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The continuability, boundedness, monotonicity, and asymptotic properties of nonoscillatory
solutions for a class of second-order nonlinear differential equations [p(t)h(x(t))f(x′(t))]′ =
q(t)g(x(t)) are discussed without monotonicity assumption for function g. It is proved that all
solutions can be extended to infinity, are eventually monotonic, and can be classified into disjoint
classes that are fully characterized in terms of several integral conditions. Moreover, necessary
and sufficient conditions for the existence of solutions in each class and for the boundedness of all
solutions are established.

1. Introduction

This paper studies the continuability, boundedness, monotonicity, and asymptotic properties
of nonoscillatory solutions for a class of second-order nonlinear differential equations

[
p(t)h(x(t))f

(
x′(t)

)]′ = q(t)g(x(t)), t ≥ a. (1.1)

Some special cases of (1.1) such as half-linear equation

[
p(t)Φp

(
x′(t)

)]′ = q(t)Φp(x(t)), (1.2)
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where Φp(r) = |r|p−2r, p > 1, is the so-called p-Laplacian operator, Emden-Fowler equation

[
p(t)Φp

(
x′(t)

)]′ = q(t)Φβ(x(t)), (1.3)

and differential equation

[
p(t)h(x(t))x′(t)

]′ = q(t)g(x(t)) (1.4)

have been extensively discussed in the literature; see, for example, [1–15] and references cited
therein. Equation (1.1) with general nonlinear function f(r) is investigated in [16–18]. It is
worth to point out that g(r) is assumed to be monotonic in most cited papers, but [2, 6]
explain that this assumption does not hold in some applications. The aim of this paper is
to investigate the continuability, boundedness, monotonicity, and asymptotic properties of
nonoscillatory solutions of (1.1) without monotonic assumption for g. Some techniques and
ideas have been used by the authors in [17].

By solution of (1.1), we mean a differentiable function x such that p(t)h(x(t))f(x′(t))
is differentiable and satisfies (1.1) on the maximum existence interval [a, αx), αx ≤ ∞. A
solution x of (1.1) is said to be eventually monotonic if there exists a tx ≥ a such that x
is monotonic on [tx, αx). In this paper, we consider only solutions that are not eventually
identically equal to zero.

Throughout the paper, we always assume that

(H) p(t), q(t) : [a,∞) → R are continuous and p(t) > 0 and q(t) > 0;

h(r) : R → R is continuous and h(r) > 0;

g(r) : R → R is continuous and rg(r) > 0 for r /= 0;

f(r) : R → R is continuous, increasing, and rf(r) > 0 for r /= 0.

(H1) There exists a constant M1 > 0 such that

∣∣∣f−1(uv)
∣∣∣ ≤ M1

∣∣∣f−1(u)
∣∣∣
∣∣∣f−1(v)

∣∣∣, ∀u, v ∈ R. (1.5)

Remark 1.1. (H1) holds for p-Laplacian operator; indeed,

f−1(uv) = f−1(u)f−1(v). (1.6)

However, there are nonlinear functions f that satisfy (H1) but not (1.6); see [17].

The paper is organized as follows: Section 1 briefly addresses the background and
the motivation of the paper. Continuability, classification, and boundedness of solutions are
discussed in Section 2. Sections 3 and 4 deal with the existence of class A and class B solutions,
respectively. Finally, several remarks are provided in Section 5 to compare our results with
existing ones.
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2. Continuability, Classification, and Boundedness of Solutions

In this section we discuss continuability, classification, and boundedness of solutions of (1.1).
First of all, we cite a result from [17] that will be used later on.

Lemma 2.1. If x is a solution of (1.1) with maximal existence interval [a, αx), αx ≤ ∞, then x is
eventually monotonic. Moreover, if x is bounded on all finite subinterval of [a, αx), then αx = ∞.

Remark 2.2. From Lemma 2.1 all solutions of (1.1) except eventually trivial solutions can be
classified into two classes

A =
{
x is defined on [a, αx) : x(t)x′(t) > 0 in a left neighborhood of αx

}
,

B =
{
x is defined on [a,∞) : x(t)x′(t) < 0 for t ≥ a

}
.

(2.1)

Next theorem establishes the continuability for all solutions of (1.1), in other words,
all solutions can be extended to [a,∞).

Theorem 2.3. Assume the following assmputions hold.

(H2) There exists a real numberm > 0 and a continuous functionG(r) : R → R such thatG(r)
is increasing and |g(r)| ≤ |G(r)| for |r| ≥ m, and rG(r) > 0 for r /= 0;

(H3) There exists a real number r0 > 0 such that

∫∞

r0

dr

f−1(z(r))
= ∞,

∫−r0

−∞

dr

f−1(z(r))
= −∞, (2.2)

where z(r) = G(r)/h(r).

Then all solutions of (1.1) can be extended to [a,∞).

Proof. The proof is similar to that of Theorem 2.3 [17]. We point out that as in the proof of
Theorem 2.3 [17], for a class A solution x, we have

f
(
x′(t)

) ≤ G(x(t))
p(t)h(x(t))

(
p(d)h(x(d))f(x′(d))

G(x(d))
+
∫ t

d

q(s)ds

)

,

∫x(t)

x(t1)

dr

f−1(z(r))
≤ M2

1f
−1(k)

∫ t

t1

f−1
(

1
p(s)

∫s

d

q(σ)dσ
)
ds.

(2.3)

Remark 2.4. The function g(r) = r + sin r is not monotonic. Clearly, |g(r)| ≤ 2|r|, so g is
bounded by an increasing function G(r) = 2r. Therefore, the existing results which require
the monotonic condition for g would not apply, but Theorem 2.3 does.
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From Remark 2.2 and Theorem 2.3, all solutions of (1.1) can be classified further into
four disjoint classes

Ab =
{
x ∈ A : lim

t→∞
|x(t)| = � < ∞

}
,

A∞ =
{
x ∈ A : lim

t→∞
|x(t)| = ∞

}
,

Bb =
{
x ∈ B : lim

t→∞
x(t) = � /= 0

}
,

B0 =
{
x ∈ B : lim

t→∞
x(t) = 0

}
.

(2.4)

We will show that the existence of solutions in each class and the boundedness of all
solutions are fully characterized by means of convergence or divergence of the following
integrals:

J1 =
∫∞

a

f−1
(

1
p(t)

∫ t

a

q(s)ds

)

dt,

J2 =
∫∞

a

f−1
(

− 1
p(t)

∫ t

a

q(s)ds

)

dt,

J3 =
∫∞

a

f−1
(

1
p(t)

∫∞

t

q(s)ds
)
dt,

J4 =
∫∞

a

f−1
(
− 1
p(t)

∫∞

t

q(s)ds
)
dt,

J5 =
∫∞

a

f−1
(

1
p(t)

)
dt.

(2.5)

Theorem 2.5. Let (H2) and (H3) hold. Then all positive (negative) solutions of (1.1) are bounded if
and only if J1 < ∞(J2 > −∞).

Proof. We consider positive solutions only since the case of negative solutions can be handled
similarly.

Necessity. Let x be a positive bounded class A solution. Then x(t) > 0 and x′(t) > 0
for t ≥ b > a and limt→∞x(t) = l ∈ (0,∞). By the Extreme Value Theorem, we have L1 :=
minx(b)≤r≤lg(r) > 0. Hence

p(t)h(x(t))f
(
x′(t)

)
= p(b)h(x(b))f

(
x′(b)

)
+
∫ t

b

q(s)g(x(s))ds ≥ L1

∫ t

b

q(s)ds. (2.6)
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Since x is continuous and bounded and h(r) is continuous, then h(x(t)) is bounded. Let
h(x(t)) ≤ K for t ∈ [a,∞). Then

Kp(t)f
(
x′(t)

) ≥ p(t)h(x(t))f
(
x′(t)

) ≥ L1

∫ t

b

q(s)ds,

K

L1
f
(
x′(t)

) ≥ 1
p(t)

∫ t

b

q(s)ds.

(2.7)

By (H1), we have

f−1
(

1
p(t)

∫ t

b

q(s)ds

)

≤ f−1
(
K

L1
f
(
x′(t)

)) ≤ M1f
−1
(
K

L1

)
x′(t). (2.8)

Integrating from b to t and letting t → ∞, we have

J1 =
∫∞

b

f−1
(

1
p(t)

∫ t

b

q(s)ds

)

dt ≤ M1f
−1
(
K

L1

)
(l − x(b)) < ∞. (2.9)

Sufficiency. We will prove by contradiction. Let x be a unbounded class A solution.
Then x(t) > 0 and x′(t) > 0 on [b,∞), and there exists a real number d ≥ b such that x(t) ≥ m
for d ≤ t < ∞. Similar to the proof of Theorem 2.3, we have

∫x(t)

x(t1)

dr

f−1(z(r))
≤ M2

1f
−1(k)

∫ t

t1

f−1
(

1
p(s)

∫s

d

q(σ)dσ
)
ds. (2.10)

Letting t → ∞ and noting that x(∞) = ∞, we have

∫∞

x(t1)

dr

f−1(z(r))
≤ M2

1f
−1(k)

∫∞

t1

f−1
(

1
p(s)

∫s

b

q(σ)dσ
)
ds ≤ M2

1f
−1(k)J1 < ∞, (2.11)

a contradiction to (H3). Therefore, x is bounded.

Corollary 2.6. Let (H2) and (H3) hold. If (1.1) has a positive (negative) bounded class A solution,
then all positive (negative) solutions are bounded. On the other hand, if (1.1) has an unbounded
positive (negative) class A solution, then all positive (negative) solutions are unbounded.

3. Class A Solutions

In this section, we consider the existence of class Ab and class A∞ solutions of (1.1). The
necessary and sufficient conditions for the existence of class Ab solutions and the sufficient
conditions for the existence of class A∞ solutions are provided.
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Theorem 3.1. Equation (1.1) has both positive and negative class A solutions.

Proof. Similar to the proof of Theorem 3.1 in [17].

Theorem 3.2. Equation (1.1) has a positive (negative) Ab solution if and only if J1 < ∞ (J2 > −∞).

Proof. Necessity. Without loss of generality, we assume that x is a positive Ab solution. In
this case, there exists a b ≥ a such that x(t) > 0 and x′(t) > 0 for t ≥ b. Note that x(∞) :=
limt→∞x(t) < ∞, we have

m1 := min
x(b)≤r≤x(∞)

g(r) > 0,

c1 := max
b≤t<∞

h(x(t)) ≤ max
x(b)≤r≤x(∞)

h(r) < ∞.
(3.1)

Then

p(t)h(x(t))f
(
x′(t)

)
= p(b)h(x(b))f

(
x′(b)

)
+
∫ t

b

q(s)g(x(s))ds ≥ m1

∫ t

b

q(s)ds, (3.2)

and hence

1
p(t)

∫ t

b

q(s)ds ≤ 1
m1

h(x(t))f
(
x′(t)

)
. (3.3)

Taking f−1 on both sides and applying (H1) imply that

f−1
(

1
p(t)

∫ t

b

q(s)ds

)

≤ f−1
(

1
m1

h(x(t))f
(
x′(t)

)) ≤ M1f
−1
(

c1
m1

)
x′(t). (3.4)

Therefore

J1 =
∫∞

b

f−1
(

1
p(t)

∫ t

b

q(s)ds

)

ds ≤ M1f
−1
(

c1
m1

)
(x(∞)) − (x(b)) < ∞. (3.5)

Sufficiency. Define

m2 = max
1≤r≤2

g(r) > 0, c2 = min
1≤r≤2

h(r) > 0. (3.6)

Since J1 < ∞, we may select a d ≥ a such that

∫∞

d

f−1
(

1
p(t)

∫ t

d

q(s)ds

)

dt ≤ 1
M1f−1(m2/c2)

. (3.7)
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Let CB[d,∞) be the Banach space of all bounded and continuous functions defined on [d,∞)
endowed with the supremum norm, and letX = {x ∈ CB[d,∞) : 1 ≤ x(t) ≤ 2, t ≥ d}. Clearly,
X is a bounded convex subset of CB[d,∞). Define a mapping F1 : X → CB[d,∞) by

(F1x)(t) = 1 +
∫ t

d

f−1
(

1
p(s)h(x(s))

∫ s

d

q(σ)g(x(σ))dσ
)
ds. (3.8)

In order to apply Schauder’s fixed-point theorem to show that F1 has a fixed point in X, we
need to prove that F1 maps into X and is continuous, and F1(X) is precompact in CB[d,∞).

Let x ∈ X. Considering (3.7), we have

1 ≤ (F1x)(t) ≤ 1 +M1f
−1
(
m2

c2

)∫ t

d

f−1
(

1
p(s)

∫s

d

q(σ)dσ
)
ds

≤ 1 +M1f
−1
(
m2

c2

)∫∞

d

f−1
(

1
p(t)

∫ t

d

q(s)ds

)

dt ≤ 2.

(3.9)

Hence, F1 maps X into X.
Now, we show that if xn, x∗ ∈ X and ‖xn−x∗‖ → 0 as n → ∞, then ‖F1xn−F1x

∗‖ → 0.
Indeed, for any fixed s ∈ [d,∞), since xn(s) → x∗(s) as n → ∞, we have

∣∣∣∣f
−1
(

1
p(s)h(xn(s))

∫s

d

q(σ)g(xn(σ))dσ
)

−f−1
(

1
p(s)h(x∗(s))

∫s

d

q(σ)g(x∗(σ))dσ
)∣∣∣∣ −→ 0 as n −→ ∞.

(3.10)

Note that

∣∣∣∣f
−1
(

1
p(s)h(xn(s))

∫s

d

q(σ)g(xn(σ))dσ
)
− f−1

(
1

p(s)h(x∗(s))

∫s

d

q(σ)g(x∗(σ))dσ
)∣∣∣∣

≤
∣∣∣∣f

−1
(

1
p(s)h(xn(s))

∫s

d

q(σ)g(xn(σ))dσ
)∣∣∣∣

+
∣∣∣∣f

−1
(

1
p(s)h(x∗(s))

∫s

d

q(σ)g(x∗(σ))dσ
)∣∣∣∣

≤ 2M1f
−1
(
m2

c2

)
f−1
(

1
p(s)

∫s

d

q(σ)dσ
)

:= F(s),

(3.11)

and that

∫∞

d

F(s)ds =
∫∞

d

2M1f
−1
(
m2

c2

)
f−1
(

1
p(s)

∫ s

d

q(σ)dσ
)
ds = 2M1f

−1
(
m2

c2

)
J1. (3.12)
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By Lebesgue’s dominated convergence theorem and considering (3.11) and (3.12) we have

‖F1xn − F1x
∗‖

≤ sup
b≤t<∞

∫ t

d

∣∣∣∣f
−1
(

1
p(s)h(xn(s))

∫s

d

q(σ)g(xn(σ))dσ
)

− f−1
(

1
p(s)h(x∗(s))

∫s

d

q(σ)g(x∗(σ))dσ
)∣∣∣∣ds

≤
∫∞

d

∣∣∣∣f
−1
(

1
p(s)h(xn(s))

∫ s

d

q(σ)g(xn(σ))dσ
)

−f−1
(

1
p(s)h(x∗(s))

∫s

d

q(σ)g(x∗(σ))dσ
)∣∣∣∣ds −→ 0

(3.13)

as n → ∞. Therefore, F1 is continuous in X.
Finally, we show the precompactness of F1(X) in CB[d,∞), which means that for any

sequence xn ∈ X, F1xn has a convergent subsequence in CB[d,∞). This can be proved by
showing that F1xn has a convergent subsequence in C[b1, b2] for any compact subinterval
[b1, b2] of [b,∞) as well as the diagonal rule. In fact, F1xn is uniformly bounded on [b1, b2].
Since

(F1xn)′(t) = f−1
(

1
p(t)h(xn(t))

∫ t

d

q(s)g(xn(s))ds

)

≤ M1f
−1
(
m2

c2

)
f−1
(

1
p(t)

∫ t

d

q(t)ds

)

.

(3.14)

By the Mean Value Theorem, we have

|(F1xn)(t1) − (F1xn)(t2)|

=
∣∣(F1xn)′(ξ)(t1 − t2)

∣∣ ≤ M1f
−1
(
m2

c2

)
max
b1≤t≤b2

f−1
(

1
p(t)

∫ t

d

q(s)ds

)

|t1 − t2|.
(3.15)

Then F1xn is uniformly bounded and equicontinuous in C[b1, b2]. So F1xn has a convergent
subsequence in C[b1, b2] by Arzelà-Ascoli Theorem.

Now all conditions of Schauder’s fixed-point theorem are satisfied, so F1 has a fixed
point x in X, that is,

x(t) = 1 +
∫ t

d

f−1
(

1
p(s)h(x(s))

∫s

d

q(σ)g(x(σ))dσ
)
ds. (3.16)

It is easy to verify that [p(t)h(x(t))f(x ′(t))]′ = q(t)g(x(t)). Hence, x is a positive Ab solution
of (1.1). The proof is complete.
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Theorem 3.3. Let (H2) and (H3) hold. Then

(a) A∞ = ∅ if and only if J1 < ∞ and J2 > −∞.

(b) Equation (1.1) has a positive (negative) A∞ solution if J1 = ∞ (J2 = −∞).

Proof. By Theorem 2.5 all solutions of (1.1) are bounded if and only if J1 < ∞ and J2 > −∞,
so part (a) follows.

If J1 = ∞, there is no positive Ab solution of (1.1) from Theorem 3.2. Therefore,
Theorem 3.1 guarantees the existence of a positiveA∞ solution of (1.1). Similarly, there exists
a negative A∞ solution of (1.1) if J2 = −∞.

4. Class B Solutions

In this section the existence of class B, Bb, and B0 solutions are discussed. We assume that
(1.1) has a unique solution for any initial conditions x(a) = x0 /= 0 and x′(a) = x1.

Theorem 4.1. Assume the following assumptions hold.

(H2a) There exists a continuous function G(r) : R → R such that G is increasing, rG(r) > 0 for
r /= 0 and |g(r)| ≤ |G(r)|;

(H4) There exists r0 > 0 such that

∫±r0

0

dr

f−1(z(r))
= ∞. (4.1)

Then (1.1) has

(a) both positive and negative solutions in class B;

(b) no solution which is eventually identically equal to zero.

Proof. (a)We prove that class B has a positive solution, the case of having a negative solution
is similar. Assume x0 > 0. The solution of (1.1)with initial conditions x(a) = x0 and x′(a) = c,
denoted by x(t) := x(t, c), has the form

x(t) = x0 +
∫ t

a

f−1
(
p(a)h(x0)f(c)
p(s)h(x(s))

+
1

p(s)h(x(s))

∫ s

a

q(σ)g(x(σ))dσ
)
ds. (4.2)

Define two sets U and L as

U =
{
c ∈ R : there exists some t ≥ a such that x′

(
t, c
)
> 0
}
,

L =
{
c ∈ R : there exists some t ≥ a such that x

(
t, c
)
< 0
}
.

(4.3)
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Then U ∩ L = ∅. Clearly, U/= ∅. We claim that U is open. Indeed, if c0 ∈ U, there exists t > a
such that x′(t, c0) > 0. For any c ∈ R, we have

p
(
t
)
h
(
x
(
t, c0
))

f
(
x′
(
t, c0
))

− p
(
t
)
h
(
x
(
t, c
))

f
(
x′
(
t, c
))

= p(a)h(x0)f(c0) − p(a)h(x0)f(c) +
∫ t

a

q(s)
(
g(x(s, c0)) − g(x(s, c))

)
ds.

(4.4)

Since (1.1) has a unique solution for any initial conditions x(a)/= 0, x′(a), this solution is
continuously dependent on initial data. If c → c0, we have g(x(s, c)) − g(x(s, c0)) → 0
uniformly for s on [a, t ]. Hence, x′(t, c) > 0 for all c that are close to c0, this proves the
openness of U.

Next we show that L/= ∅. Define

M2 := min
0≤r≤x0

h(r) > 0, M3 := min
a≤t≤a+1

p(t) > 0. (4.5)

Let

c < f−1

⎛

⎝M2M3f
−1(−x0) −G(x0)

∫a+1
a q(s)ds

p(a)h(x0)

⎞

⎠ < 0. (4.6)

If there exists b ∈ (a, a+ 1] such that x(b, c) < 0, then c ∈ L and L/= ∅. Otherwise, x(t, c) ≥ 0 on
[a, a+1]. In this case, we claim x′(t, c) < 0 on [a, a+1]. If this is not true, since x′(a, c) = c < 0,
there exists t1 ∈ (a, a + 1] such that x′(t1, c) = 0 and x′(t, c) < 0 for t ∈ [a, t1). Taking into
account (4.6) we have

0 = p(t)h(x(t1, c))f
(
x′(t1, c)

)

= p(a)h(x0)f(c) +
∫ t1

a

q(s)g(x(s, c))ds

≤ p(a)h(x0)f(c) +G(x0)
∫a+1

a

q(s)ds < 0.

(4.7)

This is a contradiction and hence x′(t, c) < 0 on [a, a + 1]. Notice that

x(a + 1, c) = x0 +
∫a+1

a

f−1
(

p(a)h(x0)f(c)
p(t)h(x(t))

+
1

p(t)h(x(t))

∫ t

a

q(s)g(x(s))ds

)

dt

≤ x0 +
∫a+1

a

f−1

⎛

⎝p(a)h(x0)f(c) +G(x0)
∫a+1
a q(s)ds

M2M3

⎞

⎠dt < 0,

(4.8)

we know c ∈ L. Clearly, L is open, then R − (U ∪ L)/= ∅. Take c ∈ R − (U ∪ L), x(t, c) is
a nonincreasing nonnegative solution on [a,∞). We will show that x(t, c) > 0 on [a,∞). If
not, there exists t0 > a such that x(t0) = 0 and x(t) = 0 for t ≥ t0 and x′(t0) = 0. Note that
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for t ∈ [a, t0] we have

x′(t) = f−1
(

− 1
p(t)h(x(t))

∫ t0

t

q(s)g(x(s))ds

)

≥ f−1
(

− G(x(t))
p(t)h(x(t))

∫ t0

t

q(s)ds

)

≥ M1f
−1(z(x(t)))f−1

(

− 1
p(t)

∫ t0

t

q(s)ds

)

.

(4.9)

Dividing both sides by f−1(z(x(t))) and integrating from a to t0, we have

∫ t0

a

x′(t)
f−1(z(x(t)))

dt ≥ M1

∫ t0

a

f−1
(

− 1
p(t)

∫ t0

t

q(s)ds

)

dt. (4.10)

That is

∫x0

0

1
f−1(z(r))

dr ≤ −M1

∫ t0

a

f−1
(

− 1
p(t)

∫ t0

t

q(s)ds

)

dt < ∞, (4.11)

a contradiction to (H4). Therefore, x(t) > 0 for t ≥ a and x ∈ B.
The proof of part (b) follows from the end part of the proof of part (a).

Theorem 4.2. Equation (1.1) has a positive (negative) Bb solution if and only if J4 > −∞ (J3 < ∞).

Proof. Necessity. We assume that x is a positive Bb solution. The case of negative Bb solution
is similar. In this case, we have x(t) > 0 and x′(t) < 0 for t ≥ a. Let

m1 = min
x(∞)≤r≤x(a)

g(r) > 0, c1 = max
x(∞)≤r≤x(a)

h(r) > 0 (4.12)

and note that p(t)h(x(t))f(x′(t)) < 0, (p(t)h(x(t))f(x′(t)))′ > 0. Then

lim
t→∞

p(t)h(x(t))f
(
x′(t)

)
= B ≤ 0. (4.13)

Integrating both sides of (1.1) from t to∞ implies that

m1

∫∞

t

q(s)ds ≤
∫∞

t

q(s)g(x(s))ds = B − (p(t)h(x(t))f(x′(t)
))

≤ −p(t)h(x(t))f(x′(t)
)
.

(4.14)
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Hence,

f−1
(
− 1
p(t)

∫∞

t

q(s)ds
)

≥ M1f
−1
(

c1
m1

)
x′(t). (4.15)

Again, integrating both sides of the above inequality we have

J4 =
∫∞

a

f−1
(
− 1
p(t)

∫∞

t

q(s)ds
)
dt ≥ M1f

−1
(

c1
m1

)
(x(∞) − x(a)) > −∞. (4.16)

Sufficiency. Let

m2 = max
1≤r≤2

g(r) > 0, c2 = min
1≤r≤2

h(r) > 0. (4.17)

Since J4 > −∞we choose d > a such that

∫∞

d

f−1
(
− 1
p(t)

∫∞

t

q(s)ds
)
dt ≥ − 1

M1f−1(m2/c2)
. (4.18)

Let X and CB[d,∞) as defined in Theorem 3.2. Define F2 : X → CB[d,∞) by

(F2x)(t) = 1 −
∫∞

t

f−1
(
− 1
p(s)h(x(s))

∫∞

s

q(σ)g(x(σ))dσ
)
ds. (4.19)

For any x ∈ X, we have

1 ≤ (F2x)(t) ≤ 1 −
∫∞

d

M1f
−1
(
m2

c2

)
f−1
(
− 1
p(s)

∫∞

s

q(σ)dσ
)
ds ≤ 2. (4.20)

This proves that F2 maps X into X. Similar to the proof of Theorem 3.2, we are able to show
that F2 is continuous in X, and F2(X) is precompact in CB[d,∞). Then F2 has a fixed-point
x(t) in X by Schauder’s fixed-point theorem, that is,

x(t) = 1 −
∫∞

t

f−1
(
− 1
p(s)h(x(s))

∫∞

s

q(σ)g(x(σ))dσ
)
ds. (4.21)

It is easy to verify that x(t) is a positive Bb solution of (1.1). The proof is complete.

Theorem 4.3. Let (H2a) and (H4) hold and let J5 = ∞. Then (1.1) has a positive (negative) B0

solution if and only if J4 = −∞ (J4 = ∞).

Proof. We prove the assertion for positive solutions without loss of generality.
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Necessity. Assume x(t) is a positive B0 solution. Then x(t) > 0 and x′(t) < 0 for t ≥ a,
x(∞) = 0, and limt→∞p(t)h(x(t))f(x′(t)) = L ∈ (−∞, 0]. We claim L = 0. In fact, if L < 0, since
p(t)h(x(t))f(x′(t)) is negative and increasing on [a,∞), then p(t)h(x(t))f(x′(t)) ≤ L and

x′(t) ≤ f−1
(

L

c1p(t)

)
≤ M1f

−1
(
L

c1

)
f−1
(

1
p(t)

)
, (4.22)

where c1 = max0≤r≤x(a)h(r) > 0.
Integrating both sides from a to∞ and noting that x(∞) = 0, we have

x(a) ≥ −M1f
−1
(
L

c1

)∫∞

a

f−1
(

1
p(t)

)
dt, (4.23)

a contradiction to J5 = ∞ and hence L = 0.
Integrating both sides of (1.1) from t to∞we have

p(t)h(x(t))f
(
x′(t)

)
= −
∫∞

t

q(s)g(x(s))ds. (4.24)

Then

x′(t) = f−1
(
− 1
p(t)h(x(t))

∫∞

t

q(s)g(x(s))ds
)

≥ M1f
−1(z(x(t)))f−1

(
− 1
p(t)

∫∞

t

q(s)ds
)
.

(4.25)

Hence,

x′(t)
f−1(z(x(t)))

≥ M1f
−1
(
− 1
p(t)

∫∞

t

q(s)ds
)
. (4.26)

Integrating both sides of the above inequality from a to∞ implies that

∫x(a)

0

dr

f−1(z(r))
≤ −M1

∫∞

a

f−1
(
− 1
p(t)

∫∞

t

q(s)ds
)
dt. (4.27)

Therefore, J4 = −∞ from (H4).
Sufficiency. By Theorem 4.1 (1.1) has a positive class B solution x, either x ∈ Bb or

x ∈ B0. Note that J4 = −∞ implies that x /∈ Bb from Theorem 4.2. So x ∈ B0. The proof is
complete.

5. Remarks

In this section, we present several remarks about comparison of our results with the existing
ones in the literature.
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Theorems 2.3 and 2.5 improve [10, Theorem 1] since (H3) reduces to (iii) of [10] if
f(r) = r and the differentiability of p(·) and h(·) is not required. Theorems 2.3, 2.5, and
4.2 complement and generalize [2, Theorem 8]. Moreover, under (H2), Theorems 2.3, 2.5,
and 4.2 improve [2, Theorem 8] since (H3) improves (22) of [2]; see the discussion in
[16]. Theorem 2.5 generalizes [13, Theorem 3.9]. Theorems 2.3, 3.1, and 4.2 generalize [16,
Theorem 1]. Theorem 3.2 generalizes [2, Theorem 3], [16, Theorem 3], and [18, Theorem 2.1].
Theorem 3.3 generalizes [18, Theorem 2.2]. Theorem 4.1 generalizes [13, Theorem 2.1] and
improves [3, Theorem 6] under (H2a) since (hp) in [3] is replaced by a weaker condition
(H4). Theorem 4.2 generalizes [2, Theorem 1], [16, Theorem 5], and [18, Theorem 3.1].
Theorem 4.3 generalize [16, Theorem 6] and [18, Theorem 3.2].
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