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The Lie derivative, which has a wide range of application in physics and geometry, is trying to
be examined on time scales. Firstly, nabla Lie bracket is defined on two-dimensional time scales.
Secondly, the nabla Lie multiplication and some properties are given on the time scales. Lastly, for
analyzing the differences between the real Lie multiplication and the nabla Lie multiplication, a
numerical example is given.

1. Introduction

By unifying continuous and discrete calculus a different kind of calculus was exposed which
recently takes the attentions as time scale theory has been introduced by Hilger in 1988 with
his doctoral dissertation. The time scale theory by means of calculus every passing day lots of
new theories and different implementation parts are quickly composed. Time scale is really
very important and has an useful role at a great deal of sciences which are studying with
dynamical systems. Differential geometry is one of these sciences. In [1–4] some geometric
notions are trying to research on the time scale. In the paper [5] the curve and surface
description were made for the first time. The reference [6] direction nabla derivative and
its properties were investigated. The properties of vector field, derivative mapping, and delta
connection were investigated in [7, 8]. In [6] nabla covariant derivative definition was given.
Also some fundamental properties about time scale can be obtained in the references [9–12].

In physics, the use of Lie derivative is based on very old time. Especially the use of
the Lie brackets is quite important in nonlinear control system and field of neural networks
domains. Lie derivative studies, maintained until today, always show their effects in
continuous space; however, in discrete space Lie multiplication is not studied. In this
study in order to eliminate this problem, we will try to survey the Lie brackets which
combines discrete space and continuous space on time scale. Thus, defined nabla Lie operator
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simultaneously in real terms and in different time scales, their reciprocities will be able to find
easily. Additionally, for analyzing the differences between the reel Lie multiplication and the
nabla Lie multiplication a numerical example is given.

2. Preliminaries

The following definitions and theorems will serve as a short primer on time scale calculus;
they can be found in [6, 10, 11]. A time scale T is any nonempty closed subset of R. Within that
set, define the jump operators ρ : T → T by ρ(t) = sup{s ∈ T : s < t}, where infφ := supT,
and supφ := infT, where φ denotes the empty set. Also the graininess function is defined
by ν := ρ(t) − t. If f : T → R is a function, then we define the function fρ : T → R by
fρ(t) = f(ρ(t)) for t ∈ T, that is, fρ = f ◦ ρ.

Theorem 2.1. If f, g : T → R are ∇-differentiable at t ∈ T
k, then

(i) f + g is ∇-differentiable at t and

(
f + g

)∇(t) = f∇(t) + g∇(t), (2.1)

(ii) for any constant c, c · f is ∇-differentiable at t and

(
cf

)∇(t) = cf∇(t), (2.2)

(iii) f · g is ∇-differentiable at t and

(
fg

)∇(t) = f∇(t)g(t) + f
(
ρ(t)

)
g∇(t) = g∇(t)f(t) + g

(
ρ(t)

)
f∇(t), (2.3)

(iv) if g(t) · g(ρ(t))/= 0, then f/g is ∇-differentiable at t and

(
f

g

)∇
(t) =

f∇(t)g(t) − f(t)g∇(t)
g(t) · g(ρ(t)) . (2.4)

Definition 2.2. Let two vector fields Z and W be given. The covariant nabla differentiation
with respect toW at the point P(t01, t

0
2, . . . , t

0
n) is defined as the vector

DWZ =
(

∂Z

∇W

)
(P) = Y∇(0), (2.5)

provided it exists, where Y (ξ) = Z(t01 + ξw1, . . . , t
0
n + ξwn) for ξ ∈ T.

Theorem 2.3. Let two vector fields Z,W be given. The covariant nabla differentiation with respect to
W at the point P(t01, t

0
2, . . . , t

0
n) exits and is expressed by the formula

∂Z(P)
∇wP

=
2∑

i=1

∂gi(P)
∇wP

∂

∇ixi
. (2.6)
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Theorem 2.4. Let a, b ∈ R and two vector fields X an Y be given. For any two tangent vectors Vp

and Wp, the following properties are proven:

(i)
∂X

∇(aV + bW)
= a

∂X

∇V
+ b

∂X

∇W
,

(ii)
∂(aX + bY )

∇V
= a

∂X

∇V
+ b

∂Y

∇V
.

(2.7)

3. Nabla Lie Bracket on Time Scales

Lie multiplication and derivative are indispensable notions for algebra and geometry. Up
to now we used them for discrete structures. In this study we have a chance for analyzing
both discrete structures and indiscrete structures. Under both circumstances, we will research
the structure of time scale. Because of covariant derivative was proved as nabla covariant
derivative in the references [7, 8, 11] that is why we are defining our study as Nabla-Lie.

Definition 3.1. Let one has the two-dimensional space which is called Λ2 = T × T on T time
scales. As f : M ⊂ Λ2 → R function, that is, on P point, the nabla vector field Vp(f) is given
with these coordinates

Vp

(
f
)
=

2∑

i=1

Vpi

∂f

∇xi
= Vp1

∂f

∇x1
+ Vp2

∂f

∇x2
, (3.1)

which was introduced in the reference [7].

Definition 3.2. Let one shows all the set of vector fields with Ψ(Λ2) on Λ2 space. By varying
the point P along the curve on M, one can obtain another smooth function [V (f)]∇ which is
the nabla derivative of f along the vector field. The function

[
V
(
f
)]

∇
(
p
)
= Vp

(
f
)

(3.2)

is called the nabla Lie derivative on time scales. It is common to denote the nabla Lie derivative
of a f function which has vector field along V that is shown as [V (f)]∇. As shown, two-
dimensional nabla Lie multiplication is a function from Ψ(Λ2) ×Ψ(Λ2) set to Ψ(Λ2) set.

Lemma 3.3. f function will be the completely nabla differentiable as regarded to be equal the inner
multiplication vector field of V at point p with the derivative of f function at the same time interval of
the nabla Lie derivation. In coordinates,

[
V
(
f
)]

∇
(
p
)
=

2∑

i=1

∂f

∇xi
Vi =

(
Vp1

∂f

∇x1
+ Vp2

∂f

∇x2

)
=
〈
f∇, Vp

〉
. (3.3)

Theorem 3.4. Let one has the f function which is completely nabla differentiable; ρ(t) will be the
backward jump operator of taken time scale and area of V vector is expressed by V ρ notation at
ρ(t) point. All smooth vector fields of the time scale space Ψ(Λ2) are vector space on a M manifold.
V1 and V2 are the two vector fields, given a function with Lie nabla derivative which is defined on
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M ⊂ Ψ(Λ2). Then both V1[V2f]∇ and V2[V1f]∇ will help the calculation of nabla Lie bracket. The
following equations can be expressed by nabla derivations on time scales:

V1
[
V2f

]
∇
(
p
)
= V11

(
∂V21

∇x1

∂f

∇x1
+
∂V22

∇x1

∂f

∇x2

)
+ V11

(

V
ρ

21

∂2f

∇x2
1

+ V
ρ

22
∂2f

∇x1∇x2

)

+ V12

(
∂V21

∇x2

∂f

∇x1
+
∂V22

∇x2

∂f

∇x2

)
+ V12

(

V
ρ

21

∂2f

∇x2∇x1
+ V

ρ

22
∂2f

∇x2
2

)

,

(3.4)

V2
[
V1f

]
∇
(
p
)
= V21

(
∂V11

∇x1

∂f

∇x1
+
∂V12

∇x1

∂f

∇x2

)
+ V21

(

V
ρ

11

∂2f

∇x2
1

+ V
ρ

12

∂2f

∇x1∇x2

)

+ V22

(
∂V11

∇x2

∂f

∇x1
+
∂V12

∇x2

∂f

∇x2

)
+ V22

(

V
ρ

11

∂2f

∇x2∇x1
+ V

ρ

12

∂2f

∇x2
2

)

.

(3.5)

Proof. V1 and V2 vector fields are written as the following:

V1 =
2∑

i=1

V1i
∂

∇xi
= V11

∂

∇x1
+ V12

∂

∇x2
, (3.6)

V2 =
2∑

i=1

V2i
∂

∇xi
= V21

∂

∇x1
+ V22

∂

∇x2
, (3.7)

because of Definitions 3.1 and 3.2. V1[(V2f)]∇ vector field can be calculated as the following
by the help of nabla derivation and the definition of Lie derivation which is used on the time
scales:

V1[V2]∇
(
f
)
=

[
2∑

i=1

V1i
∂

∇xi

(
2∑

i=1

V2j
∂f

∇xj

)]

∇

=
[(

V11
∂

∇x1
+ V12

∂

∇x2

)(
V21

∂f

∇x1
+ V22

∂f

∇x2

)]

∇

= V11
∂

∇x1

(
V21

∂f

∇x1

)
+ V11

∂

∇x1
·
(
V22

∂f

∇x2

)

+ V12
∂

∇x2

(
V21

∂f

∇x1

)
+ V12

∂

∇x2

(
V22

∂f

∇x2

)

= V11

(
∂V21

∇x1
· ∂f

∇x1
+ V

ρ

21

∂2f

∇x2
1

)

+ V11

(
∂V22

∇x1
· ∂f

∇x2
+ V

ρ

22
∂2f

∇x1∇x2

)

+ V12

(
∂V21

∇x2
· ∂f

∇x1
+ V

ρ

21

∂2f

∇x2∇x1

)

+ V12

(
∂V22

∇x2
· ∂f

∇x2
+ V

ρ

22
∂2f

∇x2
2

)
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= V11

(
∂V21

∇x1
· ∂f

∇x1
+
∂V22

∇x1

∂f

∇x2

)
+ V11

(

V
ρ

21

∂2f

∇x2
1

+ V
ρ

22
∂2f

∇x1 · ∇x2

)

+ V12

(
∂V21

∇x2
· ∂f

∇x1
+
∂V22

∇x2
· ∂f

∇x2

)
+ V12

(

V
ρ

21

∂2f

∇x2∇x1
+ V

ρ

22
∂2f

∇x2
2

)

.

(3.8)

With the similar idea, the following equation:

V2[V1]∇
(
f
)
=

[
2∑

i=1

V2i
∂

∇xi

(
2∑

i=1

V1j
∂f

∇xj

)]

=
[(

V21
∂

∇x1
+ V22

∂

∇x2

)(
V11

∂f

∇x1
+ V12

∂f

∇x2

)]

= V21
∂

∇x1

(
V11

∂f

∇x1

)
+ V21

∂

∇x1

(
V12

∂f

∇x2

)

+ V22
∂

∇x2

(
V11

∂f

∇x1

)
+ V22

∂

∇x2

(
V12

∂f

∇x2

)

= V21

(
∂V11

∇x1
+ V

ρ

11

∂2f

∇x2
1

)

+ V21

(
∂V12

∇x1

∂f

∇x2
+ V

ρ

12

∂2f

∇x1∇x2

)

+ V22

(
∂V11

∇x2

∂f

∇x1
+ V

ρ

11

∂2f

∇x2∇x1

)

+ V22

(
∂V12

∇x2

∂f

∇x2
+ V

ρ

12

∂2f

∇x2
2

)

= V21

(
∂V11

∇x1

∂f

∇x1
+
∂V12

∇x1

∂f

∇x2

)
+ V21

(

V
ρ

11

∂2f

∇x2
1

+ V
ρ

12

∂2f

∇x1∇x2

)

+ V22

(
∂V11

∇x2

∂f

∇x1
+
∂V12

∇x2

)
+ V22

(

V
ρ

11

∂2f

∇x2∇x1
+ V

ρ

12

∂2f

∇x2
2

)

(3.9)

can be found. Thus, obtained equations are desired at the theorem.

Definition 3.5. V1, V2 ∈ Ψ(Λ2) are vector fields. The equation

[V1, V2]∇ := V1[V2]∇ − V2[V1]∇ (3.10)

is called nabla Lie bracket on time scales. Here V1[V2]∇ and V2[V1]∇ are nabla Lie derivations.
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Lemma 3.6. Let one has the two completely nabla-differentiable vector fields of f functions and
V1, V2 ∈ Ψ(Λ2) vector fields. Due to the definitions of V1[V2f]∇ and V2[V1]∇, nabla Lie is equal
to the substraction of the following equation:

[V1, V2]∇
(
f
)
:= V1

[(
V2f

)]
∇ − V2

[(
V1f

)]
∇

= V11

(
∂V21

∇x2

∂f

∇x1
+
∂V22

∇x1

∂f

∇x2

)
− V21

(
∂V11

∇x1

∂f

∇x1
+
∂V12

∇x1

∂f

∇x2

)

+ V12

(
∂V21

∇x2

∂f

∇x1
+
∂V22

∇x2

∂f

∇x2

)
− V22

(
∂V11

∇x2

∂f

∇x1
+
∂V12

∇x2

∂f

∇x2

)

+
(
V

ρ

21V11 − V
ρ

11V21

) ∂2f

∇x2
1

+
(
V

ρ

21V12 − V
ρ

12V21

) ∂2f

∇x1∇x2

+
(
V

ρ

22V12 − V22V
ρ

12

) ∂2f

∇x2
2

+
(
V

ρ

22V11 − V
ρ

11V22

) ∂2f

∇x1∇x2

=
2∑

i=1

[
2∑

i=1

(
∂V2j

∇xi
V1i −

∂V1j

∇xi
V2i

)]
∂

∇xj

+
(
V

ρ

21V11 − V
ρ

11V21

) ∂2f

∇x2
1

+
(
V

ρ

21V12 − V
ρ

12V21

) ∂2f

∇x1∇x2

+
(
V

ρ

22V12 − V22V
ρ

12

) ∂2f

∇x2
2

+
(
V

ρ

22V11 − V
ρ

11V22

) ∂2f

∇x1∇x2
.

(3.11)

Theorem 3.7. Let one has the two completely nabla differentiable vector fields as V1 and V2. Nabla Lie
multiplication can be defined as nabla covariant derivation because of the definition of nabla covariant
derivative at [8] regarding N graininess function on time scales. The above representation gives a
different geometrical dimension to Lie bracket. Lie parenthesis operator has an expression

[V1, V2]∇
(
f
)
= DV1V2 −DV2V1 +

[
∂V2

∇x1
V1

[
f
] − ∂V1

∇x1
V2

[
f
]
]
ν, (3.12)

which is like that in the nabla covariant defined with Definition 2.2.

Proof. Let us briefly write the substraction equations of nabla lie derivations by the help of
equations that take place at Lemma 3.6. Then, we will, respectively, add and remove the
expressions in brackets. In the next step, we will try to reach nabla covariant derivations
from the nabla derivation definition by multiplying and dividing with (ρ(x1) − x1):

[V1, V2]∇
(
f
)
= V1

[(
V2f

)]
∇ − V2

[(
V1f

)]
∇

= V11

(
∂V21

∇x1

∂f

∇x1
+
∂V22

∇x1

∂f

∇x2

)
− V21

(
∂V11

∇x1

∂f

∇x1
+
∂V12

∇x1

∂f

∇x2

)
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+ V12

(
∂V21

∇x2

∂f

∇x1
+
∂V22

∇x2

∂f

∇x2

)
− V22

(
∂V11

∇x2

∂f

∇x1
+
∂V12

∇x2

∂f

∇x2

)

+
(
V

ρ

21V11 − V
ρ

11V21

) ∂2f

∇x2
1

+
(
V

ρ

21V12 − V
ρ

12V21

) ∂2f

∇x1∇x2

+
(
V

ρ

22V12 − V22V
ρ

12

) ∂2f

∇x2
2

+
(
V

ρ

22V11 − V
ρ

11V22

) ∂2f

∇x1∇x2

=
∂f

∇x1

(
V11

∂V21

∇x1
+ V12

∂V21

∇x2

)
+

∂f

∇x2

(
V11

∂V22

∇x1
+ V12

∂V22

∇x1

)

− ∂f

∇x1

(
V21

∂V11

∇x1
+ V22

∂V11

∇x2

)
− ∂

∇x2

(
V21

∂V12

∇x1
+ V22

∂V12

∇x2

)

+
(
V

ρ

21V11 − V
ρ

1 V21 + V21V11 − V21V11

) ∂2f

∇x2
1

+
(
V

ρ

21V12 − V
ρ

12V21 + V21V12 − V21V12

) ∂2f

∇x1∇x2

+
(
V

ρ

22V12 − V22V
ρ

12 + V22V11 − V22V12

) ∂2f

∇x2
2

+
(
V

ρ

22V11 − V
ρ

11V22 + V22V11 − V22V11

) ∂2f

∇x1∇x2

=
∂f

∇x1
V1[V21] +

∂f

∇x2
V1[V22] −

∂f

∇x1
V2[V11] − ∂

∇x2
V2[V12]

+
V11

(
V

ρ

21 − V21

)
− V21

(
V

ρ

11 − V11

)

ρ(x1) − x1
· (ρ(x1) − x1

) ∂2f

∇x2
1

+
V12

(
V

ρ

21 − V21

)
− V21

(
V

ρ

12 − V12

)

ρ(x1) − x1
· (ρ(x1) − x1

) · ∂2f

∇x1∇x2

+
V12

(
V

ρ

22 − V22

)
− V22

(
V

ρ

12 − V12

)

ρ(x1) − x1
· (ρ(x1) − x1

) · ∂
2f

∇x2
2

+
V11

(
V

ρ

22 − V22

)
− V22

(
V

ρ

11 − V11

)

ρ(x1) − x1
· (ρ(x1) − x1

) · ∂2f

∇x1∇x2

=
∂f

∇x1
V1[V21] +

∂f

∇x2
V1[V22] −

∂f

∇x1
V2[V11] − ∂

∇x2
V2[V12]

+
(
V11

∂V21

∇x1
− V21

∂V11

∇x1

)
∂2f

∇x2
1

ν +
(
V12

∂V21

∇x1
− V21

∂V12

∇x1

)
∂2f

∇x1∇x2
ν

+
(
V12

∂V22

∇x1
− V22

∂V12

∇x1

)
∂2f

∇x2
2

ν +
(
V11

∂V22

∇x1
− V22

∂V11

∇x1

)
∂2f

∇x1∇x2
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+
∂f

∇x1
V1[V21] +

∂f

∇x2
V1[V22] −

∂f

∇x1
V2[V11] − ∂

∇x2
V2[V12]

+ ν
∂V21

∇x1

∂f

∇x1

(
V11

∂f

∇x1
+ V12

∂f

∇x2

)
+ ν

∂V22

∇x1

∂f

∇x2

(
V12

∂f

∇x2
+ V11

∂f

∇x1

)

− ν
∂V11

∇x1

∂f

∇x1

(
V21

∂f

∇x1
+ V22

∂f

∇x2

)
− ν

∂V12

∇x1

∂f

∇x2

(
V21

∂f

∇x1
+ V22

∂f

∇x2

)

=
∂f

∇x1
V1[V21] +

∂f

∇x2
V1[V22] −

∂f

∇x1
V2[V11] − ∂

∇x2
V2[V12]

+ ν
∂V21

∇x1

∂f

∇x1
V1

[
f
]
+ ν

∂V22

∇x1

∂f

∇x2
V1

[
f
]

− ν
∂V11

∇x1

∂f

∇x1
V2

[
f
] − ν

∂V12

∇x1

∂f

∇x2
V2

[
f
]

=
∂V2

∇V1
− ∂V1

∇V2
+
(
∂V21

∇x1

∂f

∇x1
+
∂V22

∇x1

∂f

∇x2

)
V1

[
f
]
ν

−
(
∂V11

∇x1

∂f

∇x1
+
∂V12

∇x1

∂f

∇x2

)
V2

[
f
]
ν

=
∂V2

∇V1
− ∂V1

∇V2
+
[
∂V2

∇x1
V1

[
f
] − ∂V1

∇x1
V2

[
f
]
]
ν

= DV1V2 −DV2V1 +
[
∂V2

∇x1
V1

[
f
] − ∂V1

∇x1
V2

[
f
]
]
ν.

(3.13)

Thus, it has been proven that may be thinking of the substraction of nabla covariant
vectors which are belonging to two vector fields of nabla Lie derivatives. When the time scale
is R, the grannies function ν is zero, so it is seen that nabla Lie bracket is transformed to Lie
bracket at real. Thus, as a result of the equation it was proved to achieve with nabla lie bracket
for both different time scales and its equivalents at real.

Theorem 3.8. The vector fields V1, V2, V3 ∈ Ξ(Λ2) are completely nabla differentiable. From the
following equations, it is seen that the nabla Lie bracket is a Lie bracket operator:

(i) [V1, V2]∇ = −[V2, V1]∇,

(ii)
[
αV1 + βV2, V3

]
∇ = α[V1, V3] + β[V2, V3]∇,

(iii) [V1, [V2, V3]∇]∇ + [V2, [V3, V2]∇]∇ + [V3, [V1, V2]∇]∇ = 0.

(3.14)

Proof. The following proofs are obtained by the definition of Lie bracket and the results of
nabla covariant derivation.

(i)Here we will proof that the nabla Lie bracket is not commutative:

[V1, V2]∇ = V1[V2]∇ − V2[V1]∇ = −[V2[V1]∇ − V1[V2]∇] = −[V2, V1]∇. (3.15)
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(ii) Let us denote the sum αV1 + βV2 with W in the following equations:

[
αV1 + βV2, V3

]
∇ = DV3W −DWV3 +

[
∂V3

∇x1
W − ∂W

∇x1
V3

]
ν

= α
∂V3

∇V1
+ β

∂V3

∇V2
− α

∂V1

∇V3
− β

∂V2

∇V3

+
[
α
∂V3

∇x1
V1 − β

∂V3

∇x1
V2 − α

∂V1

∇x1
V3 − β

∂V2

∇x1
V3

]
ν

= α

[
∂V3

∇V1
− ∂V1

∇V3
+
[
∂V3

∇x1
V1 − ∂V1

∇x1
V3

]
ν

]

+ β

[
∂V3

∇V2
− ∂V2

∇V3
+
[
∂V3

∇x1
V2 − ∂V2

∇x1
V3

]
ν

]

= α[V1, V3]∇ + β[V1, V3]∇.

(3.16)

(iii) From the definition of nabla Lie derivative we can obtain the following equations:

[V1, [V2, V3]∇]∇ = V1([V2, V3]∇) − [V2, V3]∇(V1)

= V1[V2[V3]∇]∇ − V1[V3[V2]∇]∇ − V2[V3[V1]∇]∇ + V3[V2[V1]∇]∇,

[V2, [V3, V1]∇]∇ = V2([V3, V1]∇) − [V3, V1]∇(V2)

= V2[V3[V1]∇]∇ − V2[V1[V3]∇]∇ − V3[V1[V2]∇]∇ + V1[V3[V2]∇]∇,

[V3, [V1, V2]∇]∇ = V3([V1, V2]∇) − [V1, V2]∇(V3)

= V3[V1[V2]∇]∇ − V3[V2[V1]∇]∇ − V1[V2[V3]∇]∇ + V2[V1[V3]∇]∇.

(3.17)

It is easy to see that by the addition of three equations above, we can obtain the result as zero:

[V1, [V2, V3]∇]∇ + [V2, [V3, V2]∇]∇ + [V3, [V1, V2]∇]∇ = 0. (3.18)

4. A Numeric Example

Let us give a function f(x1, x2) = (x1x2 + 3x2)(∂/∇x1) + (2x1 − x2)(∂/∇x2) and the vector
fields on Λ2 as the following:

V1 =
(
x1 − x2

2

) ∂

∇x1
+
(
x2
1

) ∂

∇x2
,

V2 = (x2 + 5)
∂

∇x1
+ (x1 − 4x2)

∂

∇x2
.

(4.1)
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Here we will calculate the nabla Lie multiplication, then we will try to obtain [V1, V2]∇
with using different time scales:

[V1, V2]∇
(
f
)
:= V1

[(
V2f

)] − V2
[(
V1f

)]

=
(
x1 − x2

2

)(
0
∂f

∇x1
+ 1

∂f

∇x2

)
− (x2 + 5)

(
1
∂f

∇x1
+
(
ρ(x1) + x1

) ∂f

∇x2

)

+ x2
1

(
1
∂f

∇x1
− 4

∂f

∇x2

)
− (x1 − 4x2)

(
−(ρ(x2) + x2

) ∂f

∇x1
+ 0

∂f

∇x2

)

+
(
(x2 + 5)ρ

(
x1 − x2

2

)
−
(
x1 − x2

2

)ρ
(x2 + 5)

) ∂2f

∇x2
1

+
(
(x2 + 5)ρx2

1 −
(
x2
1

)ρ
(x2 + 5)

) ∂2f

∇x1∇x2

+
(
(x1 − 4x2)ρ

(
x2
1

)
− (x1 − 4x2)

(
x2
1

)ρ) ∂2f

∇x2
2

+
(
(x2 + 5)ρ

(
x1 − x2

2

)
− (x1 − x2)ρ(x2 + 5)

) ∂2f

∇x1∇x2

=
(
x1 + 3 − x2

2 − 5x2 + (x2 + 5)
(
ρ(x1) + x1

)
(x1 + 3)

− x2
1x2 − 4x2

1(x1 + 3) + (x1 − 4x2)
(
ρ(x2) + x2

)
x2

+ρ(x2 + 5)x2
1 − ρ

(
x2
1

)
(x2 + 5)

) ∂

∇x1

+
(
−x1 + x2

2 − (x2 + 5)
(
ρ(x1) + x1

)
+ 4x2

1

) ∂

∇x2
.

(4.2)

Let us firstly identify the T = R situation that obtained for nabla Lie bracket:

[V1, V2]∇
(
f
)
=
(
−4x3

1 + 3x2
1x2 − 12x2

1 + 31x1 + 2x1x
2
2 + 6x1x2 − 8x3

2 − x2
2 − 5x2

) ∂

∇x1

+
(
4x2

1 − 11x1 − 2x1x2 + x2
2

) ∂

∇x2
.

(4.3)

From these equations, when the time scale is T = R, we have seen that we could obtain
Lie brackets which are known from the geometry, see in Figure 1.

When the time scale is T = Z as an example, we have obtained a different equation
from to have known Lie bracket at real:

[V1, V2]∇
(
f
)
=
(
36x1 − 9x2 − 3x2

1 − x2
2 + 3x2x

2
1 + 6x1x2 − 4x3

1 + 2x1x
2
2 − 17

) ∂

∇x1

+
(
−11x1 − 2x1x2 + 4x2

1 + x2
2 + x2 + 5

) ∂

∇x2
.

(4.4)
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Figure 1: The graph of the vector fields [V1, V2]∇ on T = R.
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Figure 2: The graph of the vector fields [V1, V2]∇ on T = Z.
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This is seen as a difference of natural consequence of the continuous and discrete
structures, see in Figure 2.

5. Conclusion

In this study, it is seen that the Lie derivative which is frequently used in physics handles
instead of continuous derivative in the way that the nabla Lie multiplication which is created
by using time scale both continuous and discrete spaces that are obtained at the same time.
This is possible to observe. This is the way to perform the easier and smoother transmission
from the continuous space to discrete space. If we consider that the Lie multiplication cannot
be analyzed yet in differential geometry discrete space andwe can understand how important
practice transmission to discrete space with nabla Liemultiplication. It is possible to use nabla
Lie multiplication theoretically and practically in many fields of physics with this study.

For instance, with the leading of our work it will be possible to use nabla Lie derivative
in nonlinear control systems, field of neural networks, and periodic orbits of a dynamical
system, which are important fields.
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