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We prove the Hyers-Ulam stability of the following Jensen functional inequality ‖f((x − y)/n +
z) + f((y −z)/n+x) + f((z−x)/n+y)‖ ≤ ‖f((x+y +z)‖ in p-Banach spaces for any fixed nonzero
integer n.

1. Introduction

The stability problem of equations originated from a question of Ulam [1] concerning the
stability of group homomorphisms.

We are given a group G1 and a metric group G2 with metric ρ(·, ·). Given ε > 0, does
there exist a number δ > 0 such that if f : G1 → G2 satisfies ρ(f(xy), f(x)f(y)) < δ for all
x, y ∈ G1, then a homomorphism h : G1 → G2 exists with ρ(f(x), h(x)) < ε for all x ∈ G1?

In 1941, Hyers [2] considered the case of approximately additive mappings between
Banach spaces and proved the following result.

Suppose that E1 and E2 are Banach spaces and f : E1 → E2 satisfies the following
condition: if there is a number ε ≥ 0 such that

∥
∥f
(

x + y
) − f(x) − f

(

y
)∥
∥ ≤ ε (1.1)

for all x, y ∈ E1, then the limit h(x) = limn→∞f(2nx)/2n exists for all x ∈ E1 and there exists
a unique additive mapping h : E1 → E2 such that

∥
∥f(x) − h(x)

∥
∥ ≤ ε. (1.2)

Moreover, if f(tx) is continuous in t ∈ R for each x ∈ E1, then the mapping h is R-linear.
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Themethodwhich was provided by Hyers, and which produces the additive mapping
h, is called a direct method. This method is the most important and most powerful tool
for studying the stability of various functional equations. Hyers’ theorem was generalized
by Aoki [3] and Bourgin [4] for additive mappings by considering an unbounded Cauchy
difference. In 1978, Rassias [5] also provided a generalization of Hyers’ theorem for linear
mappings which allows the Cauchy difference to be unbounded. Let E1 and E2 be two Banach
spaces and let f : E1 → E2 be a mapping such that f(tx) is continuous in t ∈ R for each fixed
x. Assume that there exist ε > 0 and 0 ≤ p < 1 such that

∥
∥f
(

x + y
) − f(x) − f

(

y
)∥
∥ ≤ ε

(‖x‖p + ∥∥y∥∥p), ∀x, y ∈ E1.
(1.3)

Then, there exists a unique R-linear mapping T : E1 → E2 such that

∥
∥f(x) − T(x)

∥
∥ ≤ 2ε

2 − 2p
‖x‖p (1.4)

for all x ∈ E1. A generalized result of Rassias’ theorem was obtained by Găvruţa in [6]
and Jung in [7]. In 1990, Rassias [8] during the 27th International Symposium on Functional
Equations asked the question whether such a theorem can also be proved for p ≥ 1. In 1991,
Gajda [9], following the same approach as in [5], gave an affirmative solution to this question
for p > 1. It was shown by Gajda [9], as well as by Rassias and Šemrl [10], that one cannot
prove a Rassias’ type theorem when p = 1. The counterexamples of Gajda [9], as well as of
Rassias and Šemrl [10], have stimulated several mathematicians to invent new approximately
additive or approximately linear mappings.

We recall some basic facts concerning quasinormed spaces and some preliminary
results. Let X be a real linear space. A quasinorm is a real-valued function on X satisfying
the following:

(1) ‖x‖ ≥ 0 for all x ∈ X and ‖x‖ = 0 if and only if x = 0.

(2) ‖λx‖ = |λ|‖x‖ for all λ ∈ R and all x ∈ X.

(3) There is a constant M ≥ 1 such that ‖x + y‖ ≤ M(‖x‖ + ‖y‖) for all x, y ∈ X.

The pair (X, ‖ · ‖) is called a quasinormed space if ‖ · ‖ is a quasinorm on X [11, 12].
The smallest possibleM is called the modulus of concavity of ‖ · ‖. A quasi-Banach space is a
complete quasinormed space.

A quasinorm ‖ · ‖ is called a p-norm (0 < p ≤ 1) if

∥
∥x + y

∥
∥
p ≤ ‖x‖p + ∥∥y∥∥p (1.5)

for all x, y ∈ X. In this case, a quasi-Banach space is called a p-Banach space.
Given a p-norm, the formula d(x, y) := ‖x − y‖p gives us a translation invariant metric

on X. By the Aoki-Rolewicz theorem [12], each quasinorm is equivalent to some p-norm
(see also [11]). Since it is much easier to work with p-norms, henceforth, we restrict our
attention mainly to p-norms. We observe that if x1, x2, . . . , xn are nonnegative real numbers,
then (

n∑

i=1

xi

)p

≤
n∑

i=1

x
p

i , (1.6)

where 0 < p ≤ 1.
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In 2009, Moslehian and Najati [13] introduced the Hyers-Ulam stability of the additive
functional inequality:

∥
∥
∥
∥
f

(
x − y

2
+ z

)

+ f

(
y − z

2
+ x

)

+ f

(
z − x

2
+ y

)∥
∥
∥
∥
≤ ∥∥f(x + y + z

)∥
∥, (1.7)

and then have investigated the general solution and the Hyers-Ulam stability problem for the
functional inequality. The stability problems of several functional equations in quasi-normed
spaces and several functional inequalities have been investigated by a number of authors and
there are many interesting results concerning the stability of various functional inequalities
[14–17].

In this paper, we consider a modified and general Jensen functional inequality:

∥
∥
∥
∥
f

(
x − y

n
+ z

)

+ f

(
y − z

n
+ x

)

+ f

(
z − x

n
+ y

)∥
∥
∥
∥
≤ ∥∥f(x + y + z

)∥
∥ (1.8)

for any fixed nonzero integer n. First of all, it is easy to see that a function f satisfies the
inequality (1.8) if and only if f(x) is additive. Thus the inequality (1.8) may be called the
Jensen functional inequality and the general solution of inequality (1.8) may be called the
Jensen function. In the sequel, we investigate the generalized Hyers-Ulam stability of (1.8) in
p-Banach spaces for any fixed nonzero integer n by using the techniques of [14, 15].

2. Generalized Hyers-Ulam Stability

First, we present the general solution of the inequality (1.8).

Lemma 2.1. Let both X and Y be real vector spaces. A function f : X → Y satisfies (1.8) for all
x, y, z ∈ X if and only if f is additive.

Proof. Letting x = y = z = 0 in (1.8), we have f(0) = 0. Putting y = −(n + 1)x/2 and z =
(n − 1)x/2 in (1.8), we get

∥
∥
∥
∥
∥
f

((

n2 + 3
)

x

2n

)

+ f

(

−(n2 + 3
)

x

2n

)∥
∥
∥
∥
∥
≤ ∥∥f(0)∥∥ (2.1)

for all x ∈ X. Hence f(−x) = −f(x) for all x ∈ X. Replacing z by −x − y in (1.8), we obtain

∥
∥
∥
∥
f

(
(1 − n)x − (n + 1)y

n

)

+ f

(
(n + 1)x + 2y

n

)

+ f

(−2x + (n − 1)y
n

)∥
∥
∥
∥
≤ ∥∥f(0)∥∥, (2.2)

that is,

f
(

(1 − n)x − (n + 1)y
)

+ f
(

(n + 1)x + 2y
)

+ f
(−2x + (n − 1)y

)

= 0 (2.3)
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for all x, y ∈ X. Putting u = (n + 1)x + 2y and v = −2x + (n − 1)y in (2.3), we get by oddness
of f ,

f(u + v) = f(u) + f(v) (2.4)

for all u, v ∈ X. So f is additive.
The proof of the converse is trivial.

From now on, assume that X is a quasinormed space with quasinorm ‖ · ‖ and that Y
is a p-Banach space with p-norm ‖ · ‖. Let M be the modulus of concavity of ‖ · ‖ in Y .

Before taking up the main subject, given a mapping f : X → Y , we define the
difference operator Df : X3 → Y by

Df
(

x, y, z
)

:=
∥
∥
∥
∥
f

(
x − y

n
+ z

)

+ f

(
y − z

n
+ x

)

+ f

(
z − x

n
+ y

)∥
∥
∥
∥
− ∥∥f(x + y + z

)∥
∥ (2.5)

for all x, y, z ∈ X and for any fixed nonzero integer n.

Theorem 2.2. Suppose that a mapping f : X → Y with f(0) = 0 satisfies the functional inequality

Df
(

x, y, z
) ≤ ϕ

(

x, y, z
)

(2.6)

for all x, y, z ∈ X and the perturbing function ϕ : X3 → R
+ satisfies

Φ
(

x, y, z
)

:=
∞∑

i=0

1
2ip

ϕ
(

2ix, 2iy, 2iz
)p

< ∞ (2.7)

for all x, y, z ∈ X. Then, there exists a unique additive mapping h : X → Y defined by h(x) =
limk→∞(1/2k)f(2kx) such that

∥
∥f(x) − h(x)

∥
∥ ≤ M

2

[

Φ

(

n(n − 3)x
n2 + 3

,
n(n + 3)x
n2 + 3

,
−2n2x

n2 + 3

)

+Φ
(−2n(n + 1)x

n2 + 3
,
2n(n − 1)x

n2 + 3
,
4nx
n2 + 3

)]1/p
(2.8)

for all x ∈ X.

Proof. Replacing z by −x − y in (2.6), we obtain

∥
∥
∥
∥
f

(
(1 − n)x − (n + 1)y

n

)

+ f

(
(n + 1)x + 2y

n

)

+ f

(−2x + (n − 1)y
n

)∥
∥
∥
∥

≤ ϕ
(

x, y,−x − y
)

(2.9)
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for all x, y ∈ X. Letting x = (n − 3)x/(n2 + 3) and y = (n + 3)x/(n2 + 3) in (2.9), we get

∥
∥
∥
∥
f

(

−2x
n

)

+ 2f
(
x

n

)∥
∥
∥
∥
≤ ϕ

(
(n − 3)x
n2 + 3

,
(n + 3)x
n2 + 3

,
−2nx
n2 + 3

)

(2.10)

for all x ∈ X. Putting x = −(n + 1)z/2 and y = (n − 1)z/2 in (2.6), we have

∥
∥
∥
∥
∥
f

(

−(n2 + 3
)

z

2n

)

+ f

((

n2 + 3
)

z

2n

)∥
∥
∥
∥
∥
≤ ϕ

(−(n + 1)z
2

,
(n − 1)z

2
, z

)

(2.11)

for all z ∈ X. Replacing z by 4x/(n2 + 3) in (2.11), we obtain

∥
∥
∥
∥
f

(

−2x
n

)

+ f

(
2x
n

)∥
∥
∥
∥
≤ ϕ

(−2(n + 1)x
n2 + 3

,
2(n − 1)x
n2 + 3

,
4x

n2 + 3

)

(2.12)

for all x ∈ X. It follows from (2.10) and (2.12) that

∥
∥
∥
∥
f

(
2x
n

)

− 2f
(
2x
n

)∥
∥
∥
∥
≤ M

[∥
∥
∥
∥
f

(

−2x
n

)

+ 2f
(
x

n

)∥
∥
∥
∥
+
∥
∥
∥
∥
f

(

−2x
n

)

+ f

(
2x
n

)∥
∥
∥
∥

]

≤ M

[

ϕ

(
(n − 3)x
n2 + 3

,
(n + 3)x
n2 + 3

,
−2nx
n2 + 3

)

+ϕ
(−2(n + 1)x

n2 + 3
,
2(n − 1)x
n2 + 3

,
4x

n2 + 3

)]

(2.13)

for all x ∈ X. If we replace x by nx in (2.13), then we get that

∥
∥f(2x) − 2f(x)

∥
∥ ≤ M

[

ϕ

(

n(n − 3)x
n2 + 3

,
n(n + 3)x
n2 + 3

,
−2n2x

n2 + 3

)

+ϕ
(−2n(n + 1)x

n2 + 3
,
2n(n − 1)x

n2 + 3
,
4nx
n2 + 3

)]

.

(2.14)
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It follows from (2.14) that

∥
∥
∥
∥
∥

f
(

2lx
)

2l
− f(2mx)

2m

∥
∥
∥
∥
∥

p

≤
m−1∑

i=l

∥
∥
∥
∥

1
2i
f
(

2ix
)

− 1
2i+1

f
(

2i+1x
)
∥
∥
∥
∥

p

=
m−1∑

i=l

1
2ip

∥
∥
∥
∥
f
(

2ix
)

− 1
2
f
(

2i+1x
)
∥
∥
∥
∥

p

≤ Mp

2p
m−1∑

i=l

1
2ip

[

ϕ

(

n(n − 3)2ix
n2 + 3

,
n(n + 3)2ix

n2 + 3
,

(−2n2)2ix
n2 + 3

)p

+ϕ

(

−2n(n + 1)2ix
n2 + 3

,
2n(n − 1)2ix

n2 + 3
,
(4n)2ix
n2 + 3

)p]

(2.15)

for all nonnegative integers m and l with m > l ≥ 0 and x ∈ X. Since the right-hand side
of (2.15) tends to zero as l → ∞, by the convergence of the series (2.7), we obtain that the
sequence {f(2mx)/2m} is Cauchy for all x ∈ X. Because of the fact that Y is complete, it
follows that the sequence {f(2mx)/2m} converges in Y . Therefore, we can define a mapping
h : X → Y as

h(x) = lim
m→∞

f(2mx)
2m

, x ∈ X. (2.16)

Moreover, letting l = 0 and taking m → ∞ in (2.15), we get

∥
∥f(x) − h(x)

∥
∥ ≤ M

2

[

Φ

(

n(n − 3)x
n2 + 3

,
n(n + 3)x
n2 + 3

,
−2n2x

n2 + 3

)

+Φ
(−2n(n + 1)x

n2 + 3
,
2n(n − 1)x

n2 + 3
,
4nx
n2 + 3

)]1/p
(2.17)

for all x ∈ X.
It follows from (2.6) and (2.7) that

∥
∥
∥
∥
h

(
x − y

n
+ z

)

+ h

(
y − z

n
+ x

)

+ h

(
z − x

n
+ y

)∥
∥
∥
∥

p

= lim
m→∞

∥
∥
∥
∥

1
2m

{

f

(

2m
(
x − y

n
+ z

))

+ f

(

2m
(
y − z

n
+ x

))

+ f

(

2m
(
z − x

n
+ y

))}∥
∥
∥
∥

p

≤ lim
m→∞

{∥
∥
∥
∥

1
2m

f
(

2m
(

x + y + z
))
∥
∥
∥
∥

p

+
1

2mp
ϕ
(

2mx, 2my, 2mz
)p
}

=
∥
∥h
(

x + y + z
)∥
∥
p

(2.18)

for all x, y, z ∈ X. So the mapping h is additive.



Abstract and Applied Analysis 7

Next, let h′ : X → Y be another additive mapping satisfying (2.8). Then, we have

∥
∥h(x) − h′(x)

∥
∥
p

=
∥
∥
∥
∥

1
2k

h
(

2kx
)

− 1
2k

h′
(

2kx
)
∥
∥
∥
∥

p

≤ 1
2kp
(∥
∥
∥h
(

2kx
)

− f
(

2kx
)∥
∥
∥

p
+
∥
∥
∥f
(

2kx
)

− h′
(

2kx
)∥
∥
∥

p)

≤
∞∑

i=0

2Mp

2(i+k+1)p

[

ϕ

(

n(n − 3)2i+kx
n2 + 3

,
n(n + 3)2i+kx

n2 + 3
,

(−2n2)2i+kx
n2 + 3

)p

+ϕ

(

−2n(n + 1)2i+kx
n2 + 3

,
2n(n − 1)2i+kx

n2 + 3
,
(4n)2i+kx
n2 + 3

)p]

=
∞∑

i=k

2Mp

2(i+1)p

[

ϕ

(

n(n − 3)2ix
n2 + 3

,
n(n + 3)2ix

n2 + 3
,

(−2n2)2ix
n2 + 3

)p

+ϕ

(

−2n(n + 1)2ix
n2 + 3

,
2n(n − 1)2ix

n2 + 3
,
(4n)2ix
n2 + 3

)p]

(2.19)

for all k ∈ N and all x ∈ X. Taking the limit as k → ∞, we conclude that

h(x) = h′(x) (2.20)

for all x ∈ X. This completes the proof.

If we put ϕ(x, y, z) := θ(‖x‖r1‖y‖r2‖z‖r3) and ϕ(x, y, z) := θ1‖x‖r1 + θ2‖y‖r2 + θ3‖z‖r3 in
the following corollaries, respectively, then we lead to the desired results.

Corollary 2.3. Let ri > 0 for i = 1, 2, 3 with
∑3

i=1 ri < 1 and θ ≥ 0. If a mapping f : X → Y with
f(0) = 0 satisfies the following functional inequality

Df
(

x, y, z
) ≤ θ

(‖x‖r1∥∥y∥∥r2‖z‖r3) (2.21)

for all x, y, z ∈ X, then there exists a unique additive mapping h : X → Y such that

∥
∥f(x) − h(x)

∥
∥ ≤ Mθ‖x‖r

p
√
2p − 2rp

(∣
∣
∣
∣

n(n − 3)
n2 + 3

∣
∣
∣
∣

r1p
∣
∣
∣
∣

n(n + 3)
n2 + 3

∣
∣
∣
∣

r2p
∣
∣
∣
∣
∣

2n2

n2 + 3

∣
∣
∣
∣
∣

r3p

+
∣
∣
∣
∣

2n(n + 1)
n2 + 1

∣
∣
∣
∣

r1p
∣
∣
∣
∣

2n(n − 3)
n2 + 3

∣
∣
∣
∣

r2p
∣
∣
∣
∣

4n
n2 + 3

∣
∣
∣
∣

r3p
)1/p

(2.22)

for all x ∈ X, where r =
∑3

i=1 ri.
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Corollary 2.4. Let 0 < ri < 1 and θi ≥ 0 for i = 1, 2, 3. If a mapping f : X → Y with f(0) = 0
satisfies the following functional inequality

Df
(

x, y, z
) ≤ θ1‖x‖r1 + θ2

∥
∥y
∥
∥
r2 + θ3‖z‖r3 (2.23)

for all x, y, z ∈ X, then there exists a unique additive mapping h : X → Y such that

∥
∥f(x) − h(x)

∥
∥ ≤ M

[(∣
∣
∣
∣

n(n − 3)
n2 + 3

∣
∣
∣
∣

r1p

+
∣
∣
∣
∣

2n(n + 1)
n2 + 3

∣
∣
∣
∣

r1p)θ
p

1‖x‖r1p
2p − 2r1p

+
(∣
∣
∣
∣

n(n + 3)
n2 + 3

∣
∣
∣
∣

r2p

+
∣
∣
∣
∣

2n(n − 1)
n2 + 3

∣
∣
∣
∣

r2p)θ
p

2‖x‖r2p
2p − 2r2p

+

(∣
∣
∣
∣
∣

2n2

n2 + 3

∣
∣
∣
∣
∣

r3p

+
∣
∣
∣
∣

4n
n2 + 3

∣
∣
∣
∣

r3p
)

θ
p

3‖x‖r3p
2p − 2r3p

]1/p

(2.24)

for all x ∈ X.

Theorem 2.5. Suppose that a mapping f : X → Y satisfies the functional inequality

Df
(

x, y, z
) ≤ ϕ

(

x, y, z
)

(2.25)

for all x, y, z ∈ X, and the perturbing function ϕ : X3 → R
+ satisfies

Φ
(

x, y, z
)

:=
∞∑

i=0

2ipϕ
(

x

2i+1
,

y

2i+1y
,

z

2i+1

)p

< ∞ (2.26)

for all x, y, z ∈ X. Then, there exists a unique additive mapping h : X → Y defined by h(x) =
limk→∞2kf(x/2k) such that

∥
∥f(x) − h(x)

∥
∥ ≤ M

[

Φ

(

n(n − 3)x
n2 + 3

,
n(n + 3)x
n2 + 3

,
−2n2x

n2 + 3

)

+Φ
(−2n(n + 1)x

n2 + 3
,
2n(n − 1)x

n2 + 3
,
4nx
n2 + 3

)]1/p
(2.27)

for all x ∈ X.
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Proof. We note that f(0) = 0 since ϕ(0, 0, 0) = 0 by the convergence of (2.26). Now, if we
replace x by x/2 in (2.14),

∥
∥
∥f(x) − 2f

(x

2

)∥
∥
∥ ≤ M

[

ϕ

(

n(n − 3)x
2(n2 + 3)

,
n(n + 3)x
2(n2 + 3)

,
−n2x

(n2 + 3)

)

+ϕ
(−n(n + 1)x

n2 + 3
,
n(n − 1)x
n2 + 3

,
2nx
n2 + 3

)]
(2.28)

for all x ∈ X. Then, it follows from the last inequality that

∥
∥
∥f(x) − 2mf

( x

2m
)∥
∥
∥

p
≤ Mp

m−1∑

i=0

2ip
[

ϕ

(

n(n − 3)x
2i+1(n2 + 3)

,
n(n + 3)x
2i+1(n2 + 3)

,
−2n2x

2i+1(n2 + 3)

)p

+ϕ
(−2n(n + 1)x

2i+i(n2 + 3)
,
2n(n − 1)x
2i+1(n2 + 3)

,
4nx

2i+1(n2 + 3)

)p
]

(2.29)

for all nonnegative integerm and all x ∈ X. The remaining proof is similar to the correspond-
ing part of Theorem 2.2. This completes the proof.

If we put ϕ(x, y, z) := θ(‖x‖r1‖y‖r2‖z‖r3) and ϕ(x, y, z) := θ1‖x‖r1 + θ2‖y‖r2 + θ3‖z‖r3 in
the following corollaries, respectively, then we lead to the desired results.

Corollary 2.6. Let ri > 0 for i = 1, 2, 3 with
∑3

i=1 ri > 1 and θ ≥ 0. If a mapping f : X → Y satisfies
the following functional inequality

Df
(

x, y, z
) ≤ θ

(‖x‖r1∥∥y∥∥r2‖z‖r3) (2.30)

for all x, y, z ∈ X, then there exists a unique additive mapping h : X → Y such that

∥
∥f(x) − h(x)

∥
∥ ≤ Mθ‖x‖r

p
√
2rp − 2p

(∣
∣
∣
∣

n(n − 3)
n2 + 3

∣
∣
∣
∣

r1p
∣
∣
∣
∣

n(n + 3)
n2 + 3

∣
∣
∣
∣

r2p
∣
∣
∣
∣
∣

2n2

n2 + 3

∣
∣
∣
∣
∣

r3p

+
∣
∣
∣
∣

2n(n + 1)
n2 + 1

∣
∣
∣
∣

r1p
∣
∣
∣
∣

2n(n − 3)
n2 + 3

∣
∣
∣
∣

r2p
∣
∣
∣
∣

4n
n2 + 3

∣
∣
∣
∣

r3p
)1/p

(2.31)

for all x ∈ X, where r =
∑3

i=1 ri.
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Corollary 2.7. Let ri > 1 and θi ≥ 0 for i = 1, 2, 3. If a mapping f : X → Y satisfies the following
functional inequality

Df
(

x, y, z
) ≤ θ1‖x‖r1 + θ2

∥
∥y
∥
∥
r2 + θ3‖z‖r3 (2.32)

for all x, y, z ∈ X, then there exists a unique additive mapping h : X → Y such that

∥
∥f(x) − h(x)

∥
∥ ≤ M

[(∣
∣
∣
∣

n(n − 3)
n2 + 3

∣
∣
∣
∣

r1p

+
∣
∣
∣
∣

2n(n + 1)
n2 + 3

∣
∣
∣
∣

r1p)θ
p

1‖x‖r1p
2r1p−2p

+
(∣
∣
∣
∣

n(n + 3)
n2 + 3

∣
∣
∣
∣

r2p

+
∣
∣
∣
∣

2n(n − 1)
n2 + 3

∣
∣
∣
∣

r2p)θ
p

2‖x‖r2p
2r2p − 2p

+

(∣
∣
∣
∣
∣

2n2

n2 + 3

∣
∣
∣
∣
∣

r3p

+
∣
∣
∣
∣

4n
n2 + 3

∣
∣
∣
∣

r3p
)

θ
p

3‖x‖r3p
2r3p − 2p

]1/p

(2.33)

for all x ∈ X.

The following is a simple example that the additive functional inequalityDf(x, y, z) ≤
θ(‖x‖ + ‖y‖ + ‖z‖) is not stable for the singular case r1, r2, r3 = 1 in Corollaries 2.4 and 2.7.

Example 2.8. Fix θ ≥ 0 and put μ := θ/8. Let φ : R → R be defined by

φ(x) =

⎧

⎪⎪⎪⎪⎪
⎨

⎪⎪⎪⎪⎪
⎩

μ for x ∈ [1,∞),

μx for x ∈ (−1, 1),

−μ for x ∈ (−∞,−1],

(2.34)

and define f : R → R by

f(x) =
∞∑

i=0

φ
(

2ix
)

2i
, ∀x ∈ R, (2.35)

which can be found in [9]. It follows from the same argument as in the example of [9] that f
satisfies the functional inequality

∣
∣
∣
∣

∣
∣
∣
∣
f

(
x − y

n
+ z

)

+ f

(
y − z

n
+ x

)

+ f

(
z − x

n
+ y

)∣
∣
∣
∣
− ∣∣f(x + y + z

)∣
∣

∣
∣
∣
∣

≤ 8μ
(|x| + ∣∣y∣∣ + |z|)

(2.36)



Abstract and Applied Analysis 11

for all x, y, z ∈ R. In fact, if x = y = z = 0, then (2.36) is trivially fulfilled. Next, if 0 <
|x| + |y| + |z| < 1, then there exists an N ∈ N such that

1
2N

≤ |x| + ∣∣y∣∣ + |z| < 1
2N−1 , (2.37)

which implies that

2i
(
x − y

n
+ z

)

, 2i
(
y − z

n
+ x

)

, 2i
(
z − x

n
+ y

)

, 2i
(

x + y + z
) ∈ (−1, 1),

∀i ∈ {0, . . . ,N − 1}.
(2.38)

Thus, we see that

φ

(

2i
(
x − y

n
+ z

))

+ φ

(

2i
(
y − z

n
+ x

))

+ φ

(

2i
(
z − x

n
+ y

))

− φ
(

2i
(

x + y + z
))

= 0

(2.39)

for all i ∈ {0, . . . ,N − 1}. As a result, we infer that

∣
∣f
(((

x − y
)

/n
)

+ z
)

+ f
(((

y − z
)

/n
)

+ x
)

+ f
(

((z − x)/n) + y
) − f

(

x + y + z
)∣
∣

|x| + ∣∣y∣∣ + |z|

≤
∞∑

i=N

∣
∣φ
(

2i
(((

x−y)/n)+z))+φ(2i(((y−z)/n)+x))+φ(2i(((z−x)/n)+y))−φ(2i(x+y+z))∣∣
2i
(|x| + ∣∣y∣∣ + |z|)

≤ 8μ
(2.40)

for all x, y, z ∈ R. Finally, if |x| + |y| + |z| ≥ 1, then one has by use of boundedness of f

∣
∣f
(((

x − y
)

/n
)

+ z
)

+ f
(((

y − z
)

/n
)

+ x
)

+ f
(

((z − x)/n) + y
) − f

(

x + y + z
)∣
∣

|x| + ∣∣y∣∣ + |z| ≤ 8μ

(2.41)

for all x, y, z ∈ R. Therefore, f satisfies the functional inequality (2.36) and so

Df
(

x, y, z
) ≤ 8μ

(|x| + ∣∣y∣∣ + |z|) (2.42)

for all x, y, z ∈ R. However, there do not exist an additive function T : R → R and a constant
c > 0 such that

∣
∣f(x) − T(x)

∣
∣ ≤ c|x| ∀x ∈ R. (2.43)
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Remark 2.9. The stability problem on the singular case r = 1 in Corollaries 2.3 and 2.6 is not
easy and it remains with us unsolved for providing a counterexample on the singular case
r = 1.

3. Alternative Generalized Hyers-Ulam Stability of (1.8)

From now on, we investigate the generalized Hyers-Ulam stability of the functional inequal-
ity (1.8) using the contractive property of perturbing term of the inequality (1.8).

Theorem 3.1. Suppose that a mapping f : X → Y with f(0) = 0 satisfies the functional inequality

Df
(

x, y, z
) ≤ ϕ

(

x, y, z
)

(3.1)

for all x, y, z ∈ X and there exists a constant L with 0 < L < 1 for which the perturbing function
ϕ : X3 → R

+ satisfies

ϕ
(

2x, 2y, 2z
) ≤ 2Lϕ

(

x, y, z
)

(3.2)

for all x, y, z ∈ X. Then, there exists a unique additive mapping h : X → Y given by h(x) =
limk→∞(1/2k)f(2kx) such that

∥
∥f(x) − h(x)

∥
∥ ≤ M

2 p
√
1 − Lp

[

ϕ

(

n(n − 3)x
n2 + 3

,
n(n + 3)x
n2 + 3

,
−2n2x

n2 + 3

)p

+ϕ
(−2n(n + 1)x

n2 + 3
,
2n(n − 1)x

n2 + 3
,
4nx
n2 + 3

)p
]1/p

(3.3)

for all x ∈ X.

Proof. It follows from (2.15) and (3.2) that

∥
∥
∥
∥
∥

f
(

2lx
)

2l
− f(2mx)

2m

∥
∥
∥
∥
∥

p

≤ Mp

2p
m−1∑

i=l

1
2ip

[

ϕ

(

n(n − 3)2ix
n2 + 3

,
n(n + 3)2ix

n2 + 3
,

(−2n2)2ix
n2 + 3

)p

+ϕ

(

−2n(n + 1)2ix
n2 + 3

,
2n(n − 1)2ix

n2 + 3
,
(4n)2ix
n2 + 3

)p]

≤ Mp

2p
m−1∑

i=l

Lip

[

ϕ

(

n(n − 3)x
n2 + 3

,
n(n + 3)x
n2 + 3

,

(−2n2)x

n2 + 3

)p

+ϕ
(−2n(n + 1)x

n2 + 3
,
2n(n − 1)x

n2 + 3
,
(4n)x
n2 + 3

)p
]

(3.4)
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for all nonnegative integers m and l with m > l ≥ 0 and x ∈ X. Since the sequence
{f(2mx)/2m} is Cauchy for all x ∈ X, we can define a mapping h : X → Y by

h(x) = lim
m→∞

f(2mx)
2m

, x ∈ X. (3.5)

Moreover, letting l = 0 and m → ∞ in the last inequality yields the approximation (3.3).
The remaining proof is similar to the corresponding part of Theorem 2.2. This

completes the proof.

Corollary 3.2. Let ξ : [0,∞) → [0,∞) be a nontrivial function satisfying

ξ(2t) ≤ ξ(2)ξ(t), (t ≥ 0), 0 < ξ(2) < 2. (3.6)

If f : X → Y with f(0) = 0 is a mapping satisfying the following functional inequality

Df
(

x, y, z
) ≤ θ

{

ξ(‖x‖) + ξ
(∥
∥y
∥
∥
)

+ ξ(‖z‖)} (3.7)

for all x, y, z ∈ X and for some θ ≥ 0, then there exists a unique additive mapping h : X → Y such
that

∥
∥f(x) − h(x)

∥
∥

≤ Mθ
p
√

2p − ξ(2)p

[

ξ

(∣
∣
∣
∣

n(n − 3)
n2 + 3

∣
∣
∣
∣
‖x‖
)p

+ ξ

(∣
∣
∣
∣

n(n + 3)
n2 + 3

∣
∣
∣
∣
‖x‖
)p

+ ξ

(∣
∣
∣
∣
∣

2n2

n2 + 3

∣
∣
∣
∣
∣
‖x‖
)p

+ξ
(∣
∣
∣
∣

2n(n + 1)
n2 + 3

∣
∣
∣
∣
‖x‖
)p

+ ξ

(∣
∣
∣
∣

2n(n − 1)
n2 + 3

∣
∣
∣
∣
‖x‖
)p

+ ξ

(∣
∣
∣
∣

4n
n2 + 3

∣
∣
∣
∣
‖x‖
)p]1/p

(3.8)

for all x ∈ X.

Proof. Letting ϕ(x, y, z) = θ{ξ(‖x‖) + ξ(‖y‖) + ξ(‖z‖)} and applying Theorem 3.1 with L :=
ξ(2)/2, we obtain the desired result.

Theorem 3.3. Suppose that a mapping f : X → Y satisfies the functional inequality

Df
(

x, y, z
) ≤ ϕ

(

x, y, z
)

(3.9)

for all x, y, z ∈ X and there exists a constant L with 0 < L < 1 for which the perturbing function
ϕ : X3 → R

+ satisfies

ϕ
(x

2
,
y

2
,
z

2

)

≤ L

2
ϕ
(

x, y, z
)

(3.10)
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for all x, y, z ∈ X. Then, there exists a unique additive mapping h : X → Y defined by h(x) =
limk→∞ 2kf(x/2k) such that

∥
∥f(x) − h(x)

∥
∥ ≤ ML

2 p
√
1 − Lp

[

ϕ

(

n(n − 3)x
n2 + 3

,
n(n + 3)x
n2 + 3

,
−2n2x

n2 + 3

)p

+ϕ
(−2n(n + 1)x

n2 + 3
,
2n(n − 1)x

n2 + 3
,
4nx
n2 + 3

)p
]1/p

(3.11)

for all x ∈ X.

Proof. We observe that f(0) = 0 because ϕ(0, 0, 0) = 0, which follows from the condition
ϕ(0, 0, 0) ≤ L/2 ϕ(0, 0, 0). It follows from (2.29) and (3.10) that

∥
∥
∥f(x) − 2mf

( x

2m
)∥
∥
∥

p
≤ Mp

m−1∑

i=0

2ip
[

ϕ

(

n(n − 3)x
2i+1(n2 + 3)

,
n(n + 3)x
2i+1(n2 + 3)

,
−2n2x

2i+1(n2 + 3)

)p

+ϕ
(−2n(n + 1)x

2i+i(n2 + 3)
,
2n(n − 1)x
2i+1(n2 + 3)

,
4nx

2i+1(n2 + 3)

)p
]

≤ Mp

2p
m−1∑

i=0

L(i+1)p

[

ϕ

(

n(n − 3)x
(n2 + 3)

,
n(n + 2)x
(n2 + 3)

,
−2n2x

(n2 + 3)

)p

+ϕ
(−2n(n + 1)x

(n2 + 3)
,
2n(n − 1)x
(n2 + 3)

,
4nx

(n2 + 3)

)p
]

(3.12)

for all nonnegative integer m and all x ∈ X.
The remaining proof is similar to the corresponding part of Theorem 2.2. This

completes the proof.

Corollary 3.4. Let ξ : [0,∞) → [0,∞) be a nontrivial function satisfying

ξ

(
t

2

)

≤ ξ

(
1
2

)

ξ(t), (t ≥ 0), 0 < ξ

(
1
2

)

<
1
2
. (3.13)

If f : X → Y is a mapping satisfying the following functional inequality

Df
(

x, y, z
) ≤ θ

{

ξ(‖x‖) + ξ
(∥
∥y
∥
∥
)

+ ξ(‖z‖)} (3.14)
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for all x, y, z ∈ X and for some θ ≥ 0, then there exists a unique additive mapping h : X → Y such
that

∥
∥f(x) − h(x)

∥
∥

≤ Mθξ(1/2)
p
√

1 − 2pξ(1/2)p

[

ξ

(∣
∣
∣
∣

n(n − 3)
n2 + 3

∣
∣
∣
∣
‖x‖
)p

+ ξ

(∣
∣
∣
∣

n(n + 3)
n2 + 3

∣
∣
∣
∣
‖x‖
)p

+ ξ

(∣
∣
∣
∣
∣

2n2

n2 + 3

∣
∣
∣
∣
∣
‖x‖
)p

+ξ
(∣
∣
∣
∣

2n(n + 1)
n2 + 3

∣
∣
∣
∣
‖x‖
)p

+ ξ

(∣
∣
∣
∣

2n(n − 1)
n2 + 3

∣
∣
∣
∣
‖x‖
)p

+ ξ

(∣
∣
∣
∣

4n
n2 + 3

∣
∣
∣
∣
‖x‖
)p
]1/p

(3.15)

for all x ∈ X.

Proof. Letting ϕ(x, y, z) = θ{ξ(‖x‖) + ξ(‖y‖) + ξ(‖z‖)} and applying Theorem 3.3 with L :=
2ξ(1/2), we lead to the approximation.
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