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We investigate the following regularized gradient projection algorithm xn+1 = Pc(I − γn(∇f +
αnI))xn, n ≥ 0. Under some different control conditions, we prove that this gradient projection
algorithm strongly converges to the minimum norm solution of the minimization problem
minx∈Cf(x).

1. Introduction

Let C be a nonempty closed and convex subset of a real Hilbert spaceH. Let f : H → R be a
real-valued convex function.

Consider the following constrained convex minimization problem:

min
x∈C

f(x). (1.1)

Assume that (1.1) is consistent, that is, it has a solution and we use Ω to denote its solution
set. If f is Fréchet differentiable, then x∗ ∈ C solves (1.1) if and only if x∗ ∈ C satisfies the
following optimality condition:

〈∇f(x∗), x − x∗〉 ≥ 0, ∀x ∈ C, (1.2)
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where ∇f denotes the gradient of f . Note that (1.2) can be rewritten as

〈
x∗ − (

x∗ − ∇f(x∗)
)
, x − x∗〉 ≥ 0, ∀x ∈ C. (1.3)

This shows that the minimization (1.1) is equivalent to the fixed point problem

PC

(
x∗ − γ∇f(x∗)

)
= x∗, (1.4)

where γ > 0 is any constant and PC is the nearest point projection fromH ontoC. By using this
relationship, the gradient-projection algorithm is usually applied to solve the minimization
problem (1.1). This algorithm generates a sequence {xn} through the recursion:

xn+1 = PC

(
xn − γn∇f(xn)

)
, n ≥ 0, (1.5)

where the initial guess x0 ∈ C is chosen arbitrarily and {γn} is a sequence of stepsizes which
may be chosen in different ways. The gradient-projection algorithm (1.5) is a powerful tool
for solving constrained convex optimization problems and has well been studied in the case
of constant stepsizes γn = γ for all n. The reader can refer to [1–9] and the references therein.
It is known [3] that if f has a Lipschitz continuous and strongly monotone gradient, then
the sequence {xn} can be strongly convergent to a minimizer of f in C. If the gradient of f
is only assumed to be Lipschitz continuous, then {xn} can only be weakly convergent if H
is infinite dimensional. In order to get the strong convergence, Xu [10] studied the following
regularized method:

xn+1 = PC

(
I − γn

(∇f + αnI
))
xn, n ≥ 0, (1.6)

where the sequences {θn} ⊂ (0, 1) and {γn} ⊂ (0,∞) satisfy the following conditions:

(1) 0 < γn ≤ αn/(L + αn)
2 for all n;

(2) limn→∞αn = 0;

(3)
∑∞

n=0 αnγn = ∞;

(4) limn→∞(|γn − γn−1| + |αnγn − αn−1γn−1|/(αnγn)
2) = 0.

Xu [10] proved that the sequence {xn} converges strongly to a minimizer of (1.1).
Motivated by Xu’s work, in the present paper, we further investigate the gradient

projection method (1.6). Under some different control conditions, we prove that this gradient
projection algorithm strongly converges to the minimum norm solution of the minimization
problem (1.1).

2. Preliminaries

Let C be a nonempty closed convex subset of a real Hilbert space H. A mapping T : C → C
is called nonexpansive if

∥∥Tx − Ty
∥∥ ≤ ∥∥x − y

∥∥, ∀x, y ∈ C. (2.1)
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We will use Fix(T) to denote the set of fixed points of T , that is, Fix(T) = {x ∈ C : x = Tx}.
A mapping T : C → C is said to be ν-inverse strongly monotone (ν-ism), if there exists a
constant ν > 0 such that

〈
x − y, Tx − Ty

〉 ≥ ν
∥
∥Tx − Ty

∥
∥2

, ∀x, y ∈ C. (2.2)

Recall that the (nearest point or metric) projection from H onto C, denoted PC, assigns, to
each x ∈ H, the unique point PC(x) ∈ C with the property

‖x − PC(x)‖ = inf
{∥∥x − y

∥
∥ : y ∈ C

}
. (2.3)

It is well known that the metric projection PC ofH onto C has the following basic properties:

(a) ‖PC(x) − PC(y)‖ ≤ ‖x − y‖ for all x, y ∈ H;

(b) 〈x − y, PC(x) − PC(y)〉 ≥ ‖PC(x) − PC(y)‖2 for every x, y ∈ H;

(c) 〈x − PC(x), y − PC(x)〉 ≤ 0 for all x ∈ H, y ∈ C.

Next we adopt the following notation:

(i) xn → x means that xn converges strongly to x;

(ii) xn ⇀ x means that xn converges weakly to x;

(iii) ωw(xn) := {x : ∃xnj ⇀ x} is the weak ω-limit set of the sequence {xn}.

Lemma 2.1 (see [11]). Given T : H → H and letting V = I − T be the complement of T , given also
S : H → H,

(a) T is nonexpansive if and only if V is (1/2)-ism;

(b) if S is ν-ism, then, for γ > 0, γS is (ν/γ)-ism;

(c) S is averaged if and only if the complement I − S is ν-ism for some ν > 1/2.

Lemma 2.2 (see [12], (demiclosedness principle)). LetC be a closed and convex subset of a Hilbert
space H, and let T : C → C be a nonexpansive mapping with Fix(T)/= ∅. If {xn} is a sequence in C
weakly converging to x and if {(I − T)xn} converges strongly to y, then

(I − T)x = y. (2.4)

In particular, if y = 0, then x ∈ Fix(T).

Lemma 2.3 (see [13]). Let {xn} and {yn} be bounded sequences in a Banach space X, and let {βn}
be a sequence in [0, 1] with

0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1. (2.5)

Suppose that

xn+1 =
(
1 − βn

)
yn + βnxn (2.6)
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for all n ≥ 0 and

lim sup
n→∞

(∥∥yn+1 − yn

∥
∥ − ‖xn+1 − xn‖

) ≤ 0. (2.7)

Then, limn→∞‖yn − xn‖ = 0.

Lemma 2.4 (see [14]). Assume that {an} is a sequence of nonnegative real numbers such that

an+1 ≤
(
1 − γn

)
an + δn, (2.8)

where {γn} is a sequence in (0, 1) and {δn} is a sequence such that

(1)
∑∞

n=1 γn = ∞;

(2) lim supn→∞(δn/γn) ≤ 0 or
∑∞

n=1 |δn| < ∞.

Then, limn→∞an = 0.

3. Main Result

In this section, we will state and prove our main result.

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert spaceH. Let f : C → R be
a real-valued Fréchet differentiable convex function. AssumeΩ/= ∅. Assume that the gradient∇f is L-
Lipschitzian. Let {xn} be a sequence generated by the following hybrid gradient projection algorithm:

xn+1 = PC

(
I − γn

(∇f + αnI
))
xn, n ≥ 0, (3.1)

where the sequences {θn} ⊂ (0, 1) and {γn} ⊂ (0, 2/(L + 2αn)) satisfy the following conditions:

(1) limn→∞αn = 0 and
∑∞

n=0 αn = ∞;

(2) 0 < lim infn→∞γn ≤ lim supn→∞γn < 2/L and limn→∞(γn+1 − γn) = 0.

Then, the sequence {xn} generated by (3.1) converges to a minimizer x̂ of (1.1).

Proof. Note that the Lipschitz condition implies that the gradient ∇f is (1/L)-ism [10]. Then,
we have

∥∥PC

(
I − γ

(∇f + αI
))
x − PC

(
I − γ

(∇f + αI
))
y
∥∥2

≤ ∥∥(I − γ
(∇f + αI

))
x − (

I − γ
(∇f + αI

))
y
∥∥2

=
∥∥(1 − αγ

)(
x − y

) − γ
(∇f(x) − ∇f

(
y
))∥∥2

=
(
1 − αγ

)2∥∥x − y
∥∥2 − 2

(
1 − αγ

)
γ
〈
x − y,∇f(x) − ∇f

(
y
)〉

+ γ2
∥∥∇f(x) − ∇f

(
y
)∥∥2

≤ (
1 − αγ

)2∥∥x − y
∥∥2 − 2

(
1 − αγ

)
γ
1
L

∥∥∇f(x) − ∇f
(
y
)∥∥2 + γ2

∥∥∇f(x) − ∇f(y)
∥∥2

.

(3.2)
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If γ ∈ [0, 2/(L + 2α)], then 2(1 − αγ)γ(1/L) ≥ γ2. It follows that

∥
∥PC

(
I − γ

(∇f + αI
))
x − PC

(
I − γ

(∇f + αI
))
y
∥
∥2 ≤ (

1 − αγ
)2∥∥x − y

∥
∥2

. (3.3)

Thus,

∥
∥PC

(
I − γ

(∇f + αI
))
x − PC

(
I − γ

(∇f + αI
))
y
∥
∥ ≤ (

1 − αγ
)∥∥x − y

∥
∥, (3.4)

for all x, y ∈ C.
Take any x∗ ∈ S. Since x∗ ∈ C solves the minimization problem (1.1) if and only if x∗

solves the fixed-point equation x∗ = PC(I − γ∇f)x∗ for any fixed positive number γ , so we
have x∗ = PC(I − γn∇f)x∗ for all n ≥ 0. From (3.1) and (3.4), we get

‖xn+1 − x∗‖ =
∥∥PC

(
I − γn

(∇f + αnI
))
xn − PC

(
I − γn∇f

)
x∗∥∥

=
∥∥PC

(
I − γn

(∇f + αnI
))
xn − PC

(
I − γn

(∇f + αnI
))
x∗∥∥

+
∥∥PC

(
I − γn

(∇f + αnI
))
x∗ − PC

(
I − γn∇f

)
x∗∥∥

≤ (
1 − αnγn

)‖xn − x∗‖ + αnγn‖x∗‖
≤ max{‖xn − x∗‖, ‖x∗‖}.

(3.5)

Thus, we deduce by induction that

‖xn − x∗‖ ≤ max{‖x0 − x∗‖, ‖x∗‖}. (3.6)

This indicates that the sequence {xn} is bounded.
Since the gradient ∇f is (1/L)-ism, γ∇f is (1/γL)-ism. So by Lemma 2.1, I − γn∇f

is (γnL/2)-averaged; that is, I − γn∇f = (1 − (γnL/2))I + (γnL/2)T for some nonexpansive
mapping T . Since PC is (1/2)-averaged, PC = (I + S)/2 for some nonexpansive mapping S.
Then, we can rewrite xn+1 as

xn+1 =
1
2
(
I − γn

(∇f + αnI
))
xn +

1
2
S
(
I − γn

(∇f + αnI
))
xn

=
1
2
(
xn − γn∇f(xn)

) − 1
2
γnαnxn +

1
2
S
(
I − γn

(∇f + αnI
))
xn

=
2 − γnL

4
xn +

γnL

4
Txn − 1

2
γnαnxn +

1
2
S
(
I − γn

(∇f + αnI
))
xn

=
2 − γnL

4
xn +

2 + γnL

4
yn,

(3.7)

where

yn =
4

2 + γnL

(
γnL

4
Txn − 1

2
γnαnxn +

1
2
S
(
I − γn

(∇f + αnI
))
xn

)
. (3.8)
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It follows that

‖yn+1 − yn‖

=
∥
∥
∥
∥

4
2 + γn+1L

(
γn+1L

4
Txn+1 − 1

2
γn+1αn+1xn+1 +

1
2
S
(
I − γn+1

(∇f + αn+1I
))
xn+1

)

− 4
2 + γnL

(
γnL

4
Txn − 1

2
γnαnxn +

1
2
S
(
I − γn

(∇f + αnI
))
xn

)∥
∥
∥
∥

≤ 4
2 + γn+1L

∥
∥
∥
∥

(
γn+1L

4
Txn+1 − 1

2
γn+1αn+1xn+1 +

1
2
S
(
I − γn+1

(∇f + αn+1I
))
xn+1

)

−
(
γnL

4
Txn − 1

2
γnαnxn +

1
2
S
(
I − γn

(∇f + αnI
))
xn

)∥
∥
∥
∥

+
∣
∣∣∣

4
2 + γn+1L

− 4
2 + γnL

∣
∣∣∣

∥
∥∥∥
γnL

4
Txn − 1

2
γnαnxn +

1
2
S
(
I − γn

(∇f + αnI
))
xn

∥
∥∥∥

≤ 4
2 + γn+1L

(∥∥∥∥
γn+1L

4
Txn+1 −

γnL

4
Txn

∥∥∥∥ +
1
2
γn+1αn+1‖xn+1‖ + 1

2
γnαn‖xn‖

)

+
2

2 + γn+1L

∥∥(I − γn+1
(∇f + αn+1I

))
xn+1 −

(
I − γn

(∇f + αnI
))
xn

∥∥

+
∣∣∣∣

4
2 + γn+1L

− 4
2 + γnL

∣∣∣∣

∥∥∥∥
γnL

4
Txn − 1

2
γnαnxn +

1
2
S
(
I − γn

(∇f + αnI
))
xn

∥∥∥∥.

(3.9)

Now we choose a constant M such that

sup
n

{
‖xn‖, L‖Txn‖,

∥∥∇f(xn)
∥∥,

∥∥∥∥
γnL

4
Txn − 1

2
γnαnxn +

1
2
S
(
I − γn

(∇f + αnI
))
xn

∥∥∥∥

}
≤ M.

(3.10)

We have the following estimates:

∥∥∥∥
γn+1L

4
Txn+1 −

γnL

4
Txn

∥∥∥∥ =
∥∥∥∥
γn+1L

4
(Txn+1 − Txn) +

(
γn+1L

4
− γnL

4

)
Txn

∥∥∥∥

≤ γn+1L

4
‖Txn+1 − Txn‖ +

∣∣γn+1 − γn
∣∣‖Txn‖

4
≤ γn+1L

4
‖xn+1 − xn‖ +

∣∣γn+1 − γn
∣∣M,

∥∥(I − γn+1
(∇f + αn+1I

))
xn+1 −

(
I − γn

(∇f + αnI
))
xn

∥∥

≤ ∥∥(I − γn+1∇f
)
xn+1 −

(
I − γn+1∇f

)
xn

∥∥ +
∣∣γn+1 − γn

∣∣∥∥∇f(xn)
∥∥

+γn+1αn+1‖xn+1‖ + γnαn‖xn‖
≤ ‖xn+1 − xn‖ +

(∣∣γn+1 − γn
∣∣ + γn+1αn+1 + γnαn

)
M.

(3.11)
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Thus, we deduce

∥
∥yn+1 − yn

∥
∥ ≤ 4

2 + γn+1L

(
γn+1L

4
‖xn+1 − xn‖ +

∣
∣γn+1 − γn

∣
∣M +

(
γn+1αn+1 + γnαn

)
M

)

+
2

2 + γn+1L

(‖xn+1 − xn‖ +
(∣∣γn+1 − γn

∣
∣ + γn+1αn+1 + γnαn

)
M

)

+
∣
∣
∣
∣

4
2 + γn+1L

− 4
2 + γnL

∣
∣
∣
∣M

≤ ‖xn+1 − xn‖ + 6
2 + γn+1L

(∣∣γn+1 − γn
∣
∣ + γn+1αn+1 + γnαn

)
M

+
4L

(
2 + γn+1L

)(
2 + γnL

)
∣
∣γn+1 − γn

∣
∣M.

(3.12)

Note that αn → 0 and γn+1 − γn → 0. Hence, by Lemma 2.3, we get

lim sup
n→∞

(∥∥yn+1 − yn

∥∥ − ‖xn+1 − xn‖
) ≤ 0. (3.13)

It follows that

lim
n→∞

∥∥yn − xn

∥∥ = 0. (3.14)

Consequently,

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

2 + γnL

4
‖yn − xn‖ = 0. (3.15)

Now we show that the weak limit set ωw(xn) ⊂ Ω. Choose any x̃ ∈ ωw(xn). Since {xn} is
bounded, there must exist a subsequence {xnj} of {xn} such that xnj ⇀ x̃. At the same time,
the real number sequence {γnj} is bounded. Thus, there exists a subsequence {γnji

} of {γnj}
which converges to γ . Without loss of generality, we may assume that γnj → γ . Note that 0 <
lim infn→∞γn ≤ lim supn→∞γn < 2/L. So, γ ∈ (0, 2/L); that is, γnj → γ ∈ (0, 2/L) as j → ∞.
Next, we only need to show that x̃ ∈ Ω. First, from (3.15) we have that ‖xnj+1 − xnj‖ → 0.
Then, we have

∥∥∥xnj − PC

(
I − γ∇f

)
xnj

∥∥∥ ≤
∥∥∥xnj − xnj+1

∥∥∥ +
∥∥∥xnj+1 − PC

(
I − γnj∇f

)
xnj

∥∥∥

+
∥∥∥PC

(
I − γnj∇f

)
xnj − PC

(
I − γ∇f

)
xnj

∥∥∥

=
∥∥∥PC

(
I − γnj

(
∇f + αnj I

))
xnj − PC

(
I − γnj∇f

)
xnj

∥∥∥

+
∥∥∥PC

(
I − γnj∇f

)
xnj − PC

(
I − γ∇f

)
xnj

∥∥∥ +
∥∥∥xnj − xnj+1

∥∥∥

≤ αnj γnj

∥∥∥xnj

∥∥∥ +
∣∣∣γnj − γ

∣∣∣
∥∥∥∇f

(
xnj

)∥∥∥ +
∥∥∥xnj − xnj+1

∥∥∥

−→ 0.

(3.16)
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Since γ ∈ (0, 2/L), PC(I − γ∇f) is nonexpansive. It then follows from Lemma 2.2
(demiclosedness principle) that x̃ ∈ Fix(PC(I − γ∇f)). Hence, x̃ ∈ Ω because of Ω =
Fix(PC(I − γ∇f)). So, ωw(xn) ⊂ Ω.

Finally, we prove that xn → x̂, where x̂ is the minimum norm solution of (1.1). First,
we show that lim supn→∞〈x̂, xn − x̂〉 ≥ 0. Observe that there exists a subsequence {xnj} of
{xn} satisfying

lim sup
n→∞

〈x̂, xn − x̂〉 = lim
j→∞

〈
x̂, xnj − x̂

〉
. (3.17)

Since {xnj} is bounded, there exists a subsequence {xnji
} of {xnj} such that xnji

⇀ x̃. Without
loss of generality, we assume that xnj ⇀ x̃. Then, we obtain

lim sup
n→∞

〈x̂, xn − x̂〉 = lim
j→∞

〈
x̂, xnj − x̂

〉
= 〈x̂, x̃ − x̂〉 ≥ 0. (3.18)

Since γn < 2/(L + 2αn), γn/(1 − αnγn) < 2/L. So, I − (γn/(1 − αnγn))∇f is nonexpansive. By
using the property (b) of PC, we have

‖xn+1 − x̂‖2 = ∥∥PC

(
I − γn

(∇f + αnI
))
xn − PC

(
x̂ − γn∇f(x̂)

)∥∥2

≤ 〈(
I − γn

(∇f + αnI
))
xn −

(
x̂ − γn∇f(x̂)

)
, xn+1 − x̂

〉

=
(
1 − αnγn

)
〈(

I − γn
1 − αnγn

∇f

)
xn −

(
I − γn

1 − αnγn
∇f

)
x̂, xn+1 − x̂

〉

− αnγn〈x̂, xn+1 − x̂〉

≤ (
1 − αnγn

)
∥∥∥∥

(
I − γn

1 − αnγn
∇f

)
xn −

(
I − γn

1 − αnγn
∇f

)
x̂

∥∥∥∥‖xn+1 − x̂‖

− αnγn〈x̂, xn+1 − x̂〉
≤ (

1 − αnγn
)‖xn − x̂‖‖xn+1 − x̂‖ − αnγn〈x̂, xn+1 − x̂〉

≤ 1 − αnγn
2

‖xn − x̂‖2 + 1
2
‖xn+1 − x̂‖2 − αnγn〈x̂, xn+1 − x̂〉.

(3.19)

It follows that

‖xn+1 − x̂‖2 ≤ (
1 − αnγn

)‖xn − x̂‖2 + αnγn〈−x̂, xn+1 − x̂〉. (3.20)

From Lemma 2.4, (3.18) and (3.20), we deduce that xn → x̂. This completes the proof.

Remark 3.2. We obtain the strong convergence of the regularized gradient projection method
(3.1) under some different control conditions.

Remark 3.3. From the proof of result, we observe that our algorithm (3.1) converges to a
special solution x̂ of the minimization (1.1). As a matter of fact, this special solution x̂ is
the minimum-norm solution of the minimization (1.1). Finding the minimum-norm solution
of practical problem is an interesting work due to its applications. A typical example is the
least-squares solution to the constrained linear inverse problem; see, for example, [15]. For
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some related works on the minimum-norm solution and the minimization problems, please
see [16–22].
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