T — &)
N - (" 0 (( )" |f(s,x(s))|ds

|2Tt3—t4 tT3| (T (T - )q5
T ) T(- |f(s x(s))|ds

1 f -1 1 ’ -1
< L1 [I'(_q) J‘O (t - S)q ds + 2r(q) J‘O (T - S)q ds

T -2t (T
4r(g-1) Jo

(T—s)q_zds+ ”' f (T —s)13ds
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|62T — 4t - T3| (T » |2T#3 — #* — 13| (T s
+—J' (T - 5)7 ds+—f (T - 5)7ds
0 0

48T (q - 3) 48T (q - 4)
T q(9-1)(59° -9q +46) \ | _
SL[m(3+ + 384 >]—L2/
(3.4)
which implies that || (%x)|| < L,. Further, we find that
|(Ux)'(t)] = (t |f(s x(s))|ds + ( |f s, x(s))|ds
T(q-1) 1) 0 ( 1)
3 _
|T42tl 0 (T< s (s, x(s))|ds+|(T4_t)| 0 (FT( 97 |f(s,x(s))|ds
6Tt? — 4t — T3 T
| T L i (F( vy |f(s,x(s))|ds
-5 T(T-9)
< Ll[ Omd5+ . md
T-2t) (T (T-5)"> |HT-0)| (T (T-9)""
P ) A S VP
|6Tt2 48 -T3| (T (T-5)7°
48 0 F(q 4)
9! (a-1)(¢*-29+12) \| _
<Ly [Zr(q) <3+ 24 = Ls.
(3.5)
Hence, for t1,t; € [0,T], we have
ty
|(Ux)(t2) = (Ux)(B)| < | [(Ux)'(s)|ds < La(t2 - 11). (3.6)
ty

This implies that % is equicontinuous on [0,T]. Thus, by the Arzela-Ascoli theorem, the
operator U : £ — & is completely continuous.
Next, we consider the set

V={xeé&|x=plx, 0<p<1}, (3.7)



8 Abstract and Applied Analysis

and show that the set V is bounded. Let x € V, then x = pUx, 0 < p < 1. Forany t € [0,T],
we have

T(T-s)T!

t _ o\9-1
(¢-5) f(s,x(s»ds—%fo

I'(q)
, (T-21) (T -s)12
4 )y r(g-1)

x(t) = f(s,x(s))ds

HT-t) (T (T-35)T°
4 0o T(g-2)

f(s,x(s))ds + f(s,x(s))ds

(3.8)
(6t2T 48 -T3) (T (T -s)1*

48 o I'(g-3)
(2Tt3 —t4—T%) (T (T - 5)7°
48 o T'(g-4)

I (t)] = pul (Ux) ()] < 0 “;(S’)

T — 2t (T s)‘72
4

f(s,x(s))ds

f(s,x(s))ds,

(T s)q !

|f(s, x(s))|ds+

| f (s, x(s))|ds

|f(s x(s))|ds
KT - )] (T (T - )
i), T

L 16°T — 46 T3] (T (T - 5)1
48 o T(q- )

|2Tt3 t—tT3| (T (T - )7
48 o T(q

1( 1 -
SLl[r()f(t S) ds+2r()f (T-5)""ds 59)

T -2 240, T =D (1 3
e —1)[ (T =) ds + r 0= ,[0 (T=s)""ds

4-3
|f(s,x(s))|ds

| f(s,x(s))|ds

vy |f(s x(s))|ds

2T _ 443 _ T3
o T~ ~T7] 4; (4t 3>T | f (T -5)"*T(q-3)ds
q- 0

|2T# — t* T3] (T "
+—f (T -s)1ds
48T (q-4) Jo

29|+ T9  |T-24T9 (T —-t)|T92 |6t*T — 4> — T3|T93
max + + +
telo,7] | 2T (g + 1) 4T (q) 4T (g-1) 48T (g -2)

|2T# - —tT3| T+
48T (q - 3) !
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Thus, ||x|| £ M; for any t € [0,T]. So, the set V is bounded. Thus, by the conclusion of
Theorem 3.1, the operator X has at least one fixed point, which implies that (1.1) has at least
one solution. 0

Theorem 3.4. Let there exist a small positive number T such that |f(t,x)| < 8|x| for 0 < |x| < T,
where 6 > 0 satisfies the condition

M+ T4 [T -24TT! |H(T —)[T72  |682T — 48 — T3|T4-3
+ + +
telo,1] | 2 (g + 1) 4T (q) 4r'(g-1) 48T (q - 2)
(3.10)

|2T# — ¢* — tT3|T9* <1
48T (q-3) N

Then the problem (1.1) has at least one solution.

Proof. Let us define B, = {x € £ | ||x|| < 7} and take x € &€ such that ||x|| = 7, that is, x € 0B,.
As before, it can be shown that % is completely continuous and

[[Ux|| £ max

249+ T1 |T —24TT"  |K(T —t)|T92  |682T — 483 - T3|T973
te[0,T]

aA(g+1) | 4r(q) | 4T(qg-1) = 48[(q-2) o

|2T# — t* — 73| T9*
+ Olxl,
48T'(q-3)

which in view of (3.10) yields ||#x|| < ||x||, x € 0B,. Therefore, by Theorem 3.2, the operator
U has at least one fixed point, which in turn implies that the problem (1.1) has at least one
solution. 0

Our next existence result is based on Krasnoselskii’s fixed point theorem [29].

Theorem 3.5. Let M be a closed convex and nonempty subset of a Banach space X. Let A and B be
the operators such that (i) Ax + By € M whenever x, y € M; (ii) A is compact and continuous; (iii)
B is a contraction mapping. Then there exists z € M such that z = Az + Bz.

Theorem 3.6. Let f : [0,T] x R — R be a jointly continuous function. Further, we assume that

(A1) |ft,x) - ft,y)|< Lix—-y|, forallt € [0,T], x,y € R;

(Ap) |f(t,x)| < u(t), forall (t,x) € [0,T] xR, and u € C([0,T], R").

Then the problem (1.1) has at least one solution on [0, T] if

(3.12)

l(n& q(g-1) . q(g-1)(9-2) +5q(q—1)(q—2)(q—3)> 1
2F(q+1) 2 8 24 384 .
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Proof. Letting sup,o ) [#(t)| = ||ull, we fix

(g +1) 384 (3.13)

7y _HlIT? <3 q,49q-1) 57 —9q+46)>

and consider By = {x € & : ||x|| < 7}. We define the operators U; and U, on By as

t _ q-1
W) (1) = L %f(s,x(s))ds,

2

1 T(T-s)T
o f(s,x(s)ds + (T -2t) fo T

f(s,x(s))ds (3.14)

)

I'(a)

b 10T 1)

(Ux)(t) = ——f (T f(s,x(s))ds

T _ )q—3
o I'(q-2)

(6t2T 43 - T%) (T (T -5)7*
18 o T(7-3)

(2Tt3—t4 t1%) (T (T - 5)7°
48 o T(g-4)

f(s,x(s))ds

f(s,x(s))ds.

For x,y € By, we find that

|| || T g q(qg-1)(59> -9q +46)
||M1x+u2y||_21“( o 345+ T r. (3.15)

Thus, Uy x + Uy € Br. It follows from the assumption (A;) that %, is a contraction mapping
for

LT (@-1) ,a(a-1D@-2) 59(9-1)(9-2)(9-3)
21"(q+1)<1+g+qq8 + 24q T 3q84 = >1‘ (316)

Continuity of f implies that the operator % is continuous. Also, %; is uniformly bounded on
By as

[l T

Uix|| < .
621 < 2755

(3.17)

Now we prove the compactness of the operator %;. In view of (A1), we define

sup | f(t,2)] = fm < oo, (3.18)

(t.x)€[0,T]xB
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and consequently, for t1,t, € [0,T] with t; < t,, we have

ty
002)(6) - () 0)] < ZE [ i7" 197 s

ty

(3.19)
(tr —s)Tds|,

t

which is independent of x and tends to zero as t, —t; — 0. So U, is relatively compact on
B7. Hence, By the Arzela-Ascoli theorem, %; is compact on Br. Thus all the assumptions
of Theorem 3.5 are satisfied. Therefore, the conclusion of Theorem 3.5 applies and the
antiperiodic fractional boundary value problem (1.1) has at least one solution on [0, T]. This
completes the proof. O

Theorem 3.7. Assume that f : [0,T] x R — R is a jointly continuous function satisfying the
condition

|ft,x) - f(t,y)| <L|x-y|, Vt€[0,T], x,yeR (3.20)

with
LA <1, (3.21)
2r(§—q+1) <3 L4,96-Y (53‘;4_ 1+ 46)> (3.22)

Then the antiperiodic boundary value problem (1.1) has a unique solution.

Then we show that #B,_ C B, where B, = {x € &: ||x|| < r(}. For x € B,_, we have

Proof. Let us define supte[orT]|f(t,0)| = M and select r, > MA/(1 - x) where LA <k < 1.

1) < tg;gg]{fo( r(s)) (1f(5,%(5)) - £(5,0)] + | £(5,0)|)ds

f S

q-2
|T 2t|f S) (|f(s x(s)) = £(5,0)| + | f(s,0)|)ds

(1f(s,x(5)) = f(5,0)] + |f(s,0)])ds
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v T ) f (If( 5,%(5)) ~ £(5,0)] + | (5, 0)])dls
+g|6t2T—4t~°’—T3| O ‘T( D (1fs 29 - £5,0)] 5,0 )
e _5(If(s (9 - £0]+ f0)s |
0
< (LrK+M)tI€nO]>5]{r(q)J‘ (t—s)T 1ds+2r( )j (T -s)"'ds
[ S
m|6t2:r 4% - T3|f (T - 5)7ds
+% fo (T—s)q_5d5}
< (LrK+M)[2F(q+1) <3+g+ q(q_1)<53§4_9q+46)>]

= (Lre + M)A < xr + MA <7y,
(3.23)

where (3.22) is used. Now, for x, y € &, we obtain

[|(%x) - (uy) |

P(t-s)T!
<) T £ (s,x(s)) = f(s,y(5))||ds

(T -
f F( ) ||f(s,x(s)) - f(S,y(s))”dS

1 -s5)"?
] ey 1756 = syt s

q-3
+ 3 |tT )| f T(q- S) ||f(s,x(s>> f(s,y(9))]|ds

T (T-s)"™

I'(q-3)

+ —|6t2T—4t3 —T3' | f(s,x(s)) = f (s, y(s))||ds
48 0

el st [ s - sl

(4)
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< Lx- 3/||t€[0T {F(q) I (t— )" ds + ZP( ) f (T -s)""ds

G- —2t1|>f (79" ds oy —tz”)f (T=s)"ds
48F(T3)|6t2T 43 T3I (T - 5)7*T(g-3)ds
+;—8(2Tt3—t4—tT3| OT(FT(;_?:}
< %<3+g+ q(q—l)(53«§4—9q+46)>||x-y|| = AL|[x -y,

(3.24)

where we have used (3.22). It follows by the condition (3.21) that % is a contraction. So, by
Banach’s contraction mapping principle, problem (1.1) has a unique solution. O

Example 3.8. Consider the following antiperiodic fractional boundary value problem:

(=020 [4.6in 2t + 81In (17 + 5 cos2x (¢
CDx(t) = [ ( ())], 0<t<l,
(17 + sin x(t))

x(0)=-x(1), ¥ (0)=-x'(1), x"(0)=-x"(1),

(3.25)
xu/(o) — —x"’(l), xiv(o) — _xiv(l),

where4 <g<5andT =1.

Clearly, |f(t,x)] < L1 = e(l + 2In22), and the hypothesis of Theorem 3.3 holds.
Therefore, the conclusion of Theorem 3.3 applies to problem (3.25).

Example 3.9. Consider the following problem:
c 2, 32 4\’
Dx(t) = x<a +x (t)) +2<1 +t ) (1-cosx(t)), x#0, a>0, 0<t<1,
(3.26)
x(0)=-x(1), ¥(0)=-x'(1), x"(0)=-x"(1),
x"(0) = =x" (1), x?(0) = —x™°(1), (3.27)

where4 <g<5,and T =1.
For sufficiently small x (ignoring x? and higher powers of x), we have

x(a+ x3(t)>1/2 +2(1+ t4>3(1 - Cosx(t))‘ < alx], (3.28)
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where a < 6, and (3.10) takes the form

3 1 1 1 5
<2F(q+1) + 4T(q) + 16T (g=1) + Br(g-2) + 768F(q—3)>6 <1 (3.29)

(in particular, for g = 9/2, 6 <1920/ /313). Thus all the assumptions of Theorem 3.4 hold.
Consequently, the conclusion of Theorem 3.4 implies that the problem (3.26) has at least one
solution

Example 3.10. Consider the following antiperiodic fractional boundary value problem:

1 | x| _ .

D 2x(t) = ( + tan 1x> +sint, te[0,a],

) /(£ +2025) \ 1+ |x]| 10, 7]
x(0) = ~x(@), KO =-x(r), ¥0)=-2"), (330

xm(o) - _ x"'(yr), x(iv) (0) — _x(iv) (-71')/
where g =9/2,and T = or. Clearly, L =2/45 as |f (¢, x) — f(t,y)| < 2/45|x — y|. Further,
q Yy y y
_ LTY q  q(q-1)(5¢4>-9q9+46)\ 3137

SRPRCTEY <3 T2t 384 = 13200 < (3.31)

Thus, all the assumptions of by Theorem 3.7 are satisfied. Hence, the fractional boundary
value problem (3.30) has a unique solution on [0, 7r].
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