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A linear-implicit finite difference scheme is given for the initial-boundary problem of GBBM-
Burgers equation, which is convergent and unconditionally stable. The unique solvability of nu-
merical solutions is shown. A priori estimate and second-order convergence of the finite difference
approximate solution are discussed using energy method. Numerical results demonstrate that the
scheme is efficient and accurate.

1. Introduction

The generalized Benjamin-Bona-Mahony-Burgers (GBBM-Burgers) equation is in the form
[1]

ut − uxxt − αuxx + βux + upux = 0, (1.1)

where α > 0, β are constants, p ≥ 1 is an integer, and u(x, t) represents the velocity of fluid in
the horizontal direction x. When p = 1, (1.1) is called as the Benjamin-Bona-Mahony-Burgers
(BBM-Burgers) equation. In the special case, when α = 0, (1.1) is described as the generalized
Benjamin-Bona-Mahony equation

ut − uxxt + ux + upux = 0. (1.2)



2 Journal of Applied Mathematics

The Equation (1.2) which is usually called as the generalized regularized long-wave equa-
tion proposed by Peregrine [2] and Benjamin et al. [3], so-called generalized Benjamin-Bona-
Mahony equation, has been studied by many authors [4–7]. This equation features a balance
between the nonlinear dispersive effect but takes no account of dissipation.

In recent years, a vast amount of work and computation has been devoted to the initial
value problem for the GBBM-Burgers equation. In [1], Al-Khaled et al. studied the GBBM-
Burgers by Decomposition method. In [8], Hayashi et al. investigated large time asymptotics
of solutions to the BBM-Burgers equation. In [9], Jiang and Xu investigated the asymptotic
behavior of solutions of the initial-boundary value problem for the GBBM-Burgers equations.
In [10], Yin et al. studied the large time behavior of traveling wave solutions to the Cauchy
problem of the GBBM-Burgers equations. In [11], Mei studied the large time behavior of
global solutions to the Cauchy problem of GBBM-Burgers equations. In [12], Kondo
and Webler studied the global existence of solutions for multidimensional GBBM-Burgers
equations. Kinami et al. discussed the Cauchy problem of the GBBM-Burgers equations by
Fourier transform method and energy method [13]. However, there are few studies on finite
difference approximations for (1.1) which we consider in this paper.

In a recent work [14], we have made some preliminary computation by proposing
a linearized difference scheme for GRLW equation which is unconditionally stable and
reduces the computational work, and the numerical results are encouraging. In this paper,
we continue our work and propose a linear-implicit difference scheme for generalized BBM-
Burgers equation which is unconditionally stable and second-order convergent.

In this paper, we consider the following initial-boundary value problem of the GBBM-
Burgers equation

ut − uxxt − αuxx + βux + upux = 0, x ∈ [xL, xR], t ∈ [0, T],

u(x, 0) = u0(x), x ∈ [xL, xR],

u(xL, t) = u(xR, t) = 0, t ∈ [0, T].

(1.3)

An outline of the paper is as follows. In Section 2, we describe a linear-implicit finite
difference scheme for the GBBM-Burgers equation and prove the error estimates of 2 order.
In Section 3, we show that the scheme is uniquely solvable. In Section 4, convergence and
stability of the scheme are proved. In Section 5, numerical results are provided to test the
theoretical results.

2. Finite Difference Scheme and Estimate for the Difference Solution

As usual, the following notations will be used:

xj = xL + jh, tn = nτ, 0 ≤ j ≤ J, 0 ≤ n ≤N =
[
T

τ

]
, (2.1)

where h = (xR − xL)/J and τ are the uniform spatial and temporal step sizes, respectively,

(
unj

)
x
=
unj+1 − unj

h
,

(
unj

)
x
=
unj − unj−1

h
,
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(
unj

)
x̂
=
unj+1 − unj−1

2h
,

(
unj

)
t̂
=
un+1j − un−1j

2τ
,

unj =
un+1j + un−1j

2
, (un, vn) = h

∑
j

unj v
n
j ,

‖un‖2 = (un, un), ‖un‖∞ = sup
j

∣∣∣unj
∣∣∣.

(2.2)

Let unj denote the approximation of u(xj , tn), Z0
h
= {u = (uj) | u0 = uJ = 0, 1 ≤ j ≤ J}. In this

paper, we will denote C as a generic constant independent of step sizes h and τ .
We propose a three-level linear-implicit difference scheme for the solution of the

problem (1.3)

(
unj

)
t̂
−
(
unj

)
xxt̂

− α
(
unj

)
xx

+ β
(
unj

)
x̂
+

1
p + 2

[(
unj

)p(
unj

)
x̂
+
((
unj

)p
unj

)
x̂

]
= 0,

1 ≤ j ≤ J − 1, 1 ≤ n ≤N − 1,

(2.3)

u0j = u0
(
xj
)
, 1 ≤ j ≤ J − 1, (2.4)

u1j −
(
u1j

)
xx

= u0
(
xj
)
+

d2u0
dx2

(
xj
) − τ

[
β
du0
dx

(
xj
) − αd2u0

dx2

(
xj
)
+ u

p

0

(
xj
)du0
dx

(
xj
)]
,

(2.5)

un0 = unJ = 0, 1 ≤ n ≤N − 1. (2.6)

For convenience, the last term of (2.3) is defined by

ψ
(
un, un

)
=

1
p + 2

[(
unj

)p(
unj

)
x̂
+
((
unj

)p
unj

)
x̂

]
. (2.7)

Lemma 2.1 (see [15]). For any two mesh functions u, v ∈ Z0
h, one has

(ux, v) = −(u, vx), ((u)xx, v) = −(ux, vx), ((u)xx, u) = −(ux, ux) = −‖ux‖2. (2.8)

Lemma 2.2. For any mesh function u ∈ Z0
h
, one has

(
ψ
(
un, un

)
, un
)
= 0. (2.9)
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Proof. For un ∈ Z0
h, one has

(
ψ
(
un, un

)
, un
)
=

1
8
(
p + 2

)∑
j

[(
unj

)p(
un+1j+1 − un+1j−1 + un−1j+1 − un−1j−1

)

+
(
unj+1

)p(
un+1j+1 + un−1j+1

)
−
(
unj−1
)p(

un+1j−1 + un−1j−1
)](

un+1j + un−1j

)

=
1

8
(
p + 2

)∑
j

[(
unj

)p(
un+1j+1 + un−1j+1

)
+
(
unj+1

)p(
un+1j+1 + un−1j+1

)] (
un+1j + un−1j

)

− 1
8
(
p + 2

) ∑
j

[(
unj+1

)p(
un+1j + un−1j

)
+
(
unj

)p(
un+1j + un−1j

)](
un+1j+1 + un−1j+1

)

= 0.
(2.10)

Lemma 2.3 (Discrete Sobolev Inequality [16]). For any discrete function uh and for any given
ε > 0, there exists a constant K(ε, n), depending only ε and n, such that

‖un‖∞ ≤ ε‖unx‖ +K(ε, n)‖un‖. (2.11)

Theorem 2.4. Assume u0 ∈ H1
0 , then there is the estimation for the solution of difference scheme

(2.3)–(2.6),

‖un‖ ≤ C, ‖unx‖ ≤ C, ‖un‖∞ ≤ C. (2.12)

Proof. Computing the inner product of (2.3)with 2un (i.e., un+1 + un−1), we obtain

1
2τ

(∥∥∥un+1∥∥∥2 − ∥∥∥un−1∥∥∥2
)
+

1
2τ

(∥∥∥un+1x

∥∥∥2 − ∥∥∥un−1x

∥∥∥2
)
− (α(un)xx, 2un)

+ βh
∑
j

(
unj

)
x̂

(
un+1j + un−1j

)
+
(
ψ
(
un, un

)
, 2un

)
= 0.

(2.13)

Now, computing the fourth term of the left-hand side in (2.13), we have

h
∑
j

(
unj

)
x̂

(
un+1j + un−1j

)
= h

⎡
⎣∑

j

(
unj

)
x̂
un+1j −

∑
j

(
un−1j

)
x̂
unj

⎤
⎦. (2.14)
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According to Lemmas 2.1 and 2.2, and using (2.14), we get

1
2τ

(∥∥∥un+1∥∥∥2 − ∥∥∥un−1∥∥∥2
)

+
1
2τ

(∥∥∥un+1x

∥∥∥2 − ∥∥∥un−1x

∥∥∥2
)

+ βh

⎡
⎣∑

j

(
unj

)
x̂
un+1j −

∑
j

(
un−1j

)
x̂
unj

⎤
⎦

= −2α∥∥unx∥∥2 ≤ 0.

(2.15)

We let

En =
1
2

(∥∥∥un+1∥∥∥2 + ‖un‖2
)
+
1
2

(∥∥∥un+1x

∥∥∥2 + ‖unx‖2
)
+ βhτ

∑
j

(
unj

)
x̂
un+1j . (2.16)

It follows from (2.15) that

En =
1
2

(∥∥∥un+1∥∥∥2 + ‖un‖2
)
+
1
2

(∥∥∥un+1x

∥∥∥2 + ‖unx‖2
)
+ βhτ

∑
j

(
unj

)
x̂
un+1j

≤ En−1 ≤ · · · ≤ E0.

(2.17)

Then we have

1
2

(∥∥∥un+1∥∥∥2 + ‖un‖2
)
+
1
2

(∥∥∥un+1x

∥∥∥2 + ‖unx‖2
)

≤ C +
1
2
βτ

(
‖unx‖2 +

∥∥∥un+1∥∥∥2
)
. (2.18)

Using (2.18), we obtain

1
2

[(
1 − βτ)∥∥∥un+1∥∥∥2 + ‖un‖2

]
+
1
2

[∥∥∥un+1x

∥∥∥2 + (1 − βτ)‖unx‖2
]
≤ C. (2.19)

Equation (2.19) yields

‖un‖ ≤ C, ‖unx‖ ≤ C. (2.20)

Using Lemma 2.3, the proof of Theorem 2.4 is completed.

Remark 2.5. Theorem 2.4 implies that scheme (2.3)–(2.6) is unconditionally stable.

3. Solvability

Next, we will discuss the solvability of the scheme (2.3) based on the technique of Omrani
et al. [17].
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Theorem 3.1. The finite difference scheme (2.3) is uniquely solvable.

Proof. It is obvious that u0 and u1 are uniquely determined by (2.4)-(2.5). Now suppose
u0, u1, . . . , un (1 ≤ n ≤ N − 1) be solved uniquely. Considering the equation of (2.3) for
un+1, we have

1
2τ
un+1j − 1

2τ

(
un+1j

)
xx

− α

2

(
un+1j

)
xx

+
1

2
(
p + 2

)[(unj
)p(

un+1j

)
x̂
+
((
unj

)p
un+1j

)
x̂

]
= 0. (3.1)

Computing the inner product of (3.1)with un+1, we have

1
2τ

∥∥∥un+1∥∥∥2 + 1
2τ

∥∥∥un+1x

∥∥∥2 + α

2

∥∥∥un+1x

∥∥∥2 + (φ(un, un+1), un+1) = 0, (3.2)

where φ(un, un+1) = (1/2(p + 2))[(unj )
p(un+1j )

x̂
+ ((unj )

pun+1j )
x̂
].

In view of difference properties and the boundary conditions (2.6), we obtain

(
φ
(
un, un+1

)
, un+1

)
=

1
2
(
p + 2

)h
J−1∑
j=1

[(
unj

)p(
un+1j

)
x̂
+
((
unj

)p
un+1j

)
x̂

]
un+1j

=
1

4
(
p + 2

)h
J−1∑
j=1

[(
unj

)p
un+1j+1u

n+1
j +

(
unj+1

)p
un+1j+1u

n+1
j

]

− 1
4
(
p + 2

)h
J−1∑
j=1

[(
unj

)p
un+1j−1u

n+1
j +

(
unj−1
)p
un+1j−1u

n+1
j

]

= 0.

(3.3)

It follows from (3.2) and (3.3) that

∥∥∥un+1∥∥∥2 + ∥∥∥un+1x

∥∥∥2 + ατ∥∥∥un+1x

∥∥∥2 = 0. (3.4)

Noting that α > 0 and following from (3.4), we have

∥∥∥un+1∥∥∥2 + ∥∥∥un+1x

∥∥∥2 = 0. (3.5)

That is (3.1) has only a trivial solution. Therefore, the scheme (2.3) determines un+1j uniquely.
This completes the proof.

Remark 3.2. All results above in this paper are correct for IBV problem of the BBM-Burgers
equation with finite or infinite boundary.



Journal of Applied Mathematics 7

4. Convergence and Stability of the Difference Scheme

First, we consider the truncation error of the difference scheme (2.3)–(2.6).
Suppose vnj = u(xj , tn). Making use of Taylor expansion, we find

Ernj =
(
vnj

)
t̂
−
(
vnj

)
xxt̂

− α
(
vnj

)
xx

+ β
(
vnj

)
x̂
+

1
p + 2

[(
vnj

)p(
vnj

)
x̂
+
((
vnj

)p
vnj

)
x̂

]
,

u0j = u0
(
xj
)
,

u1j −
(
u1j

)
xx

= u0
(
xj
)
+
d2u0
dx2

(
xj
) − τ

[
β
du0
dx

(
xj
) − αd2u0

dx2

(
xj
)
+ up0

(
xj
)du0
dx

(
xj
)]

+ ri,

(4.1)

where Ernj and ri are the truncation errors of the difference scheme (2.3)–(2.6). It can be easily
obtained that (see [18, 19])

∣∣∣Ernj
∣∣∣ = O(h2 + τ2), (4.2)

∣∣∣rnj
∣∣∣ = O(h2 + τ2). (4.3)

Lemma 4.1. Assume u(x, t) is smooth enough, then the local truncation error of the finite difference
scheme (2.3)–(2.6) is

∣∣∣Ernj
∣∣∣ = O(h2 + τ2). (4.4)

Lemma 4.2 (see [16]). Suppose that the discrete function wh satisfies recurrence formula

wn −wn−1 ≤ Aτwn + Bτwn−1 + Cnτ, (4.5)

where A,B,Cn (n = 1, · · ·N) are nonnegative constants. Then

‖wn‖∞ ≤
(
w0 + τ

N∑
k=1

Ck

)
e2(A+B)τ , (4.6)

where τ is small, such that (A + B)τ ≤ ((N − 1)/2N)(N > 1).

Theorem 4.3. Assume u0 ∈ H1
0[xL, xR] and u ∈ C(4,3), then the solution of the difference scheme

(2.3)–(2.6) converges to the solution of the problem (1.3) with order O(h2 + τ2) by the || · ||∞ norm.
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Proof. Let enj = vnj − unj . Subtracting (2.3)-(2.5) from (4.1)–(4.3), respectively, we have

Ernj =
(
enj

)
t̂
−
(
enj

)
xxt̂

− α
(
enj

)
xx

+ β
(
enj

)
x̂
+

1
p + 2

[(
vnj

)p(
vnj

)
x̂
+
((
vnj

)p
vnj

)
x̂

]

− 1
p + 2

[(
unj

)p(
unj

)
x̂
+
((
unj

)p
unj

)
x̂

]
,

e0j = 0,

e1j = rj .

(4.7)

For a simple notation, the last two terms of (4.7) are defined by

I =
1

p + 2

(
vnj

)p(
vnj

)
x̂
− 1
p + 2

(
unj

)p(
unj

)
x̂
,

II =
1

p + 2

((
vnj

)p
vnj

)
x̂
− 1
p + 2

((
unj

)p
unj

)
x̂
.

(4.8)

Computing the inner product of (4.7)with en+1 + en−1 (i.e., 2en), we get

(
Ernj , 2e

n
)
=

1
2τ

(∥∥∥en+1∥∥∥2 − ∥∥∥en−1∥∥∥2
)
+

1
2τ

(∥∥∥en+1x

∥∥∥2 − ∥∥∥en−1x

∥∥∥2
)
− (α(en)xx, 2en)

+ βh
∑
j

(
enj

)
x̂

(
en+1j + en−1j

)
+
(
I + II, 2en

)
.

(4.9)

Similarly to the proof of Theorem 2.4, we obtain

(
α
(
en
)
xx, 2e

n) = −2α∥∥enx∥∥2,

βh
∑
j

(
enj

)
x̂

(
en+1j + en−1j

)
= β

⎡
⎣h∑

j

(
enj

)
x̂
en+1j − h

∑
j

(
enj−1
)
x̂
enj

⎤
⎦.

(4.10)

According to Theorem 2.4, we obtain

(
I, 2en

)
=

1
p + 2

h
∑
j

[(
vnj

)p(
en+1j + en−1j

)
x̂
+
((
vnj

)p − (unj
)p)(

un+1j + un−1j

)
x̂

](
en+1j + en−1j

)

≤ Ch
∑
j

[∣∣∣(en+1j + en−1j

)
x̂

∣∣∣ + ∣∣∣(un+1j + un−1j

)
x̂

∣∣∣](en+1j + en−1j

)

≤ C
(∥∥∥en+1x

∥∥∥2 + ∥∥∥en−1x

∥∥∥2 + ∥∥∥en+1∥∥∥2 + ∥∥∥en−1∥∥∥2
)
,
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(
II, 2en

)
=

1
p + 2

∑
j

{[(
vnj

)p(
en+1j + en−1j

)]
x̂
+
[
((vnj )

p − (unj )
p)(un+1j + un−1j )

]
x̂

}(
en+1j + en−1j

)

= −1
3
h
∑
j

[(
vnj

)p(
en+1j + en−1j

)
+
((
vnj

)p − (unj
)p)(

un+1j + un−1j

)](
en+1j + en−1j

)
x̂

≤ Ch
∑
j

[∣∣∣(en+1j + en−1j

)∣∣∣ +
∣∣∣enj
∣∣∣](en+1j + en−1j

)
x̂

≤ C
(∥∥∥en+1x

∥∥∥2 + ∥∥∥en−1x

∥∥∥2 + ∥∥∥en+1∥∥∥2 + ‖en‖2 +
∥∥∥en−1∥∥∥2

)
.

(4.11)

In addition, there exists obviously that

∣∣∣(Ernj , en+1 + en−1
)∣∣∣ ≤ ‖Ern‖2 + 1

2

(∥∥∥en+1∥∥∥2 + ∥∥∥en−1∥∥∥2
)
. (4.12)

Substituting (4.10)–(4.12) into (4.9), we have

1
2τ

(∥∥∥en+1∥∥∥2 − ∥∥∥en−1∥∥∥2
)
+

1
2τ

(∥∥∥en+1x

∥∥∥2 − ∥∥∥en−1x

∥∥∥2
)

≤ ‖Ern‖2 + 1
2

(∥∥∥en+1∥∥∥2 + ∥∥∥en−1∥∥∥2
)
+ β‖enx‖2 +

1
2
β

(∥∥∥en+1∥∥∥2 + ‖en‖2
)

+ C
(∥∥∥en+1x

∥∥∥2 + ‖enx‖2 +
∥∥∥en−1x

∥∥∥2 + ∥∥∥en+1∥∥∥2 + ‖en‖2 +
∥∥∥en−1∥∥∥2

)
.

(4.13)

Let

Bn =
1
2

(∥∥∥en+1∥∥∥2 + ‖en‖2
)
+
1
2

(∥∥∥en+1x

∥∥∥2 + ‖enx‖2
)
. (4.14)

Then (4.13) can be rewritten as

Bn − Bn−1 ≤ τ‖Ern‖2 + Cτ
(
Bn + Bn−1

)
. (4.15)

By Lemma 4.2, it can immediately be obtained that

BN ≤
(
B0 + T sup

1≤n≤N
‖Ern‖2

)
eCT . (4.16)

To complete the proof, it is enough to find B0 estimate. From (4.7), we obtain

∥∥∥e0∥∥∥ = 0. (4.17)
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Using (4.3) and (4.8), we get

∥∥∥e1∥∥∥ ≤ O
(
h2 + τ2

)
. (4.18)

It follows from (4.17) and (4.18) that

B0 ≤
[
O
(
τ2 + h2

)]2
. (4.19)

Thus

‖en‖ ≤ O
(
τ2 + h2

)
, ‖enx‖ ≤ O

(
τ2 + h2

)
. (4.20)

According to Lemma 2.3, there exists that

‖en‖∞ ≤ O
(
τ2 + h2

)
. (4.21)

Similarly, the following theorem can be proved.

Theorem 4.4. Under the conditions of Theorem 4.3, the solution of finite difference scheme (2.3)–
(2.6) is stable by the || · ||∞ norm.

5. Numerical Experiments

In this section, we will compute several numerical experiments to verify the correction of our
theoretical analysis in the above sections.

Example 5.1 (see [20]). Consider the following initial-boundary problem of BBM-Burgers
equation:

ut − uxxt − αuxx + ux + uux = 0, x ∈ [0, 1], t ∈ [0, 10], (5.1)

u(x, 0) = u0(x), x ∈ [0, 1], (5.2)

u(0, t) = u(1, t) = 0, t ∈ [0, 10]. (5.3)

We denote the scheme proposed in [20] as Scheme I and the scheme (2.3) in present paper
as Scheme II. In computations, we choose the initial condition u0(x) = exp(−x2) [20]. The
maximal errors of both schemes are listed in Table 1. We get that a second-order linear scheme
is as accurate as Scheme I which is a nonlinear one.

Example 5.2 (see [13]). Consider the GBBM-Burgers equation

ut − uxxt − αuxx + βux + upux = 0, x ∈ [0, 1], t ∈ [0, T], (5.4)
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Table 1: The maximal errors of numerical solutions at t = 10 with τ = 0.1 for α = 0.5 when p = 1.

h = 1/4 h = 1/8 h = 1/16 h = 1/32
Scheme I 2.486233e − 4 6.519728e − 5 1.618990e − 5 4.929413e − 6
Scheme II 2.438693e − 4 6.418263e − 5 1.594145e − 5 3.867502e − 6

Table 2: The maximal errors of numerical solutions at t = 10 with τ = 0.1 for α = 0.5 when p = 4.

h = 1/4 h = 1/8 h = 1/16 h = 1/32
Scheme II 5.293584e − 4 1.416254e − 4 3.480022e − 5 8.423768e − 6
Scheme III 5.069513e − 3 3.444478e − 3 1.916013e − 3 9.262223e − 4

Table 3: The errors of numerical solutions at t = 10 with τ = 0.1 when p = 2.

h ||vn − un|| ||vn − un||∞ ||vn/4 − un/4||/||vn − un|| ||vn/4 − un/4||∞/||vn − un||∞
0.25 6.377969e − 4 9.352639e − 4 — —
0.125 1.582597e − 4 2.314686e − 4 4.030065 4.040566
0.0625 3.920742e − 5 5.893641e − 5 4.036473 3.927429
0.03125 9.501117e − 6 1.428261e − 5 4.126612 4.126445

Table 4: The errors of numerical solutions at t = 10 with τ = 0.1 when p = 4.

h ||vn − un|| ||vn − un||∞ ||vn/4 − un/4||/||vn − un|| ||vn/4 − un/4||∞/||vn − un||∞
0.25 6.316492e − 4 9.262624e − 4 — —
0.125 1.568213e − 4 2.294480e − 4 4.027828 4.036916
0.0625 3.885715e − 5 5.828155e − 5 4.035841 3.936889
0.03125 9.416614e − 6 1.412454e − 5 4.126446 4.126262

with an initial condition

u(x, 0) = u0(x), x ∈ [0, 1], (5.5)

and boundary conditions

u(0, t) = u(1, t) = 0, t ∈ [0, T]. (5.6)

In computations, we choose the initial condition u0(x) = 1/(1 + x4) [13]. Without loss of
generality, We take p = 2, 4, 8 and α = 0.5, β = 1. Since we do not know the exact solution of
(5.4)–(5.6), an error estimate method in [21] is used. A comparison between the numerical
solutions on a coarse mesh and those on a refine mesh is made. In order to obtain the error
estimates, we consider the solution on mesh h = 1/160 as reference solution and obtain
error estimates on mesh h = 1/4, 1/8, 1/16, and 1/32, respectively. We denote the scheme
proposed in [13] as Scheme III andmake a comparison with the scheme (2.3) in present paper
as Scheme II when p = 4 in Table 2. The corresponding errors in the sense of L∞-norm and
L2-norm are listed in Tables 3, 4, and 5, respectively. These three tables verify the second-order
convergence and good stability of the numerical solutions.
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Table 5: The errors of numerical solutions at t = 10 with τ = 0.1 when p = 8.

h ||vn − un|| ||vn − un||∞ ||vn/4 − un/4||/||vn − un|| ||vn/4 − un/4||∞/||vn − un||∞
0.25 1.150448e − 4 1.822979e − 4 — —

0.125 2.981547e − 5 4.674950e − 5 3.858561 3.899462

0.0625 7.426232e − 6 1.167644e − 5 4.014885 4.003745

0.03125 1.801424e − 6 2.879611e − 6 4.122423 4.054867
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Figure 1: Numerical solution of u(x, t) with h = 0.03125, τ = 0.1 when p = 2.

Figures 1 and 2 plot the numerical solutions computed by the linearly implicit scheme
(2.3) with τ = 0.1, h = 0.03125, and α = 0.5 when p = 2, 8 at t = 2, 4, 6, 8, and 10,
respectively. From Figures 1 and 2, it is easy to observe that the height of the numerical
approximation to u is more and more low with time elapsing due to the effect of dissipative
term αuxx. Both of them simulates that the continuous energy E(t) of the problem (1.3) in
Theorem 2.4 decreases in time. Numerical experiments show our scheme is accurate and
efficient.

6. Conclusions

In this paper, we have presented a three-level linear-implicit finite difference scheme for the
GBBM-Burgers equation, which has a wide range of applications in physics. The convergence
and stability as well as second-order error estimate of the finite difference approximate
solutions were discussed in detail. Numerical experiments show our scheme is accurate and
efficient.
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Figure 2: Numerical solution of u(x, t) with h = 0.03125, τ = 0.1 when p = 8.
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