Research Article

Coupled Fixed Point Theorems for Weak Contraction Mappings under F-Invariant Set

Wutiphol Sintunavarat, 1 Yeol Je Cho, 2 and Poom Kumam 1

1 Department of Mathematics, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok 10140, Thailand
2 Department of Mathematics Education and RINS, Gyeongsang National University, Chinju 660-701, Republic of Korea

Correspondence should be addressed to Yeol Je Cho, yjcho@gnu.ac.kr and Poom Kumam, poom.kum@kmutt.ac.th

Received 30 January 2012; Accepted 27 February 2012

Academic Editor: Jean Michel Combes

Copyright © 2012 Wutiphol Sintunavarat et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We extend the recent results of the coupled fixed point theorems of Cho et al. (2012) by weakening the concept of the mixed monotone property. We also give some examples of a nonlinear contraction mapping, which is not applied to the existence of the coupled fixed point by the results of Cho et al. but can be applied to our results. The main results extend and unify the results of Cho et al. and many results of the coupled fixed point theorems.

1. Introduction

Since Banach’s fixed point theorem in 1922, because of its simplicity and usefulness, it has become a very popular tool in solving the existence problems in many branches of nonlinear analysis. For some more results of the generalization of this principle, refer to [1–9] and references mentioned therein. Ran and Reurings [10] extended the Banach contraction principle to metric spaces endowed with a partial ordering, and they gave applications of their results to matrix equations. Afterward, Nieto and Rodriguez-López [11] extended Ran and Reurings’s theorems in [10] for nondecreasing mappings and obtained a unique solution for a first order-ordinary differential equation with periodic boundary conditions.

In 2006, Gnana Bhaskar and Lakshmikantham [12] introduced the concept of the mixed monotone property and a coupled fixed point. They also established some coupled fixed point theorems for mappings that satisfy the mixed monotone property and gave some applications in the existence and uniqueness of a solution for a periodic boundary value
Theorem 1.1. Let \((X, \preceq)\) be a partially ordered set, and suppose that \((X, d)\) is a complete cone metric space. Let \(q\) be a \(c\)-distance on \(X\) and \(F : X \times X \to X\) a continuous function having the mixed monotone property such that

\[
q(F(x, y), F(x^*, y^*)) \leq \frac{k}{2} (q(x, x^*) + q(y, y^*))
\]

for some \(k \in [0, 1)\) and all \(x, y, x^*, y^* \in X\) with

\[
(x \preceq x^*) \land (y \succeq y^*) \quad \text{or} \quad (x \succeq x^*) \land (y \preceq y^*).
\]

If there exist \(x_0, y_0 \in X\) such that

\[
x_0 \preceq F(x_0, y_0), \quad F(y_0, x_0) \preceq y_0,
\]

then \(F\) has a coupled fixed point \((u, v)\). Moreover, one has \(q(v, v) = \theta\) and \(q(u, u) = \theta\).

Theorem 1.2. In addition to the hypotheses of Theorem 1.1, suppose that any two elements \(x\) and \(y\) in \(X\) are comparable. Then, the coupled fixed point has the form \((u, u)\), where \(u \in X\).

Theorem 1.3. Let \((X, \preceq)\) be a partially ordered set, and suppose that \((X, d)\) is a complete cone metric space. Let \(q\) be a \(c\)-distance on \(X\) and \(F : X \times X \to X\) a function having the mixed monotone property such that

\[
q(F(x, y), F(x^*, y^*)) \leq \frac{k}{4} (q(x, x^*) + q(y, y^*))
\]

for some \(k \in (0, 1)\) and all \(x, y, x^*, y^* \in X\) with

\[
(x \preceq x^*) \land (y \succeq y^*) \quad \text{or} \quad (x \succeq x^*) \land (y \preceq y^*).
\]
Abstract and Applied Analysis

Also, suppose that X has the following properties:

(a) if (x_n) is a nondecreasing sequence in X with $x_n \to x$, then $x_n \preceq x$ for all $n \in \mathbb{N}$;
(b) if (x_n) is a nonincreasing sequence in X with $x_n \to x$, then $x \preceq x_n$ for all $n \in \mathbb{N}$.

Assume there exist $x_0, y_0 \in X$ such that

$$x_0 \preceq F(x_0, y_0), \quad F(y_0, x_0) \preceq y_0. \quad (1.6)$$

If $y_0 \preceq x_0$, then F has a coupled fixed point.

In this paper, we weaken the condition of the mixed monotone property in results of Cho et al. [36] by using the concept of the F-invariant set due to Samet and Vetro [37] in the cone version. We also give the example of a nonlinear contraction mapping, which is not applied by the main results of Cho et al. but can be applied to our results. The presented results extend and complement some recent results of Cho et al. [36] and some classical coupled fixed point theorems and several results in the literature.

2. Preliminaries

Throughout this paper (X, \preceq) denotes a partially ordered set with the partial order \preceq. By $x \preceq y$, we mean $x \preceq y$ but $x \neq y$. A mapping $f : X \to X$ is said to be nondecreasing (non-increasing) if, for all $x, y \in X$, $x \preceq y$ implies $f(x) \preceq f(y)$ ($f(y) \preceq f(x)$), resp.

Definition 2.1 (see [12]). Let (X, \preceq) be a partial ordered set. A mapping $F : X \times X \to X$ is said to have a mixed monotone property if F is monotone non-decreasing in its first argument and is monotone non-increasing in its second argument, that is, for any $x, y \in X$

$$x_1, x_2 \in X, \quad x_1 \preceq x_2 \implies F(x_1, y) \preceq F(x_2, y),$$

$$y_1, y_2 \in X, \quad y_1 \preceq y_2 \implies F(x, y_1) \succeq F(x, y_2). \quad (2.1)$$

Definition 2.2 (see [12]). Let X be a nonempty set. An element $(x, y) \in X \times X$ is called a coupled fixed point of mapping $F : X \times X \to X$ if

$$x = F(x, y), \quad y = F(y, x). \quad (2.2)$$

Next, we give some terminology of cone metric spaces and the concept of c-distance in cone metric spaces due to Cho et al. [24], which is a generalization of the W-distance of Kada et al. [25].

Let $(E, \| \cdot \|)$ be a real Banach space, θ a zero element in E, and P a subset of E with $\text{int}(P) \neq \emptyset$. Then, P is called a cone if the following conditions are satisfied:

(1) P is closed and $P \neq \{ \theta \}$;
(2) $a, b \in \mathbb{R}^+$, $x, y \in P$ implies $ax + by \in P$;
(3) $x \in P \cap -P$ implies $x = \theta$.

For a cone P, define the partial ordering \leq with respect to P by $x \leq y$ if and only if $y - x \in P$. We write $x < y$ to indicate that $x \leq y$ but $x \neq y$, while $x \ll y$ stands for $y - x \in \text{int}(P)$. It can be easily shown that $\lambda \text{ int}(P) \subseteq \text{int}(P)$ for all positive scalars λ.

The cone P is called normal if there is a number $K > 0$ such that, for all $x, y \in E$,

$$0 \leq x \leq y \implies \|x\| \leq K\|y\|.$$ \hspace{1cm} (2.3)

The least positive number satisfying the above is called the normal constant of P.

Definition 2.3 (see [23]). Let X be a nonempty set. Suppose that the mapping $d : X \times X \to E$ satisfies the following conditions:

1. $\theta \leq d(x, y)$ for all $x, y \in X$ and $d(x, y) = \theta$ if and only if $x = y$;
2. $d(x, y) = d(y, x)$ for all $x, y \in X$;
3. $d(x, y) \leq d(x, z) + d(y, z)$ for all $x, y, z \in X$.

Then, d is called a cone metric on X and (X, d) is called a cone metric space.

Definition 2.4 (see [23]). Let (X, d) be a cone metric space. Let $\{x_n\}$ be a sequence in X and $x \in X$.

1. If, for any $c \in X$ with $\theta \ll c$, there exists $N \in \mathbb{N}$ such that $d(x_n, x) \ll c$ for all $n \geq N$, then $\{x_n\}$ is said to be convergent to a point $x \in X$ and x is the limit of $\{x_n\}$. One denotes this by $\lim_{n \to \infty} x_n = x$ or $x_n \to x$ as $n \to \infty$.
2. If, for any $c \in E$ with $\theta \ll c$, there exists $N \in \mathbb{N}$ such that $d(x_n, x_m) \ll c$ for all $n, m \geq N$, then $\{x_n\}$ is called a Cauchy sequence in X.
3. The space (X, d) is called a complete cone metric space if every Cauchy sequence is convergent.

Definition 2.5 (see [24]). Let (X, d) be a cone metric space. Then a function $q : X \times X \to E$ is called a c-distance on X if the following are satisfied:

1. $\theta \leq q(x, y)$ for all $x, y \in X$;
2. $q(x, z) \leq q(x, y) + q(y, z)$ for all $x, y, z \in X$;
3. for any $x \in X$, if there exists $u = u_x \in P$ such that $q(x, y_n) \leq u$ for each $n \in \mathbb{N}$, then $q(x, y) \leq u$ whenever $\{y_n\}$ is a sequence in X converging to a point $y \in X$;
4. for any $c \in E$ with $\theta \ll c$, there exists $e \in E$ with $\theta \ll e$ such that $q(z, x) \ll e$ and $q(z, y) \ll c$ imply $d(x, y) \ll c$.

Remark 2.6. The c-distance q is a w-distance on X if we take (X, d) is a metric space, $E = \mathbb{R}^+$, $P = [0, \infty)$, and (q3) is replaced by the following condition:

for any $x \in X$, $q(x, \cdot) : X \to \mathbb{R}^+$ is lower semicontinuous.

Moreover, (q3) holds whenever $q(x, \cdot)$ is lower semi-continuous. Thus, if (X, d) is a metric space, $E = \mathbb{R}^+$, and $P = [0, \infty)$, then every w-distance is a c-distance. But the converse is not true in the general case. Therefore, the c-distance is a generalization of the w-distance.

Example 2.7. Let (X, d) be a cone metric space and P a normal cone. Define a mapping $q : X \times X \to E$ by $q(x, y) = d(x, y)$ for all $x, y \in X$. Then, q is a c-distance.
Example 2.8. Let $E = C^1_{\mathbb{R}}[0, 1]$ with $\|x\| = \|x\|_\infty + \|x'\|_\infty$ and

$$P = \{x \in E : x(t) \geq 0 \text{ on } [0, 1]\}$$

(2.4)

(this cone is not normal). Let $X = [0, \infty)$, and define a mapping $d : X \times X \to E$ by

$$d(x, y) = |x - y|\phi$$

(2.5)

for all $x, y \in X$, where $\phi : [0, 1] \to \mathbb{R}$ such that $\phi(t) = e^t$. Then, (X, d) is a cone metric space. Define a mapping $q : X \times X \to E$ by

$$q(x, y) = (x + y)\phi$$

(2.6)

for all $x, y \in X$. Then, q is a c-distance.

Example 2.9. Let (X, d) be a cone metric space and P a normal cone. Define a mapping $q : X \times X \to E$ by

$$q(x, y) = d(u, y)$$

(2.7)

for all $x, y \in X$, where u is a fixed point in X. Then, q is a c-distance.

Example 2.10. Let $E = \mathbb{R}$ and $P = \{x \in E : x \geq 0\}$. Let $X = [0, \infty)$, and define a mapping $d : X \times X \to E$ by

$$d(x, y) = |x - y|$$

(2.8)

for all $x, y \in X$. Then, (X, d) is a cone metric space. Define a mapping $q : X \times X \to E$ by

$$q(x, y) = y$$

(2.9)

for all $x, y \in X$. Then, q is a c-distance.

Remark 2.11. From Examples 2.9 and 2.10, we have two important results. For the c-distance, $q(x, y) = q(y, x)$ does not necessarily hold and $q(x, y) = \theta$ is not necessarily equivalent to $x = y$ for all $x, y \in X$.

The following lemma is crucial in proving our results.

Lemma 2.12 (see [24]). Let (X, d) be a cone metric space and q a c-distance on X. Let $\{x_n\}$ and $\{y_n\}$ be sequences in X and $x, y, z \in X$. Suppose that $\{u_n\}$ is a sequence in P converging to θ. Then, the following hold.

1. If $q(x_n, y) \leq u_n$ and $q(x_n, z) \leq u_n$, then $y = z$.
2. If $q(x_n, y_n) \leq u_n$ and $q(x_n, z) \leq u_n$, then $\{y_n\}$ converges to a point $z \in X$.
3. If $q(x_n, x_m) \leq u_n$ for each $m > n$, then $\{x_n\}$ is a Cauchy sequence in X.
4. If $q(y, x_n) \leq u_n$, then $\{x_n\}$ is a Cauchy sequence in X.

3. Coupled Fixed Point under F-Invariant Set

In this section, we prove some coupled fixed point theorems by using the c-distance under the concept of the F-invariant in cone metric spaces and apply our results in partially ordered cone metric spaces. First of all, we give the concept of the F-invariant set in the cone version.

Definition 3.1. Let (X, d) be a cone metric space and $F : X \times X \to X$ a given mapping. Let M be a nonempty subset of X^4. One says that M is the F-invariant subset of X^4 if and only if, for all $x, y, z, w \in X$, one has

(a) $(x, y, z, w) \in M \iff (w, z, y, x) \in M$;
(b) $(x, y, z, w) \in M \Rightarrow (F(x, y), F(y, x), F(z, w), F(w, z)) \in M$.

We obtain that the set $M = X^4$ is trivially F-invariant.

The next example plays a key role in the proof of our main results in partially ordered set.

Example 3.2. Let (X, d) be a cone metric space endowed with a partial order \sqsubseteq. Let $F : X \times X \to X$ be a mapping satisfying the mixed monotone property, that is, for all $x, y \in X$, we have

\[x_1, x_2 \in X, \quad x_1 \sqsubseteq x_2 \implies F(x_1, y) \sqsubseteq F(x_2, y), \quad (3.1)\]
\[y_1, y_2 \in X, \quad y_1 \sqsubseteq y_2 \implies F(x, y_1) \sqsupseteq F(x, y_2).\]

Define the subset $M \subseteq X^4$ by

\[M = \{(a, b, c, d) : c \sqsubseteq a, \; b \sqsubseteq d\}. \quad (3.2)\]

Then, M is the F-invariant of X^4.

Next, we prove the main results of this work.

Theorem 3.3. Let (X, d) be a complete cone metric space. Let q be a c-distance on X, M a nonempty subset of X^4, and $F : X \times X \to X$ a continuous function such that

\[q(F(x, y), F(x^*, y^*)) \leq \frac{k}{2} (q(x, x^*) + q(y, y^*)) \quad (3.3)\]

for some $k \in [0, 1)$ and all $x, y, x^*, y^* \in X$ with

\[(x, y, x^*, y^*) \in M \quad \text{or} \quad (x^*, y^*, x, y) \in M. \quad (3.4)\]

If M is an F-invariant and there exist $x_0, y_0 \in X$ such that

\[(F(x_0, y_0), F(y_0, x_0), x_0, y_0) \in M, \quad (3.5)\]

then F has a coupled fixed point (u, v). Moreover, if $(u, v, u, v) \in M$, then $q(v, v) = \theta$ and $q(u, u) = \theta$.

Proof. As $F(X \times X) \subseteq X$, we can construct sequences $\{x_n\}$ and $\{y_n\}$ in X such that

$$x_n = F(x_{n-1}, y_{n-1}), \quad y_n = F(y_{n-1}, x_{n-1}) \quad \forall n \in \mathbb{N}. \quad (3.6)$$

Since $(F(x_0, y_0), F(y_0, x_0), x_0, y_0) = (x_1, y_1, x_0, y_0) \in M$ and M is an F-invariant set, we get

$$(F(x_1, y_1), F(y_1, x_1), F(x_0, y_0), F(y_0, x_0)) = (x_2, y_2, x_1, y_1) \in M. \quad (3.7)$$

Again, using the fact that M is an F-invariant set, we have

$$(F(x_2, y_2), F(y_2, x_2), F(x_1, y_1), F(y_1, x_1)) = (x_3, y_3, x_2, y_2) \in M. \quad (3.8)$$

By repeating the argument to the above, we get

$$(F(x_{n-1}, y_{n-1}), F(y_{n-1}, x_{n-1}), x_{n-1}, y_{n-1}) = (x_n, y_n, x_{n-1}, y_{n-1}) \in M \quad (3.9)$$

for all $n \in \mathbb{N}$. From (3.3), we have

$$q(x_n, x_{n+1}) = q(F(x_{n-1}, y_{n-1}), F(x_n, y_n)) \leq \frac{k}{2} (q(x_{n-1}, x_n) + q(y_{n-1}, y_n)), \quad (3.10)$$

$$q(x_{n+1}, x_n) = q(F(x_n, y_n), F(x_{n-1}, y_{n-1})) \leq \frac{k}{2} (q(x_n, x_{n-1}) + q(y_n, y_{n-1})). \quad (3.11)$$

Combining (3.10) and (3.11), we get

$$q(x_n, x_{n+1}) + q(x_{n+1}, x_n) \leq \frac{k}{2} (q(x_{n-1}, x_n) + q(y_{n-1}, y_n) + q(x_n, x_{n-1}) + q(y_n, y_{n-1})). \quad (3.12)$$

Since $(x_n, y_n, x_{n-1}, y_{n-1}) \in M$ for all $n \in \mathbb{N}$ and M is an F-invariant set, we get

$$(y_{n-1}, x_{n-1}, y_n, x_n) \in M \quad (3.13)$$

for all $n \in \mathbb{N}$. From (3.3), we have

$$q(y_n, y_{n+1}) = q(F(y_{n-1}, x_{n-1}), F(y_n, x_n)) \leq \frac{k}{2} (q(y_{n-1}, y_n) + q(x_{n-1}, x_n)), \quad (3.14)$$

$$q(y_{n+1}, y_n) = q(F(y_n, x_n), F(y_{n-1}, x_{n-1})) \leq \frac{k}{2} (q(y_n, y_{n-1}) + q(x_n, x_{n-1})).$$
From (3.14), we have
\[q(y_n, y_{n+1}) + q(y_{n+1}, y_n) \leq \frac{k}{2} \left(q(x_{n-1}, x_n) + q(y_{n-1}, y_n) + q(x_n, x_{n-1}) + q(y_n, y_{n-1}) \right). \quad (3.15) \]

Adding (3.12) and (3.15), we get
\[q(x_n, x_{n+1}) + q(x_{n+1}, x_n) + q(y_n, y_{n+1}) + q(y_{n+1}, y_n) \]
\[\leq k(q(x_{n-1}, x_n) + q(y_{n-1}, y_n) + q(x_n, x_{n-1}) + q(y_n, y_{n-1})). \quad (3.16) \]

We repeat the above process for \(n \)-times, and we get
\[q(x_n, x_{n+1}) + q(x_{n+1}, x_n) + q(y_n, y_{n+1}) + d(y_{n+1}, y_n) \]
\[\leq k^n(q(x_1, x_0) + q(y_1, y_0) + q(x_0, x_1) + q(y_0, y_1)). \]
\[(3.17) \]

From (3.17), we can conclude that
\[q(x_n, x_{n+1}) \leq k^n(q(x_1, x_0) + q(y_1, y_0) + q(x_0, x_1) + q(y_0, y_1)), \]
\[q(y_n, y_{n+1}) \leq k^n(q(x_1, x_0) + q(y_1, y_0) + q(x_0, x_1) + q(y_0, y_1)). \quad (3.18) \]

Let \(m, n \in \mathbb{N} \) with \(m > n \). Since
\[q(x_n, x_m) \leq \sum_{i=n}^{m-1} q(x_i, x_{i+1}), \]
\[q(y_n, y_m) \leq \sum_{i=n}^{m-1} q(y_i, y_{i+1}), \]
\[(3.19) \]
and \(0 \leq k < 1 \), we have
\[q(x_n, x_m) \leq \frac{k^n}{1-k} \left(q(x_1, x_0) + q(y_1, y_0) + q(x_0, x_1) + q(y_0, y_1) \right), \]
\[q(y_n, y_m) \leq \frac{k^n}{1-k} \left(q(x_1, x_0) + q(y_1, y_0) + q(x_0, x_1) + q(y_0, y_1) \right). \quad (3.20) \]

Using Lemma 2.12(3), we have \(\{x_n\} \) and \(\{y_n\} \) are Cauchy sequences in \((X, d)\). By the completeness of \(X \), we get \(x_n \to u \) and \(y_n \to v \) for some \(u, v \in X \).

Since \(F \) is continuous, taking \(n \to \infty \) in (3.6), we get
\[\lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} F(x_n, y_n) = F\left(\lim_{n \to \infty} x_n, \lim_{n \to \infty} y_n \right) = F(u, v), \]
\[\lim_{n \to \infty} y_{n+1} = \lim_{n \to \infty} F(y_n, x_n) = F\left(\lim_{n \to \infty} y_n, \lim_{n \to \infty} x_n \right) = F(v, u). \quad (3.21) \]
Abstract and Applied Analysis

By the uniqueness of the limits, we get \(u = F(u, v) \) and \(v = F(v, u) \). Therefore, \((u, v)\) is a coupled fixed point of \(F \).

Finally, we assume that \((u, v, u, v)\) \(\in M\) and so \((v, u, v, u)\) \(\in M\). By (3.3), we have

\[
q(u, u) = q(F(u, v), F(u, v)) \leq \frac{k}{2} (q(u, u) + q(v, v)),
\]

\[
q(v, v) = q(F(v, u), F(v, u)) \leq \frac{k}{2} (q(v, v) + q(u, u)).
\]

Therefore, we get

\[
q(u, u) + q(v, v) \leq k (q(v, v) + q(u, u)).
\]

Since \(0 \leq k < 1\), we conclude that \(q(u, u) + q(v, v) = \theta\) and hence \(q(u, u) = \theta\) and \(q(v, v) = \theta\). This completes the proof.

Theorem 3.4. In addition to the hypotheses of Theorem 3.3, suppose that any two elements \(x \) and \(y \) in \(X \), we have

\[
(y, x, x, y) \in M \quad \text{or} \quad (x, y, y, x) \in M.
\]

Then, the coupled fixed point has the form \((u, u)\), where \(u \in X \).

Proof. As in the proof of Theorem 3.3, there exists a coupled fixed point \((u, v)\) \(\in X \times X\). Hence,

\[
u = F(u, v), \quad v = F(v, u).
\]

From the additional hypothesis and (3.3), we get

\[
q(u, v) = q(F(u, v), F(v, u)) \leq \frac{k}{2} (q(u, v) + q(v, u)),
\]

\[
q(v, u) = q(F(v, u), F(u, v)) \leq \frac{k}{2} (q(v, u) + q(u, v)).
\]

Therefore, we have

\[
q(u, v) + q(v, u) \leq k (q(v, u) + q(u, v)).
\]

Since \(0 \leq k < 1\), we get \(q(u, v) + q(v, u) = \theta\). Therefore, \(q(u, v) = \theta\) and \(q(v, u) = \theta\).

Let \(u_n = \theta \) and \(x_n = u \). Then,

\[
q(x_n, u) \leq u_n,
\]

\[
q(x_n, v) \leq u_n.
\]
From Lemma 2.12(1), we have $u = v$. Therefore, the coupled fixed point of F has the form (u, u). This completes the proof. \hfill \square

Next, we apply Theorems 3.3 and 3.4 in partially ordered cone metric spaces. If we set M as Example 3.2, then we get to Theorems 3.1 and 3.2 of Cho et al. [36].

Corollary 3.5 (see [36, Theorem 3.1]). Let (X, \subseteq) be a partially ordered set, and suppose that (X, d) is a complete cone metric space. Let q a c-distance on X and $F : X \times X \to X$ be a continuous function having the mixed monotone property such that

$$q(F(x, y), F(x^*, y^*)) \leq \frac{k}{2} (q(x, x^*) + q(y, y^*))$$

(3.29)

for some $k \in [0, 1)$ and all $x, y, x^*, y^* \in X$ with

$$(x \subseteq x^* \land (y \supseteq y^*) \lor (x \supseteq x^* \land (y \subseteq y^*)).$$

(3.30)

If there exist $x_0, y_0 \in X$ such that

$$x_0 \subseteq F(x_0, y_0), \quad F(y_0, x_0) \subseteq y_0,$$

(3.31)

then F has a coupled fixed point (u, v). Moreover, one has $q(v, v) = \theta$ and $q(u, u) = \theta$.

Corollary 3.6 (see [36, Theorem 3.2]). In addition to the hypotheses of Corollary 3.5, suppose that any two elements x and y in X are comparable. Then the coupled fixed point has the form (u, u), where $u \in X$.

Theorem 3.7. Let (X, d) be a complete cone metric space. Let q be a c-distance on X, M a subset of X^3, and $F : X \times X \to X$ a function such that

$$q(F(x, y), F(x^*, y^*)) \leq \frac{k}{4} (q(x, x^*) + q(y, y^*))$$

(3.32)

for some $k \in [0, 1)$ and all $x, y, x^*, y^* \in X$ with

$$(x, y, x^*, y^*) \in M \quad \text{or} \quad (x^*, y^*, x, y) \in M.$$

(3.33)

Also, suppose that

(i) there exist $x_0, y_0 \in X$ such that $(F(x_0, y_0), F(y_0, x_0), x_0, y_0) \in M$,

(ii) if two sequences $\{x_n\}, \{y_n\}$ are such that $(x_{n+1}, y_{n+1}, x_n, y_n) \in M$ for all $n \in \mathbb{N}$ and $\{x_n\} \to x$, $\{y_n\} \to y$, then $(x, y, x_n, y_n) \in M$ for all $n \in \mathbb{N}$.

If M is an F-invariant set, then F has a coupled fixed point.

Proof. As in the proof of Theorem 3.3, we can construct two Cauchy sequences $\{x_n\}$ and $\{y_n\}$ in X such that

$$(x_n, y_n, x_{n-1}, y_{n-1}) \in M$$

(3.34)
Abstract and Applied Analysis

for all \(n \in \mathbb{N} \). Moreover, we have that \(\{x_n\} \) converges to a point \(u \in X \) and \(\{y_n\} \) converges to \(v \in X \):

\[
q(x_n, x_m) \leq \frac{k^n}{1 - k} (q(x_1, x_0) + q(y_1, y_0) + q(x_0, x_1) + q(y_0, y_1)),
\]

\[
q(y_n, y_m) \leq \frac{k^n}{1 - k} (q(x_1, x_0) + q(y_1, y_0) + q(x_0, x_1) + q(y_0, y_1))
\]

(3.35)

for each \(m > n \geq 1 \). By (q3), we have

\[
q(x_n, u) \leq \frac{k^n}{1 - k} (q(x_1, x_0) + q(y_1, y_0) + q(x_0, x_1) + q(y_0, y_1))
\]

\[
q(y_n, v) \leq \frac{k^n}{1 - k} (q(x_1, x_0) + q(y_1, y_0) + q(x_0, x_1) + q(y_0, y_1))
\]

(3.36)

and so

\[
q(x_n, u) + q(y_n, v) \leq \frac{2k^n}{1 - k} (q(x_1, x_0) + q(y_1, y_0) + q(x_0, x_1) + q(y_0, y_1)).
\]

(3.37)

By assumption (ii), we have \((u, v, x_{n-1}, y_{n-1}) \in M\) and \((y_{n-1}, x_{n-1}, v, u) \in M\). From (3.32), we have

\[
q(x_n, F(u, v)) = q(F(x_{n-1}, y_{n-1}), F(u, v))
\]

\[
\leq \frac{k}{4} (q(x_{n-1}, u) + q(y_{n-1}, v)),
\]

(3.38)

\[
q(y_n, F(v, u)) = q(F(y_{n-1}, x_{n-1}), F(v, u))
\]

\[
\leq \frac{k}{4} (q(y_{n-1}, v) + q(x_{n-1}, u)).
\]

Thus, we have

\[
q(x_n, F(u, v)) + q(y_n, F(v, u)) \leq \frac{k}{2} (q(x_{n-1}, u) + q(y_{n-1}, v)).
\]

(3.39)

By (3.37), we get

\[
q(x_n, F(u, v)) + q(y_n, F(v, u)) \leq \frac{k}{2} \cdot \frac{2k^{n-1}}{1 - k} (q(x_1, x_0) + q(y_1, y_0) + q(x_0, x_1) + q(y_0, y_1))
\]

\[
= \frac{k^n}{1 - k} (q(x_1, x_0) + q(y_1, y_0) + q(x_0, x_1) + q(y_0, y_1)).
\]

(3.40)
Proof. Let Corollary 3.8 be a complete cone metric space. Let $x \rightarrow y \in X$ such that $\{x_n\}$ is a non-decreasing sequence in X with $x_n \rightarrow x$, then $x_n \subseteq x$ for all $n \in \mathbb{N}$; and $\{y_n\}$ is a non-increasing sequence in X with $y_n \rightarrow y$, then $y \subseteq y_n$ for all $n \in \mathbb{N}$.

Assume there exist $x_0, y_0 \in X$ such that
\[
x_0 \subseteq F(x_0, y_0), \quad F(y_0, x_0) \subseteq y_0.
\] (3.44)

If $y_0 \subseteq x_0$, then F has a coupled fixed point.

Proof. Let $M = \{(a, b, c, d) : c \subseteq a, \ b \subseteq d\}$. We obtain that M is an F-invariant set. By (3.42), we have
\[
q(F(x, y), F(x^*, y^*)) \leq \frac{k}{4} (q(x, x^*) + q(y, y^*))
\] (3.45)

for some $k \in [0, 1)$ and all $x, y, x^*, y^* \in X$ with $(x, y, x^*, y^*) \in M$ or $(x^*, y^*, x, y) \in M$. From assumptions (a) and (b), we know that, for two sequences $\{x_n\}, \{y_n\}$ such that $\{x_n\}$ is a non-decreasing sequence in X with $x_n \rightarrow x$ and $\{y_n\}$ is a non-increasing sequence in X with $y_n \rightarrow y$,
\[
x_0 \subseteq x_1 \subseteq \cdots \subseteq x_n \subseteq \cdots \subseteq x,
\]
\[
y_0 \supseteq y_1 \supseteq \cdots \supseteq y_n \supseteq \cdots \supseteq y
\] (3.46)
Abstract and Applied Analysis

for all \(n \in \mathbb{N} \). Therefore, we have \((x, y, x_n, y_n) \in M\) for all \(n \in \mathbb{N} \). Since \(y_0 \subseteq x_0 \), we have

\[
y \subseteq y_n \subseteq y_0 \subseteq x_0 \subseteq x_n \subseteq x
\] (3.47)

for all \(n \in \mathbb{N} \). Therefore, we can conclude that \((y_n, x_n, y, x) \in M\) for all \(n \in \mathbb{N} \). Now, all the hypotheses of Theorem 3.7 hold. Thus, \(F \) has a coupled fixed point.

\[\square\]

Example 3.9. Let \(E = C^1_{\mathbb{R}}[0, 1] \) with \(\|x\| = \|x\|_{\infty} + \|x'\|_{\infty} \) and

\[
P = \{ x \in E : x(t) \geq 0, \ t \in [0, 1] \}.
\] (3.48)

Let \(X = [0, \infty) \) (with usual order), and let \(d : X \times X \to E \) be defined by

\[
d(x, y)(t) = |x - y|e^t.
\] (3.49)

Then, \((X, d)\) is an ordered cone metric space (see [24, Example 2.9]). Further, let \(q : X \times X \to E \) be defined by

\[
q(x, y)(t) = ye^t.
\] (3.50)

It is easy to check that \(q \) is a \(c \)-distance. Consider now the function \(F : X \times X \to X \) defined by

\[
F(x, y) = \begin{cases}
1/2(x + y), & x \geq y, \\
0, & x < y.
\end{cases}
\] (3.51)

For \(y_1 = 2 \) and \(y_2 = 3 \), we have \(y_1 \subseteq y_2 \) but \(F(x, y_1) \not\subseteq F(x, y_2) \) for all \(x > 3 \). So the mapping \(F \) does not satisfy the mixed monotone property. Hence, the main results of Cho et al. [36] cannot be applied to this example. But it is easy to see that

\[
q(F(x, y), F(u, v)) \leq \frac{1}{3}(q(x, u) + q(y, v))
\] (3.52)

for all \(x, y, u, v \in X^4 \). Note that there exists \(0, 1 \in X \) such that

\[
(F(0, 1), F(1, 0), 0, 1) \in X^4.
\] (3.53)

Now, we can apply Theorem 3.3 with \(M = X^4 \). Therefore, \(F \) has a unique coupled fixed point, that is, a point \((0, 0)\).

Remark 3.10. Although the main results of Cho et al. [36] are an essential tool in the partially ordered cone metric spaces to claim the existence of the coupled fixed points the mappings do not have the mixed monotone property in general case such as the mapping in the above example. Therefore, it is very interesting to consider our theorems as another auxiliary tool to claim the existence of a coupled fixed point.
Acknowledgments

The first author would like to thank the Research Professional Development Project under the Science Achievement Scholarship of Thailand (SAST), the second author was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (Grant no. 2011-0021821), and the third author would like to thank the Commission on Higher Education, the Thailand Research Fund, and King Mongkut’s University of Technology Thonburi (KMUTT) (Grant no. MRG5380044) for financial support during the preparation of this paper.

References

