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We establish a tripled fixed point result for a mixed monotone mapping satisfying nonlinear
contractions in ordered generalized metric spaces. Also, some examples are given to support our
result.

1. Introduction and Preliminaries

The study of fixed points of mappings satisfying certain contractive conditions has been at the
center of rigorous research activity, see [1–3]. The notion ofD-metric space is a generalization
of usual metric spaces and it is introduced by Dhage [4–7]. Recently, Mustafa and Sims [8, 9]
have shown that most of the results concerning Dhage’sD-metric spaces are invalid. In [8, 9],
they introduced an improved version of the generalized metric space structure which they
called G-metric spaces. For more results on G-metric spaces, one can refer to the papers [10–
26].

Now, we give some preliminaries and basic definitions which are used throughout the
paper. In 2006, Mustafa and Sims [9] introduced the concept of G-metric spaces as follows.

Definition 1.1 (see [9]). Let X be a nonempty set, G : X ×X ×X → R
+ be a function satisfying

the following properties:

(G1) G(x, y, z) = 0 if x = y = z,

(G2) 0 < G(x, x, y) for all x, y ∈ X with x /=y,
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(G3) G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X with y /= z,

(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = · · · (symmetry in all three variables),

(G5) G(x, y, z) ≤ G(x, a, a) +G(a, y, z) for all x, y, z, a ∈ X (rectangle inequality).

Then the functionG is called a generalized metric or, more specially, aG-metric onX, and the
pair (X,G) is called a G-metric space.

Every G-metric on X will define a metric dG on X by

dG
(
x, y

)
= G

(
x, y, y

)
+G

(
y, x, x

)
, ∀ x, y ∈ X. (1.1)

Example 1.2. Let (X, d) be a metric space. The function G : X ×X ×X → [0,+∞), defined by

G
(
x, y, z

)
= max

{
d
(
x, y

)
, d

(
y, z

)
, d(z, x)

}
, (1.2)

or

G
(
x, y, z

)
= d

(
x, y

)
+ d

(
y, z

)
+ d(z, x), (1.3)

for all x, y, z ∈ X, is a G-metric on X.

Definition 1.3 (see [9]). Let (X,G) be a G-metric space, and let (xn) be a sequence of points of
X; therefore, we say that (xn) is G-convergent to x ∈ X if limn,m→+∞G(x, xn, xm) = 0, that is,
for any ε > 0, there exists N ∈ N such that G(x, xn, xm) < ε, for all n,m ≥ N. One calls x the
limit of the sequence and writes xn → x or limn→+∞xn = x.

Proposition 1.4 (see [9]). Let (X,G) be a G-metric space. The following are equivalent:

(1) (xn) is G-convergent to x,

(2) G(xn, xn, x) → 0 as n → +∞,

(3) G(xn, x, x) → 0 as n → +∞,

(4) G(xn, xm, x) → 0 as n,m → +∞.

Definition 1.5 (see [9]). Let (X,G) be a G-metric space. A sequence (xn) is called a G-Cauchy
sequence if, for any ε > 0, there isN ∈ N such that G(xn, xm, xl) < ε for allm,n, l ≥ N, that is,
G(xn, xm, xl) → 0 as n,m, l → +∞.

Proposition 1.6 (see [9]). Let (X,G) be a G-metric space. Then the following are equivalent:

(1) the sequence (xn) is G-Cauchy,

(2) for any ε > 0, there existsN ∈ N such that G(xn, xm, xm) < ε, for allm,n ≥N.

Definition 1.7 (see [9]). A G-metric space (X,G) is called G-complete if every G-Cauchy
sequence is G-convergent in (X,G).

Definition 1.8. Let (X,G) be a G-metric space. A mapping F : X × X × X → X is said to be
continuous if for any three G-convergent sequences (xn), (yn), and (zn) converging to x, y,
and z, respectively, (F(xn, yn, zn)) is G-convergent to F(x, y, z).

Recently, Berinde and Borcut [27] introduced these definitions.



Journal of Applied Mathematics 3

Definition 1.9. Let (X,≤) be a partially ordered set and F : X ×X ×X → X. The mapping F is
said to have the mixed monotone property if, for any x, y, z ∈ X,

x1, x2 ∈ X, x1 ≤ x2 =⇒ F
(
x1, y, z

) ≤ F(x2, y, z
)
,

y1, y2 ∈ X, y1 ≤ y2 =⇒ F
(
x, y1, z

) ≥ F(x, y2, z
)
,

z1, z2 ∈ X, z1 ≤ z2 =⇒ F
(
x, y, z1

) ≤ F(x, y, z2
)
.

(1.4)

Definition 1.10. Let F : X × X × X → X. An element (x, y, z) is called a tripled fixed point of
F if

F
(
x, y, z

)
= x, F

(
y, x, y

)
= y, F

(
z, y, x

)
= z. (1.5)

Very recently, Berinde and Borcut [28] proved some tripled coincidence theorems for
contractive type mappings in partially ordered metric spaces. Also, Samet and Vetro [29]
introduced the notion of fixed point ofN-order as natural extension of that of coupled fixed
point and established some new coupled fixed point theorems in complete metric spaces,
using a new concept of F-invariant set.

Berinde and Borcut [27] proved the following theorem.

Theorem 1.11. Let (X,≤, d) be a partially ordered set and suppose there is a metric d on X such that
(X, d) is a complete metric space. Suppose F : X ×X ×X → X such that F has the mixed monotone
property and

d
(
F
(
x, y, z

)
, F(u, v,w)

) ≤ jd(x, u) + kd(y, v) + ld(z,w), (1.6)

for any x, y, z ∈ X for which x ≤ u, v ≤ y and z ≤ w. Suppose either F is continuous or X has the
following properties:

(1) if a nondecreasing sequence xn → x, then xn ≤ x for all n,

(2) if a nonincreasing sequence yn → y, then y ≤ yn for all n,

(3) if a nondecreasing sequence zn → z, then zn ≤ z for all n.

If there exist x0, y0, z0 ∈ X such that x0 ≤ F(x0, y0, z0), y0 ≥ F(y0, x0, z0), and z0 ≤ F(z0, y0, x0),
then there exist x, y, z ∈ X such that

F
(
x, y, z

)
= x, F

(
y, x, y

)
= y, F

(
z, y, x

)
= z, (1.7)

that is, F has a tripled fixed point.

In this paper, we establish a tripled fixed point result for a mapping having a mixed
monotone property in G-metric spaces. Also, we give some examples to illustrate our result.

2. Main Results

Let Φ be the set of all non-decreasing functions φ : [0,+∞) → [0,+∞) such that
limn→+∞φn(t) = 0 for all t > 0. If φ ∈ Φ, then following Matkowski [30], we have
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(1) φ(t) < t for all t > 0,

(2) φ(0) = 0.

The aim of this paper is to prove the following theorem.

Theorem 2.1. Let (X,≤) be partially ordered set and (X,G) a G-metric space. Let F : X3 → X be a
continuous mapping having the mixed monotone property on X. Assume there exists φ ∈ Φ such that
for x, y, z, a, b, c, u, v,w ∈ X, with x ≥ a ≥ u, y ≤ b ≤ v, and z ≥ c ≥ w, one has

G
(
F
(
x, y, z

)
, F(a, b, c), F(u, v,w)

) ≤ φ(max
{
G(x, a, u), G

(
y, b, v

)
, G(z, c,w)

})
. (2.1)

If there exist x0, y0, z0 ∈ X such that x0 ≤ F(x0, y0, z0), y0 ≥ F(y0, x0, y0), and z0 ≤ F(z0, y0, x0),
then F has a tripled fixed point in X, that is, there exist x, y, z ∈ X such that

F
(
x, y, z

)
= x, F

(
y, x, y

)
= y, F

(
z, y, x

)
= z. (2.2)

Proof. Suppose x0, y0, z0 ∈ X are such that x0 ≤ F(x0, y0, z0), y0 ≥ F(y0, x0, y0), and z0 ≤
F(z0, y0, x0). Define x1 = F(x0, y0, z0), y1 = F(y0, x0, y0), and z1 = F(z0, y0, x0). Then x0 ≤ x1,
y0 ≥ y1, and z0 ≤ z1. Again, define x2 = F(x1, y1, z1), y2 = F(y1, x1, y1), and z2 = F(z1, y1, x1).
Since F has the mixed monotone property, we have x0 ≤ x1 ≤ x2, y2 ≤ y1 ≤ y0, and z0 ≤ z1 ≤
z2. Continuing this process, we can construct three sequences (xn), (yn), and (zn) in X such
that

xn = F
(
xn−1, yn−1, zn−1

) ≤ xn+1 = F
(
xn, yn, zn

)
,

yn+1 = F
(
yn, xn, yn

) ≤ yn = F
(
yn−1, xn−1, yn−1

)
,

zn = F
(
zn−1, yn−1, xn−1

) ≤ zn+1 = F
(
zn, yn, xn

)
.

(2.3)

If, for some integer n, we have (xn+1, yn+1, zn+1) = (xn, yn, zn), then F(xn, yn, zn) = xn,
F(yn, xn, yn) = yn, and F(zn, yn, xn) = zn; that is, (xn, yn, zn) is a tripled fixed point of F.
Thus we will assume that (xn+1, yn+1, zn+1)/= (xn, yn, zn) for all n ∈ N; that is, we assume that
either xn+1 /=xn or yn+1 /=yn or zn+1 /= zn. For any n ∈ N

∗, we have from (2.1)

G(xn+1, xn, xn)

:= G
(
F
(
xn, yn, zn

)
, F

(
xn−1, yn−1, zn−1

)
, F

(
xn−1, yn−1, zn−1

))

≤ φ(max
{
G(xn, xn−1, xn−1), G

(
yn, yn−1, yn−1

)
, G(zn, zn−1, zn−1)

})
,

G
(
yn+1, yn, yn

)

:= G
(
F
(
yn, xn, yn

)
, F

(
yn−1, xn−1, yn−1

)
, F

(
yn−1, xn−1, yn−1

))

≤ φ(max
{
G
(
yn, yn−1, yn−1

)
, G(xn, xn−1, xn−1)

})

≤ φ(max
{
G
(
yn, yn−1, yn−1

)
, G(xn, xn−1, xn−1), G(zn, zn−1, zn−1)

})
,

G(zn+1, zn, zn)

:= G
(
F
(
zn, yn, xn

)
, F

(
zn−1, yn−1, xn−1

)
, F

(
zn−1, yn−1, xn−1

))

≤ φ(max
{
G(zn, zn−1, zn−1), G

(
yn, yn−1, yn−1

)
, G(xn, xn−1, xn−1)

})
.

(2.4)
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From (2.4), it follows that

max
{
G(xn+1, xn, xn), G

(
yn, yn, yn+1

)
, G(zn+1, zn, zn)

}

≤ φ(max
{
G(xn, xn−1, xn−1), G

(
yn, yn−1, yn−1

)
, G(zn, zn−1, zn−1)

})
.

(2.5)

By repeating (2.5) n-times and using the fact that φ is non-decreasing, we get that

max
{
G(xn+1, xn, xn), G

(
yn+1, yn, yn

)
, G(zn+1, zn, zn)

}

≤ φ(max
{
G(xn, xn−1, xn−1), G

(
yn, yn−1, yn−1

)
, G(zn, zn−1, zn−1)

})

≤ φ2(max
{
G(xn−1, xn−2, xn−2), G

(
yn−1, yn−2, yn−2

)
, G(zn−1, zn−2, zn−2)

})

...

≤ φn(max
{
G(x1, x0, x0), G

(
y1, y0, y0

)
, G(z1, z0, z0)

})
.

(2.6)

Now, we shill show that (xn) is a G-Cauchy sequence in X. Let ε > 0. Since

lim
n→+∞

φn
(
max

{
G(x1, x0, x0), G

(
y1, y0, y0

)
, G(z1, z0, z0)

})
= 0, (2.7)

and ε > φ(ε), there exists n0 ∈ N such that

φn
(
max

{
G(x1, x0, x0), G

(
y1, y0, y0

)
, G(z1, z0, z0)

})
< ε − φ(ε) ∀n ≥ n0. (2.8)

By (2.6), this implies that

max
{
G(xn+1, xn, xn), G

(
yn+1, yn, yn

)
, G(zn+1, zn, zn)

}
< ε − φ(ε) ∀n ≥ n0. (2.9)

Form,n ∈ N, we prove by induction onm that

max
{
G(xn, xn, xm), G

(
yn, yn, ym

)
, G(zn, zn, zm)

}
< ε ∀m ≥ n ≥ n0. (2.10)

Since ε − φ(ε) ≤ ε, then by using (2.9) and the property (G4), we conclude that (2.10) holds
whenm = n + 1. Now suppose that (2.10) holds form = k. Form = k + 1, we have

G(xn, xn, xk+1)

≤ G(xn, xn, xn+1) +G(xn+1, xn+1, xk+1)
< ε − φ(ε) +G(F(xn, yn, zn

)
, F

(
xn, yn, zn

)
, F

(
xk, yk, zk

))

≤ ε − φ(ε) + φ(max
{
G(xn, xn, xk), G

(
yn, yn, yk

)
, G(zn, zn, zk)

})

≤ ε − φ(ε) + φ(ε) = ε.

(2.11)

Similarly, we show that

G
(
yn, yn, yk+1

)
< ε,

G(zn, zn, zk+1) < ε.
(2.12)
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Hence, we have

max
{
G(xn, xn, xk+1), G

(
yn, yn, yk+1

)
, G(zn, zn, zk+1)

}
< ε. (2.13)

Thus (2.10) holds for all m ≥ n ≥ n0. Hence (xn), (yn), and (zn) are G-Cauchy sequences in
X. Since X is a G-complete metric space, there exist x, y, z ∈ X such that (xn), (yn), and (zn)
converge to x, y, and z, respectively. Finally, we show that (x, y, z) is a tripled fixed point of F.
Since F is continuous and (xn, yn, zn) → (x, y, z), we have xn+1 = F(xn, yn, zn) → F(x, y, z).
By the uniqueness of limit, we get that x = F(x, y, z). Similarly, we show that y = F(y, x, y)
and z = F(z, y, x). So (x, y, z) is a tripled fixed point of F.

Corollary 2.2. Let (X,≤) be partially ordered set and (X,G) a G-metric space. Let F : X3 → X be a
continuous mapping having the mixed monotone property on X. Suppose that there exists k ∈ [0, 1)
such that for x, y, z, a, b, c, u, v,w ∈ X, with x ≥ a ≥ u, y ≤ b ≤ v, and z ≥ c ≥ w one has

G
(
F
(
x, y, z

)
, F(a, b, c), F(u, v,w)

) ≤ kmax
{
G(x, a, u), G

(
y, b, v

)
, G(z, c,w)

}
. (2.14)

If there exist x0, y0, z0 ∈ X such that x0 ≤ F(x0, y0, z0), y0 ≥ F(y0, x0, y0), and z0 ≤ F(z0, y0, x0),
then F has a tripled fixed point in X, that is, there exist x, y, z ∈ X such that

F
(
x, y, z

)
= x, F

(
y, x, y

)
= y, F

(
z, y, x

)
= z. (2.15)

Proof. It follows from Theorem 2.1 by taking φ(t) = kt.

Corollary 2.3. Let (X,≤) be partially ordered set and (X,G) be a G-metric space.
Let F : X3 → X be a continuous mapping having the mixed monotone property onX. Suppose

that there exists k ∈ [0, 1) such that for x, y, z, a, b, c, u, v,w ∈ X, with x ≥ a ≥ u, y ≤ b ≤ v, and
z ≥ c ≥ w one has

G
(
F
(
x, y, z

)
, F(a, b, c), F(u, v,w)

) ≤ k

3
(
G(x, a, u) +G

(
y, b, v

)
+G(z, c,w)

)
. (2.16)

If there exist x0, y0, z0 ∈ X such that x0 ≤ F(x0, y0, z0), y0 ≥ F(y0, x0, y0), and z0 ≤ F(z0, y0, x0),
then F has a tripled fixed point in X, that is, there exist x, y, z ∈ X such that

F
(
x, y, z

)
= x, F

(
y, x, y

)
= y, F

(
z, y, x

)
= z. (2.17)

Proof. Note that

G(x, a, u) +G
(
y, b, v

)
+G(z, c,w) ≤ 3max

{
G(x, a, u), G

(
y, b, v

)
, G(z, c,w)

}
. (2.18)

Then, the proof follows from Corollary 2.2.

By adding an additional hypothesis, the continuity of F in Theorem 2.1 can be
dropped.
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Theorem 2.4. Let (X,≤) be a partially ordered set and (X, d) a complete metric space. Let F : X ×
X ×X → X be a mapping having the mixed monotone property. Assume that there exists φ ∈ Φ such
that

G
(
F
(
x, y, z

)
, F(a, b, c), F(u, v,w)

) ≤ φ(max
{
G(x, a, u), G

(
y, b, v

)
, G(z, c,w)

})
(2.19)

for all x, y, z, a, b, c, u, v,w ∈ X with x ≥ a ≥ u, y ≤ b ≤ v, and z ≥ c ≥ w. Assume also that X has
the following properties:

(i) if a nondecreasing sequence xn → x, then xn ≤ x for all n ∈ N,

(ii) if a nonincreasing sequence yn → y, then yn ≥ y for all n ∈ N.

If there exist x0, y0, z0 ∈ X such that x0 ≤ F(x0, y0, z0), y0 ≥ F(y0, x0, y0), and z0 ≤ F(z0, y0, x0),
then F has a tripled fixed point.

Proof. Following proof of Theorem 2.1 step by step, we construct three G-Cauchy sequences
(xn), (yn), and (zn) in X with

x1 ≤ x2 ≤ · · · ≤ xn ≤ · · · ,
y1 ≥ y2 ≥ · · · ≥ yn ≥ · · · ,
z1 ≤ z2 ≤ · · · ≤ zn ≤ · · ·

(2.20)

such that xn → x ∈ X, yn → y ∈ X, and zn → z ∈ X. By the hypotheses on X, we have
xn ≤ x, yn ≥ y, and zn ≤ z for all n ∈ N. If for some n ≥ 0, xn = x, yn = y, and zn = z, then

x = xn ≤ xn+1 ≤ x = xn, y = yn ≥ yn+1 ≤ y = yn, z = zn ≤ zn+1 ≤ z = zn, (2.21)

which implies that xn = xn+1 = F(xn, yn, zn), yn = yn+1 = F(yn, xn, yn), and zn = zn+1 =
F(zn, yn, xn); that is, (xn, yn, zn) is a tripled fixed point of F. Now, assume that, for all n ≥ 0,
(xn, yn, zn)/= (x, y, z). Thus, for each n ≥ 0,

max
{
G(x, x, xn), G

(
y, y, yn

)
, G(z, z, zn)

}
> 0. (2.22)

From (2.19), we have

G
(
F
(
x, y, z

)
, F

(
x, y, z

)
, xn+1

)
:= G

(
F
(
x, y, z

)
, F

(
x, y, z

)
, F

(
xn, yn, zn

))

≤ φ(max
{
G(x, x, xn), G

(
y, y, yn

)
, G(z, z, zn)

})
,

G
(
yn+1, F

(
y, x, y

)
, F

(
y, x, y

))
:= G

(
F
(
yn, xn, yn

)
, F

(
y, x, y

)
, F

(
y, x, y

))

≤ φ(max
{
G
(
yn, y, y

)
, G(xn, x, x)

})

G
(
F
(
z, y, x

)
, F

(
z, y, x

)
, zn+1

)
:= G

(
F
(
z, y, x

)
, F

(
z, y, x

)
, F

(
zn, yn, xn

))

≤ φ(max
{
G(x, x, xn), G

(
y, y, yn

)
, G(z, z, zn)

})
.

(2.23)

Letting n → +∞ in (2.23) and using (2.22) in the fact that φ(t) < t for all t > 0, it follows
that x = F(x, y, z), y = F(y, x, y), and z = F(z, y, x). Hence (x, y, z) is a tripled fixed point of
F.
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Now we give some examples illustrating our results.

Example 2.5. Take X = [0,+∞) endowed with the complete G-metric:

G
(
x, y, z

)
= max

{∣∣x − y∣∣, |x − z|, ∣∣y − z∣∣}, (2.24)

for all x, y, z ∈ X. Set k = 1/2 and F : X3 → X defined by F(x, y, z) = (1/6)x. The mapping
F has the mixed monotone property. We have

G
(
F
(
x, y, z

)
, F(a, b, c), F(u, v,w)

)
=

1
6
G(x, a, u) ≤ k

3
max

{
G(x, a, u), G

(
y, b, v

)
, G(z, c,w)

}

(2.25)

for all x ≥ a ≥ u, y ≤ b ≤ v, and z ≥ c ≥ w, that is, (2.14) holds. Take x0 = y0 = z0 = 0, then all
the hypotheses of Corollary 2.2 are verified, and (0, 0, 0) is the unique tripled fixed point of F.

Example 2.6. As in Example 2.5, take X = [0,+∞) and

G
(
x, y, z

)
= max

{∣∣x − y∣∣, |x − z|, ∣∣y − z∣∣}, (2.26)

for all x, y, z ∈ X. Set k = 1/2 and F : X3 → X defined by F(x, y, z) = (1/36)(6x−6y+6z+5).
The mapping F has the mixed monotone property. For all x ≥ a ≥ u, y ≤ b ≤ v, and z ≥ c ≥ w,
we have

G
(
F
(
x, y, z

)
, F(a, b, c), F(u, v,w)

)
=

1
6
(|x − u| + ∣∣y − v∣∣ + |z −w|)

=
1
6
(
G(x, a, u) +G

(
y, b, v

)
+G(z, c,w)

)

=
k

3
(
G(x, a, u) +G

(
y, b, v

)
+G(z, c,w)

)
,

(2.27)

that is, (2.16) holds. Take x0 = y0 = z0 = 1/6, then all the hypotheses of Corollary 2.3 hold,
and (1/6, 1/6, 1/6) is the unique tripled fixed point of F.

Remark 2.7. In our main results (Theorems 2.1 and 2.4), the considered contractions are of
nonlinear type. Then, inequality (2.1) does not reduce to anymetric inequality with themetric
dG (this metric is given by (1.1)). Hence our theorems do not reduce to fixed point problems
in the corresponding metric space (X, dG).
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