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We present another simple way of deriving several iterative methods for solving nonlinear equa-
tions numerically. The presented approach of deriving these methods is based on exponentially
fitted osculating straight line. These methods are the modifications of Newton’s method. Also, we
obtain well-known methods as special cases, for example, Halley’s method, super-Halley method,
Ostrowski’s square-root method, Chebyshev’s method, and so forth. Further, new classes of third-
order multipoint iterative methods free from a second-order derivative are derived by semidiscrete
modifications of cubically convergent iterative methods. Furthermore, a simple linear combination
of two third-order multipoint iterative methods is used for designing new optimal methods of
order four.

1. Introduction

Various problems arising inmathematical and engineering science can be formulated in terms
of nonlinear equation of the form

f(x) = 0. (1.1)

To solve (1.1), we can use iterative methods such as Newton’s method [1–19] and its variants,
namely, Halley’s method [1–3, 5, 6, 8, 9], Euler’s method (irrational Halley’s method) [1, 3],
Chebyshev’s method [1, 2], super-Halley method [2, 4] as Ostrowski’s square-root method
[5, 6], and so forth, available in the literature.

Among these iterative methods, Newton’s method is probably the best known and
most widely used algorithm for solving such problems. It converges quadratically to a simple
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root and linearly to a multiple root. Its geometric construction consists in considering the
straight line

y = ax + b (1.2)

and then determining the unknowns a and b by imposing the tangency conditions

y(xn) = f(xn), y′(xn) = f ′(xn), (1.3)

thereby obtaining the tangent line

y(x) − f(xn) = f ′(xn)(x − xn), (1.4)

to the graph of f(x) at (xn, f(xn)).
The point of intersection of this tangent line with x-axis gives the celebrated Newton’s

method

xn+1 = xn −
f(xn)
f ′(xn)

, n ≥ 0. (1.5)

Newton’s method for multiple roots appears in the work of Schröder [19], which is given as

xn+1 = xn −
f(xn)f ′(xn)

f ′2(xn) − f(xn)f ′′(xn)
. (1.6)

This method has a second-order convergence, including the case of multiple roots. It may be
obtained by applyingNewton’s method to the function uf(x) = f(x)/f ′(x), which has simple
roots in each multiple root of f(x). The well-known third-order methods which entail the
evaluation of f ′′(x) are close relatives of Newton’s method and can be obtained by admitting
geometric derivation [1, 2, 5] from the different quadratic curves, for example, parabola,
hyperbola, circle or ellipse, and so forth.

The purpose of the present work is to provide some alternative derivations to the
existing third-order methods through an exponentially fitted osculating straight line. Some
other new formulas are also presented. Here, we will make use of symbolic computation in
the programming package Mathematica 7 to derive the error equations of various iterative
methods.

Before starting the development of iterative scheme, we would like to introduce some
basic definitions.

Definition 1.1. A sequence of iterations {xn | n ≥ 0} are said to converge with order P ≥ 1 to a
point r if

|r − xn+1| ≤ C|r − xn|P , n ≥ 0, (1.7)

for some C > 0. If P = 1, the sequence is said to converge linearly to r. In that case, we require
C < 1; the constant C is called the rate of linear convergence of xn to r.
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Definition 1.2. Let en = xn − r be the error in the nth iteration; one calls the relation

en+1 = CePn +O
(
eP+1n

)
, (1.8)

as the error equation. If we can obtain the error equation for any iterative method, then the
value of P is its order of convergence.

Definition 1.3. Let d be the number of new pieces of information required by a method. A
piece of information typically is any evaluation of a function or one of its derivatives. The
efficiency of the method is measured by the concept of efficiency index [6] and is defined by

E = P 1/d, (1.9)

where P is the order of the method.

2. Development of the Methods

Two equivalent derivations for the third-order iterative methods through exponentially fitted
osculating straight line are presented below.

Case I. Consider an exponentially fitted osculating straight line in the following form:

y(x) = ep(x−xn)[A(x − xn) + B], (2.1)

where p ∈ R, |p| < ∞, andA and B are arbitrary constants. These constants will be determined
by using the tangency conditions at the point x = xn.

If an exponentially fitted osculating straight line given by (2.1) is tangent to the graph
of the equation in question, that is, f(x) = 0 at x = xn, then we have

y(k)(xn) = f (k)(xn), k = 0, 1, 2. (2.2)

Therefore, we obtain

A = f ′(xn) − pf(xn), B = f(xn) (2.3)

and a quadratic equation in p as follows:

p2f(xn) − 2pf ′(xn) + f ′′(xn) = 0. (2.4)

Suppose that the straight line (2.1) meets the x-axis at x = xn+1, then

y(xn+1) = 0, (2.5)
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and it follows from (2.1) that

A(xn+1 − xn) + B = 0. (2.6)

From (2.6) and if A/= 0, we get

xn+1 = xn − B

A
, (2.7)

or

xn+1 = xn −
f(xn)

f ′(xn) − pf(xn)
, n ≥ 0. (2.8)

This is the well-known one-parameter family of Newton’s method [2]. This family converges
quadratically under the condition f ′(xn) − pf(xn)/= 0, while f ′(xn) = 0 is permitted in some
points. For p = 0, we obtain Newton’s method. The error equation of Scheme (2.8) is given by

en+1 =
(
p − c2

)
e2n +O

(
e3n

)
, (2.9)

where en = xn − r, ck = (1/k!)(f (k)(r)/f ′(r)), k = 2, 3, . . ., and x = r is the root of nonlinear
(1.1). In order to obtain the quadratic convergence, the entity in the denominator should be
the largest in magnitude. It is straightforward to see from the above error equation (2.9) that
for p = c2 = (f ′′(xn)/2f ′(xn)), we obtain the well-known third-order Halley’s method.

If we apply the well-known Newton’s method (1.5) to the modified function uf(x) =
f(xn)/(f ′(xn) − pf(xn)), we get another iterative method as

xn+1 = xn −
f(xn)

{
f ′(xn) − pf(xn)

}

f ′2(xn) − f(xn)f ′′(xn)
. (2.10)

This is a new one-parameter modified family of Schröder’s method [19] for an equation
having multiple roots of multiplicitym > 1 unknown. It is interesting to note that by ignoring
the term p, method (2.10) reduces to Schröder’s method. It is easy to verify that this method
is also an order two method, including the case of multiple zeros. Theorem 2.1 indicates that
what choice on the disposable parameter p in family (2.10), the order of convergence will
reach at least the second and third order, respectively.

Theorem 2.1. Let f : I ⊆ R → R have at least three continuous derivatives defined on an open
interval I, enclosing a simple zero of f(x) (say x = r ∈ I). Assume that initial guess x = x0 is
sufficiently close to r and f ′(xn) − pf(xn)/= 0 in I. Then an iteration scheme defined by formula
(2.10) has at least a second order convergence and will have a third-order convergence when p = c2. It
satisfies the following error equation

en+1 =
(
p − c2

)
e2n + 2

(
c22 − 4c3

)
e3n +O

(
e4n

)
, (2.11)

where p ∈ R is a free disposable parameter, en = xn − r, and ck = (1/k!)(f (k)(r)/f ′(r)), k = 2, 3, . . ..
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Proof. Let x = r be a simple zero of f(x). Expanding f(xn) and f ′(xn) about x = r by the
Taylor’s series expansion, we have

f(xn) = f ′(r)
(
en + c2e

2
n + c3e

3
n

)
+O
(
e4n

)
,

f ′(xn) = f ′(r)
(
1 + 2c2en + 3c3e2n

)
+O
(
e3n

)
,

(2.12)

respectively.
Furthermore, we have

f ′′(xn) = f ′(r)(2c2 + 6c3en) +O
(
e2n

)
. (2.13)

From (2.12) and (2.13), we have

f(xn)
(
f ′(xn) − pf(xn)

)

f ′2(xn) − f(xn)f ′′(xn)
= en −

(
p − c2

)
e2n −

(
2c22 − 4c3

)
e3n +O

(
e4n

)
. (2.14)

Finally, The using above equation (2.14) in our proposed scheme (2.10), we get

en+1 = en −
f(xn)

(
f ′(xn) − pf(xn)

)

f ′2(xn) − f(xn)f ′′(xn)

= en −
(
en −

(
p − c2

)
e2n −

(
2c22 − 4c3

)
e3n

)
+O
(
e4n

)

=
(
p − c2

)
e2n +

(
2c22 − 4c3

)
e3n +O

(
e4n

)
.

(2.15)

This reveals that the one-point family of methods (2.10) reaches at least second order of
convergence by using only three functional evaluations (i.e., f(xn), f ′(xn), and f ′′(xn))
per full iteration. It is straightforward to see that family (2.10) reaches the third order of
convergence when p = c2. This completes the proof of Theorem 2.1.

Now we wish to construct different third-order iterative methods, which are
dependent on the different values of p and are given as below.

Special Cases

(i) When |p| 	 1, then p2 can be neglected in (2.4), and we get

p =
f ′′(xn)
2f ′(xn)

. (2.16)

(a) Inserting this value of p in (2.8), we get

xn+1 = xn −
2f(xn)f ′(xn)

2f ′2(xn) − f(xn)f ′′(xn)
. (2.17)



6 Journal of Applied Mathematics

This is the well-known third-order Halley’s method [1–3, 5, 6, 8, 9]. It satisfies the
following error equation:

en+1 =
(
c22 − c3

)
e3n +O

(
e4n

)
. (2.18)

(b) Inserting this value of p in (2.10), we get

xn+1 = xn −
f(xn)
2f ′(xn)

[
2f

′2(xn) − f(xn)f ′′(xn)
f ′2(xn) − f(xn)f ′′(xn)

]
. (2.19)

This is the well-known third-order super-Halley method [1, 2, 4]. It satisfies the
following error equation:

en+1 = −c3e3n +O
(
e4n

)
. (2.20)

(ii) When we take p as an implicit function, then the values of p are based on the idea
of successive approximations. Therefore, we get another value of p from (2.4) as

p =
f ′′(xn)

2f ′(xn) − pf(xn)
. (2.21)

Here, the function f ′′(xn)/(2f ′(xn) − pf(xn)) which occurs on the right cannot be
computed till p is known. To get round off the difficulty, we substitute the value of
p = f ′′(xn)/2f ′(xn) from a previously obtained value in (2.16). Therefore, the new
modified value of p is

p =
2f ′(xn)f ′′(xn)

4f ′2(xn) − f(xn)f ′′(xn)
. (2.22)

(a) Inserting this value of p in (2.8), we get

xn+1 = xn −
f(xn)
f ′(xn)

[
4f

′2(xn) − f(xn)f ′′(xn)
4f ′2(xn) − 3f(xn)f ′′(xn)

]
. (2.23)

This is a new third-order iterative method. It satisfies the following error equation:

en+1 =

(
c22 − 2c3

2

)
e3n +O

(
e4n

)
. (2.24)

(b) Again inserting this value of p in (2.10), we get

xn+1 = xn −
f(xn)f ′(xn)

{
4f

′2(xn) − 3f(xn)f ′′(xn)
}

{
4f ′2(xn) − f(xn)f ′′(xn)

}{
f ′2(xn) − f(xn)f ′′(xn)

} . (2.25)
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This is again a new third-order iterative method. It satisfies the following error
equation:

en+1 =

(
c22 − 2c3

2

)
e3n +O

(
e4n

)
. (2.26)

(iii) Similarly, from (2.4), one can get another value of p as

p =
p2f(xn) + f ′′(xn)

2f ′(xn)
. (2.27)

Again inserting the previously obtained value of p = f ′′(xn)/2f ′(xn) in the right-
hand side of (2.16), we get another modified value of p as

p =
f ′′(xn)

{
4f

′2(xn) + f(xn)f ′′(xn)
}

8f ′3(xn)
. (2.28)

(a) Inserting this value of p in (2.8), we get

xn+1 = xn −
8f(xn)f

′3(xn)
8f ′4(xn) −

{
4f ′2(xn) + f(xn)f ′′(xn)

}
f(xn)f ′′(xn)

. (2.29)

This is a new third-order iterative method. It satisfies the following error equation:

en+1 =

(
c22 − 2c3

2

)
e3n +O

(
e4n

)
. (2.30)

(b) Again inserting this value of p in (2.10), we obtain

xn+1 = xn −
f(xn)
f ′(xn)

⎡
⎢⎣
8f

′4(xn) − f(xn)f ′′(xn)
{
4f

′2(xn) + f(xn)f ′′(xn)
}

8f ′2(xn)
{
f ′2(xn) − f(xn)f ′′(xn)

}

⎤
⎥⎦. (2.31)

This is again a new third-order iterative method. It satisfies the following error
equation:

en+1 =

(
c22 − 2c3

2

)
e3n +O

(
e4n

)
. (2.32)
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(iv) Now we solve the quadratic equation (2.4) for general values of p. Hence, we get

p =
f ′(xn) ±

√
f ′2(xn) − f(xn)f ′(xn)

f(xn)
. (2.33)

(a) Inserting these values of p either in (2.4) or (2.10), we get the well-known
third-order Ostrowski’s square-root method [5] as

xn+1 = xn ±
f(xn)√

f ′2(xn) − f(xn)f ′′(xn)
. (2.34)

It satisfies the following error equation:

en+1 =

(
c22 − 2c3

2

)
e3n +O

(
e4n

)
. (2.35)

(v) When we rationalize the numerator of (2.33), we get other values of p as

p =
f ′′(xn)

f ′(xn) ∓
√
f ′2(xn) − f(xn)f ′′(xn)

. (2.36)

Inserting these values of p either in (2.8) or (2.10), we get

xn+1 = xn −
f(xn)

{
f ′(xn) ±

√
f ′2(xn) − f(xn)f ′′(xn)

}

f ′2(xn) ± f ′(xn)
√
f ′2(xn) − f(xn)f ′′(xn) − f(xn)f ′′(xn)

. (2.37)

This is a new third-order iterative method. It satisfies the following error equation:

en+1 =

(
c22 − 2c3

2

)
e3n +O

(
e4n

)
. (2.38)

Case II. In the second case, we have now considered an exponentially fitted osculating
straight line in the following form:

y(x) = ep(y−y(xn))[A1(x − xn) +A2], (2.39)
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where p ∈ R, |p| < ∞, and A1 and A2 are arbitrary constants. Adopting the same procedure
as above, we get

A1 = f ′(xn) − pf(xn)f ′(xn), A2 = f(xn), (2.40)

p2f(xn)f
′2(xn) − p

{
f(xn)f ′′(xn) + 2f

′2(xn)
}
+ f ′′(xn) = 0. (2.41)

From (2.40) and (2.41), we get another family of iterative methods given by

xn+1 = xn −
f(xn)

f ′(xn)
(
1 − pf(xn)

) . (2.42)

This is another new one-parameter family of Newton’s method. In order to obtain quadratic
convergence, the entity in the denominator should be largest in magnitude. Again note that
for p = 0, we obtain Newton’s method.

Now we apply the well-known Newton’s method to the modified function uf(x) =
f(xn)/(f ′(xn){1 − pf(xn)}), and we will obtain another iterative method as

xn+1 = xn −
f(xn)f ′(xn)

{
1 − pf(xn)

}

f ′2(xn) − f(xn)f ′′(xn) + pf2(xn)f ′′(xn)
. (2.43)

This is another new one-parameter modified family of Schröder’s method for an equation
having multiple roots of multiplicitym > 1 unknown. It is interesting to note that by ignoring
the term p, (2.43) reduces to Schröder’s method. It is easy to verify that this method is also
an order two method, including in the case of multiple zeros. Theorems 2.2 and 2.3 indicate
that what choice on the disposable parameter p in families (2.42) and (2.43), the order of
convergence will reach at least the second order.

Theorem 2.2. Let f : I ⊆ R → R have at least three continuous derivatives defined on an open
interval I, enclosing a simple zero of f(x) (say x = r ∈ I). Assume that initial guess x = x0 is
sufficiently close to r and f ′(xn)(1 − pf(xn))/= 0 in I. Then the family of iterative methods defined
by (2.42) has at least a second-order convergence and will have a third-order convergence when p =
f ′′(xn)/2. It satisfies the following error equation:

en+1 =
(−pf ′(r) + c2

)
e2n −

(
p2f

′2(r) − 2c22 + 2c3
)
e3n +O

(
e4n

)
. (2.44)

Theorem 2.3. Let f : I ⊆ R → R have at least three continuous derivatives defined on an open
interval I, enclosing a simple zero of f(x) (say x = r ∈ I). Assume that initial guess x = x0 is
sufficiently close to r and f ′(xn)(1 − pf(xn))/= 0 in I. Then the family of iterative methods defined
by (2.43) has at least a second-order convergence and will have a third-order convergence when p =
f ′′(xn)/2. It satisfies the following error equation:

en+1 =
(
pf ′(r) − c2

)
e2n + 2

(
2pf ′(r) + c22 − 2c3

)
e3n +O

(
e4n

)
. (2.45)
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Proof. The proofs of these theorems are similar to the proof of Theorem 2.1. Hence, these are
omitted here.

Now we wish to construct different third-order iterative methods, which are
dependent on the different values of p and are given as follows.

Special Cases

(i) When |p| 	 1, then p2 can be neglected in (2.41), and we get

p =
f ′′(xn)

2f ′2(xn) + f(xn)f ′′(xn)
. (2.46)

(a) Inserting this value of p in (2.42), we get

xn+1 = xn −
f(xn)
f ′(xn)

− f2(xn)f ′′(xn)
2f ′3(xn)

. (2.47)

This is the well-known cubically convergent Chebyshev’s method [1–4, 9]. It
satisfies the following error equation:

en+1 =
(
2c22 − c3

)
e3n +O

(
e4n

)
. (2.48)

(b) Again inserting this value of p in (2.43), we get

xn+1 = xn −
2f(xn)f ′(xn)

2f ′2(xn) − f(xn)f ′′(xn)
. (2.49)

This is the already derived well-known cubically convergent Halley’s method.

(ii) Adopting the same procedure as in (2.21), we get another value of p from (2.41) as

p =
f ′′(xn)

f ′2(xn)
{
2 − pf(xn)

}
+ f(xn)f ′′(xn)

. (2.50)

Now we substitute p = f ′′(xn)/(2f ′2(xn) + f(xn)f ′′(xn)) to get another modified
value of p from (2.46) as

p =
f ′′(xn)

{
2f

′2(xn) + f(xn)f ′′(xn)
}

4f ′4(xn) + 3f ′2(xn)f(xn)f ′′(xn) + f2(xn)f ′′2(xn)
. (2.51)

(a) Inserting this value of p in (2.43), we get

xn+1 = xn −
f(xn)
f ′(xn)

[
4f

′4(xn) + 3f(xn)f
′2(xn)f ′′(xn) + f2(xn)f ′′2(xn)

4f ′4(xn) + f ′2(xn)f(xn)f ′′(xn)

]
. (2.52)
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This is a new third-order iterative method. It satisfies the following error equation:

en+1 =

(
3c22 − 2c3

2

)
e3n +O

(
e4n

)
. (2.53)

(b) Again inserting this value of p in (2.43), we get

xn+1 = xn −
f(xn)
f ′(xn)

[
4f

′2(xn) + f(xn)f ′′(xn)
4f ′2(xn) − f(xn)f ′′(xn)

]
. (2.54)

This is again a new third-order iterative method. It satisfies the following error
equation:

en+1 =

(
3c22 − 2c3

2

)
e3n +O

(
e4n

)
. (2.55)

(iii) From (2.41), one can get another value of p as

p =
p
(
f(xn)f ′′(xn) + 2f

′2(xn )
)
− f ′′(xn)

pf ′2(xn)f(xn)
. (2.56)

Inserting this previously obtained value of p = (f ′′(xn){2f ′2(xn) +
f(xn)f ′′(xn)})/(4f ′4(xn) + 3f

′2(xn)f(xn)f ′′(xn) + f2(xn)f ′′2(xn)) in (2.51), we
get another modified value of p as

p =
f

′2(xn)f ′′(xn) − f
′2(xn)f(xn) + f(xn)f ′′2(xn)

2f ′4(xn) + f ′2(xn)f(xn)f ′′(xn)
. (2.57)

(a) Inserting this value of p in (2.42), we get

xn+1 = xn −
f(xn)f ′(xn)

{
2f

′2(xn) + f(xn)f ′′(xn)
}

2f ′4(xn) + f ′2(xn)f2(xn) − f2(xn)f ′′2(xn)
. (2.58)

This is a new third-order iterative method. It satisfies the following error equation:

en+1 =
(
1 − 2c3

2

)
e3n +O

(
e4n

)
. (2.59)

(b) Again inserting this value of p in (2.43), we get

xn+1 = xn −
2f

′5(xn)f(xn) + f3(xn)f ′(xn)
{
f ′2(xn) − f ′′2(xn)

}

2f ′6(xn) − f ′4(xn)f(xn)f ′′(xn) − f ′2(xn)f3(xn)f ′′(xn) + f3(xn)f ′′3(xn)
. (2.60)
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This is again a new third-order iterative method. It satisfies the following error
equation:

en+1 =

(
6c22 − 1 − 2c3

2

)
e3n +O

(
e4n

)
. (2.61)

(iv) Now we solve the quadratic equation (2.41) for the general value of p, and we get
other values of p as

p =

{
2f ′2(xn) + f(xn)f ′′(xn)

} ±
√{

2f ′2(xn) + f(xn)f ′′(xn)
}2 − 4f(xn)f

′2(xn)f ′′(xn)

2f ′(xn)f(xn)
.

(2.62)

By inserting the above values of p either in (2.42) or (2.43), we get

xn+1 = xn −
2f(xn)f ′(xn)

f(xn)f ′′(xn) ±
√
4f ′4(xn) + f2(xn)f ′′2(xn)

. (2.63)

This is a new third-order iterative method. It satisfies the following error equation:

en+1 = −
(

3c22 + 2c3
2

)
e3n +O

(
e4n

)
. (2.64)

3. Third-Order Multipoint Iterative Methods and
Their Error Equations

The practical difficulty associated with the above-mentioned cubically convergent methods
may be the evaluation of the second-order derivative. Recently, some new variants of
Newton’s method free from second-order derivative have been developed in [3, 10, 11]
and the references cited there in by the discretization of the second-order derivative or by
the predictor-corrector approach or by considering different quadrature formulae for the
computation of integral arising from Newton’s theorem. These multipoint iteration methods
calculate new approximations to a zero of a function by sampling f(x) and possibly its
derivatives for a number of values of the independent variable at each step.

Here, we also intend to develop new third-order multipoint methods free from the
second-order derivative. The main idea of proposed methods lies in the discretization of the
second-order derivative involved in the above-mentioned methods.

Expanding the function f(xn − f(xn)/f ′(xn)) about the point x = xn by Taylor’s
expansion, we have

f

(
xn −

f(xn)
f ′(xn)

)
=

f2(xn)
2f ′2(xn)

f ′′(xn) +O

(
f(xn)
f ′(xn)

)3

. (3.1)
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Therefore, we obtain

f ′′(xn) ≈
2f

′2(xn)f
(
yn

)

f2(xn)
, (3.2)

where yn = xn − f(xn)/f ′(xn).
Using this approximate value of f ′′(xn) into the previously obtained formulae, we get

different multipoint iterative methods free from second-order derivative.

Special Cases

(i) Inserting this approximate value of f ′′(xn) (from (3.2)) either in (2.17) or (2.19), we
get

xn+1 = xn −
f(xn)
f ′(xn)

[
f(xn)

f(xn) − f
(
yn

)
]
. (3.3)

This is the well-known third-order Newton-Secant method [3]. It satisfies the
following error equation:

en+1 = c22e
3
n + 3c2

(
c3 − c22

)
e4n +O

(
e5n

)
. (3.4)

(ii) Inserting this approximate value of f ′′(xn) (from (3.2)) in (2.23), we get

xn+1 = xn −
f(xn)
f ′(xn)

[
f
(
yn

) − 2f(xn)

3f
(
yn

) − 2f(xn)

]
. (3.5)

This is a new third-order multipoint iterative method having the error equation

en+1 =

(
c22
2

)
e3n +

(
4c2c3 − 3c22

4

)
e4n +O

(
e5n

)
. (3.6)

(iii) Inserting this approximate value of f ′′(xn) (from (3.2)) in (2.25), we get

xn+1 = xn −
f(xn)
f ′(xn)

[
f(xn)

{
3f
(
yn

) − 2f(xn)
}

{
f
(
yn

) − 2f(xn)
}{

f(xn) − 2f
(
yn

)}
]
. (3.7)

This is a new third-order multipoint iterative method having the error equation

en+1 =

(
c22
2

)
e3n +

(
4c2c3 − 5c32

4

)
e4n +O

(
e5n

)
. (3.8)
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(iv) Inserting this approximate value of f ′′(xn) (from (3.2)) in (2.29), we get

xn+1 = xn −
f(xn)
f ′(xn)

[
2f2(xn)

2f2(xn) − 2f
(
yn

)
f(xn) − f2

(
yn

)
]
. (3.9)

This is a new third-order multipoint iterative method having the error equation

en+1 =

(
c22
2

)
e3n +

(
2c2c3 − c32

2

)
e4n +O

(
e5n

)
. (3.10)

(v) Inserting this approximate value of f ′′(xn) (from (3.2)) in (2.31), we get

xn+1 = xn −
2f2(xn) − 2f

(
yn

)
f(xn) − f2(yn

)

2f ′(xn)
{
f(xn) − 2f

(
yn

)} . (3.11)

This is a new third-order multipoint iterative method having the error equation

en+1 =

(
c22
2

)
e3n +

(
2c2c3 − 3c22

2

)
e4n +O

(
e5n

)
. (3.12)

(vi) Inserting this approximate value of f ′′(xn) (from (3.2)) in (2.47), we get

xn+1 = xn −
f(xn) + f

(
yn

)

f ′(xn)
. (3.13)

This is the well-known third-order Potra-Pták’s method [12]. It satisfies the
following error equation:

en+1 = 2c22e
3
n +
(
7c2c3 − 9c32

)
e4n +O

(
e5n

)
. (3.14)

(vii) Inserting this approximate value of f ′′(xn) (from (3.2)) in (2.52), we get

xn+1 = xn −
2f2(xn) + 3f(xn)f

(
yn

)
+ 2f2(yn

)

f ′(xn)
{
2f(xn) + f

(
yn

)} . (3.15)

This is a new third-order multipoint iterative method having the error equation

en+1 =

(
3c22
2

)
e3n +

(
20c2c3 − 21c32

4

)
e4n +O

(
e5n

)
. (3.16)
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(viii) Inserting this approximate value of f ′′(xn) (from (3.2)) in equation (2.54), we get

xn+1 = xn −
f(xn)
f ′(xn)

[
2f(xn) + f

(
yn

)

2f(xn) − f
(
yn

)
]
. (3.17)

This is a new third-order multipoint iterative method having the error equation

en+1 =

(
3c22
2

)
e3n +

(
20c2c3 − 23c32

4

)
e4n +O

(
e5n

)
. (3.18)

(ix) Inserting this approximate value of f ′′(xn) (from (3.2)) in (2.58), we get

xn+1 = xn −
2f ′(xn)f2(xn)

{
f(xn) + f

(
yn

)}

2f ′2(xn)
{
f2(xn) − 2f2

(
yn

)}
+ f4(xn)

. (3.19)

This is a new third-order multipoint iterative method having the error equation

en+1 =
1
2
e3n + c2

(
3c22 − c3 − 1

)
e4n +O

(
e5n

)
. (3.20)

(x) Inserting this approximate value of f ′′(xn) (from (3.2)) in (2.63), we get

xn+1 = xn −
f(xn)
f ′(xn)

⎡
⎢⎣

f(xn)
[
f4(xn) + 2f

′2(xn)
{
f2(xn) − 2f2(yn

)}]

2f ′2(xn)
{
f3(xn) − f2(xn)f

(
yn

)
+ 4f3

(
yn

)} − 2f4(xn)f
(
yn

)

⎤
⎥⎦. (3.21)

This is a new third-order multipoint iterative method having the error equation

en+1 =

(
6c22 − 1

2

)
e3n + 11c2

(
c3 − c22

)
e4n +O

(
e5n

)
. (3.22)

4. Optimal Fourth-Order Multipoint Iterative Methods and
Their Error Equations

Now we intend to develop new fourth-order optimal multipoint iterative methods [10,
11, 15–17] for solving nonlinear equations numerically. These multipoint iterative methods
are of great practical importance since they overcome theoretical limits of one-point
methods concerning the convergence order and computational efficiency. In the case of these
multipoint methods, Kung and Traub [13] conjectured that the order of convergence of any
multipoint method without memory, consuming n function evaluations per iteration, can not
exceed the bound 2n−1 (called optimal order). Multipoint methods with this property are
called optimal methods. Traub-Ostrowski’s method [3], Jarratt’s method [14], King’s method
[11], a family of Traub-Ostrowski’s method [10], and so forth are famous optimal fourth
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order methods, because they require three function evaluations per step. Traub-Ostrowski’s
method, Jarratt’s method, and King’s family are the most efficient fourth-order multipoint
iterative methods till date. Nowadays, obtaining new optimal methods of order four is
still important, because they have very high efficiency index. For this, we will take linear
combination of the Newton-Secant method and the newly developed third-order multipoint
iterative methods. Let us denote the Newton-Secant method by N and the methods namely
(3.5) to (3.17) by T , respectively, therefore, taking the linear combination of N (the Newton-
Secant method) and T (newly developed multipoint methods) as follows:

φ(xn) = αN + βT where α, β ∈ R. (4.1)

For some particular values of α and β, we get many new fourth-order optimal multipoint
iterative methods as follows.

(i) When we take T as a method (3.5) and (α, β) = (−1, 2) in (4.1), we get

xn+1 = xn −
f(xn)
f ′(xn)

[
3f(xn)f

(
yn

) − 2f2(yn

) − 2f2(xn){
3f
(
yn

) − 2f(xn)
}{

f(xn) − f
(
yn

)}
]
. (4.2)

This fourth-order optimal multipoint method is independently derived by Behzad
Ghanbari [18]. It satisfies the following error equation

en+1 =

(
3c32 − 2c2c3

2

)
e4n +O

(
e5n

)
. (4.3)

(ii) When we take T as method (3.7) and (α, β) = (−1, 2) in (4.1), we get

xn+1 = xn −
f(xn)
f ′(xn)

[
f(xn)

{
4f2(yn

)
+ 2f2(xn) − 5f(xn)f

(
yn

)}
{
f
(
yn

) − 2f(xn)
}{

f(xn) − 2f
(
yn

)}{
f
(
yn

) − f(xn)
}
]
. (4.4)

This is a new fourth-order optimal multipoint iterative method. It satisfies the
following error equation:

en+1 =

(
c32 − 2c2c3

2

)
e4n +O

(
e5n

)
. (4.5)
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Program Code in Mathematica 7 for the Order of Convergence of Method (4.4)

In [1] : fx = f1r
(
e + c2e

2 + c3e
3 + c4e

4
)
,

In [2] : fdx = f1r
(
1 + 2c2e + 3c3e2 + 4c4e3 + 5c5e4

)
,

In [3] : u1 = Series
[
fx

fdx
, {e, 0, 4}

]
//Simplify,

In [4] : y = e − u1,

In [5] : fy = f1r
(
y + c2y

2 + c3y
3 + c4y

4
)
,

In [6] : u2 = f(xn) ∗
(
4f2(yn

)
+ 2f2(xn) − 5f(xn)f

(
yn

))
,

In [7] : u3 =
(
f
(
yn

) − 2f(xn)
)(
f(xn) − 2f

(
yn

))(
f
(
yn

) − f(xn)
)
,

In [8] : u4 = Series
[
u2
u3

, {e, 0, 4}
]
,

In [9] : e1 = e − u4//Simplify,

Out [10] :

(
c32 − 2c2c3

2

)
e4n +O

(
e5n

)
.

(4.6)

(iii) When we take T as method (3.9) and (α, β) = (−1, 2) in (4.1), we get

xn+1 = xn −
f(xn)
f ′(xn)

[
f(xn)

{
2f2(xn) − 2f(xn)f

(
yn

)
+ f2(yn

)}

2f3(xn) − 4f2(xn)f
(
yn

)
+ f(xn)f2

(
yn

)
+ f3

(
yn

)
]
. (4.7)

This is a new fourth-order optimal multipoint iterative method. It satisfies the
following error equation:

en+1 =
(
2c32 − c2c3

)
e4n +O

(
e5n

)
. (4.8)

(iv) When we take T as method (3.11) and (α, β) = (−1, 2) in (4.1), we get

xn+1 = xn −
f3(yn

)
+ f2(yn

)
f(xn) − 2f

(
yn

)
f2(xn) + f3(xn)

f ′(xn)
{
2f2
(
yn

) − 3f
(
yn

)
f(xn) + f2(xn)

} . (4.9)
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This is a new fourth-order optimal multipoint iterative method. It satisfies the
following error equation:

en+1 = −c2c3e4n +O
(
e5n

)
. (4.10)

(v) When we take T as method (3.13) and (α, β) = (−2, 1) in (4.1), we get

xn+1 = xn −
f2(xn) + f2(yn

)

f ′(xn)
{
f(xn) − f

(
yn

)} . (4.11)

This is a particular case of quadratically convergent King’s family [11] ofmultipoint
iterative method for γ = 1. It satisfies the following error equation:

en+1 =
(
3c32 − c2c3

)
e4n +O

(
e5n

)
. (4.12)

(vi) When we take T as a method (3.15) and (α, β) = (3,−2) in (4.1), we get

xn+1 = xn −
2f3(xn) + f2(xn)f

(
yn

)
+ 2f(xn)f2(yn

)
+ 4f3(yn

)

f ′(xn)
{
f(xn) − f

(
yn

)}{
2f(xn) + f

(
yn

)} . (4.13)

This is a new fourth-order optimal multipoint iterative method. It satisfies the
following error equation:

en+1 =
(
3c32 − c2c3

)
e4n +O

(
e5n

)
. (4.14)

(vii) When we take T as a method (3.17) and (α, β) = (3,−2) in (4.1), we get

xn+1 = xn −
f(xn)
f ′(xn)

[
2f2(xn) − f(xn)f

(
yn

)
+ 2f2(yn

)

2f2(xn) − 3f(xn)f
(
yn

)
+ f2

(
yn

)
]
. (4.15)

This is a new fourth-order optimal multipoint iterative method. It satisfies the
following error equation:

en+1 =

(
5c32 − 2c2c3

2

)
e4n +O

(
e5n

)
. (4.16)

(viii) Using the approximate value of f ′′(xn) (from (3.2)) in (2.19), we get

xn+1 = xn −
f(xn)
f ′(xn)

[
f(xn) − f

(
yn

)

f(xn) − 2f
(
yn

)
]
. (4.17)
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This is the well-known Traub-Ostrowski’s [3] fourth-order optimal multipoint
iterative method. It satisfies the following error equation:

en+1 =
(
c32 − c2c3

)
e4n +O

(
e5n

)
. (4.18)

Some Other Formulae

In a similar fashion, let us denote Potra-Pták’s method by P and the methods, namely, (3.5),
(3.9), (3.19) to (3.21), respectively, by T , taking the linear combination of P (Potra-Pták’s
method) and T (newly developed multipoint methods) as follows:

φ(xn) = αP + βT where α, β ∈ R. (4.19)

For some particular values of α and β, we get many new other fourth-order optimal
multipoint iterative methods as follows.

(ix) When we take T as method (3.9) and (α, β) = (−1, 4) in (4.19), we get

xn+1 = xn −
6f3(xn) + 3f(xn)f2(yn

)
+ f3(yn

)

3f ′(xn)
{
2f2(xn) − 2f(xn)f

(
yn

) − f2
(
yn

)} . (4.20)

This is a new fourth-order optimal multipoint iterative method. It satisfies the
following error equation:

en+1 =
(
7
3
c32 − c2c3

)
e4n +O

(
e5n

)
. (4.21)

(x) When we take method (3.5) × 3 − method (3.15), we get

xn+1 = xn −
f(xn)
f ′(xn)

[
4f2(xn) − 4f(xn)f

(
yn

)
+ 3f2(yn

)

4f2(xn) − 8f(xn)f
(
yn

)
+ 3f2

(
yn

)
]
. (4.22)

This is a new fourth-order optimal multipoint iterative method. It satisfies the
following error equation:

en+1 =
(
7
4
c32 − c2c3

)
e4n +O

(
e5n

)
. (4.23)

Similarly, we can obtain many other new optimal multipoint fourth-order iterative methods
for solving nonlinear equations numerically.

It is straightforward to see that per step these methods require three evaluations of
function, namely, two evaluations of f(x) and one of its first-order derivative f ′(x). In order
to obtain an assessment of the efficiency of our methods, we shall make use of the efficiency
index defined by (1.9). For our proposed third-order multipoint iterative methods, we find
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Table 1: Test problems.

f(x) [a, b] Root (r)

f1(x) = sinx − x

2
[1.5, 2] 1.895494222640991

f2(x) = cosx − x [0, 2] 0.739085137844086

f3(x) = x3 − 10 [2, 4] 2.154434680938721

f4(x) = 10xe−x
2 − 1 [1, 2] 1.679630637168884

f5(x) = (x − 1)3 − 1 [1.5, 3.5] 2.000000000000000

f6(x) = tan−1x − x + 1 [1.5, 3] 2.132267713546753

f7(x) = x4 − x3 + 11x − 7 = 0 [0, 1] 0.645023941993713

f8(x) = x5 + 17x = 0 [−0.5, 1] 0

f9(x) = x3 − cosx + 2 = 0 [−2,−1] −1.172577977180481
f10(x) = ex

2+7x−30 − 1 = 0 [2.9, 3.5] 3

P = 3 andD = 3 to get E = 3
√
3 ≈ 1.442which is better than E =

√
2 ≈ 1.414, the efficiency index

of the Newton’s method. For the quadratically convergent multipoint iterative methods, we
find P = 4 and D = 3 to get E = 3

√
4 ≈ 1.587 which is better than those of most of the third-

order methods E ≈ 1.442 and Newton’s method E ≈ 1.414.

5. Numerical Experiments

In this section, we shall check the effectiveness of the new optimal methods. We employ
the present methods, namely, (4.2), (4.9), method (4.15), (4.22) respectively, to solve the
following nonlinear equations given in Table 1. We compare them with the methods, namely,
Newton’s method (NM), Traub-Ostrowski’s method (also known as Ostrowski’s method)
(4.17) (TOM), Jarratt’s method (JM), and King’s method (KM) for γ = 1/2 and γ = 1
respectively. We have also shown the comparison of all methods mentioned above in Table 2.
Computations have been performed using C++ in double-precision arithmetic. We use ε =
10−15 as a tolerable error. The following stopping criteria are used for computer programs:

(i) |xn+1 − xn| < ε, (ii) |f(xn+1)| < ε.

6. Conclusion

In this paper, we have presented another simple and elegant way of deriving different
iterative functions to solve nonlinear equations numerically. This study represents several
formulae of third and fourth order and has a well-known geometric derivation. Multipoint
iterative methods belong to the class of the most powerful methods since they overcome
theoretical limits of one-point methods concerning the convergence order and computational
efficiency. Themost important class of multipoint methods are optimal methods, which attain
the convergence order 2n−1 using n function evaluations per iteration. Therefore, fourth-order
multipoint iterative methods are the main findings of the present paper in terms of speed and
efficiency index. According to Kung-Traub conjecture, these different methods presented in
this paper have the maximal efficiency index because only three function values are needed
per step. The numerical results presented in Table 2, overwhelmingly, support that these
different methods are equally competent to Traub-Ostrowski’s method, Jarratt’s method, and
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Table 2: Total number of iterations to approximate the zero of a function and the total number of function
evaluations for various multipoint iterative methods.

Problem Initial
guess

NM TOM JM KM
(γ = 1/2)

KM
(γ = 1)

Method
(4.4)

Method
(4.9)

Method
(4.15)

Method
(4.22)

f1(x)
1.5 (4, 8) (2, 6) (3, 9) (3, 9) (4, 12) (2, 6) (2, 6) (3, 9) (3, 9)
2 (3, 6) (2, 6) (2, 6) (2, 6) (3, 9) (2, 6) (2, 6) (4, 12) (2, 6)

f2(x)
0 (4, 8) (2, 6) (3, 9) (3, 9) (3, 9) (2, 6) (2, 6) (3, 9) (3, 9)
2 (3, 6) (2, 6) (2, 6) (2, 6) (2, 6) (2, 6) (2, 6) (2, 6) (2, 6)

f3(x)
2 (3, 6) (2, 6) (3, 9) (2, 6) (2, 6) (2, 6) (2, 6) (2, 6) (2, 6)
4 (5, 10) (3, 9) (3, 9) (3, 9) (3, 9) (3, 9) (3, 9) (3, 9) (3, 9)

f4(x)
1 (4, 8) (3, 9) (3, 9) (3, 9) (3, 9) (3, 9) (3, 9) (3, 9) (3, 9)
2 (5, 10) (3, 9) (3, 9) (3, 9) (3, 9) (2, 6) (3, 9) (3, 9) (3, 9)

f5(x)
1.5 (6, 12) (3, 9) (3, 9) (4, 12) (5, 15) (3, 9) (4, 12) (4, 12) (4, 12)
3.5 (6, 12) (3, 9) (3, 9) (3, 9) (3, 9) (3, 9) (3, 9) (3, 9) (4, 12)

f6(x)
1.5 (3, 6) (2, 6) (2, 6) (2, 6) (3, 9) (2, 6) (2, 6) (2, 6) (3, 9)
3 (3, 6) (2, 6) (2, 6) (2, 6) (2, 6) (2, 6) (2, 6) (2, 6) (2, 6)

f7(x)
0 (3, 6) (2, 6) (2, 6) (2, 6) (2, 6) (2, 6) (2, 6) (2, 6) (2, 6)
1 (3, 6) (3, 9) (2, 6) (3, 9) (3, 9) (2, 6) (2, 6) (3, 9) (3, 9)

f8(x)
−0.5 (2, 4) (3, 9) (3, 9) (3, 9) (3, 9) (3, 9) (3, 9) (3, 9) (3, 9)
1 (3, 6) (3, 9) (3, 9) (3, 9) (3, 9) (3, 9) (3, 9) (3, 9) (3, 9)

f9(x)
−2 (5, 10) (3, 9) (3, 9) (3, 9) (3, 9) (3, 9) (4, 12) (4, 12) (3, 9)
−1 (4, 8) (2, 6) (2, 6) (2, 6) (2, 6) (2, 6) (3, 9) (2, 6) (2, 6)

f10(x)
2.9 (6, 12) (3, 9) (6, 18) (5, 15) (8, 24) (3, 9) (3, 9) (3, 9) (3, 9)
3.5 (11, 22) (5, 15) (11, 33) (6, 18) (6, 18) (5, 15) (6, 18) (5, 15) (6, 18)

King’s family. By using the same idea, one can obtain other iterative processes by considering
different exponentially fitted osculating curves.
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