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This paper centres on the application of the new piecewise successive linearization method
(PSLM) in solving the chaotic and nonchaotic Chen system. Numerical simulations are presented
graphically and comparison is made between the PSLM and Runge-Kutta-based methods. The
work shows that the proposed method provides good accuracy and can be easily extended to
other dynamical systems including those that are chaotic in nature.

1. Introduction

In this paper, we consider the Chen dynamical system [1], which is a three-dimensional
system of ordinary differential equations with quadratic nonlinearities, defined as

dx

dt
= a
(
y − x

)
,

dy

dt
= (c − a)x − xz + cy,

dz

dt
= xy − bz,

(1.1)
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where x, y, z are dependent variables and a, b, c are positive constants. The Chen system
(1.1) does not admit a closed form solution and it is known to exhibit both chaotic and
nonchaotic behaviors for distinct parameter values. Bifurcation studies [2–4] have shown
that with the parameters a = 35 and c = 28, system (1.1) exhibits nonchaotic behavior and
chaotic behavior when b = 12 and b = 3, respectively. Finding accurate and efficient methods
for solving chaotic systems such as the Chen system has been an active research area for many
researchers who use such systems as a benchmark for testing the accuracy and performance
of methods of solutions under their development. Other variants of the Chen system such as
fractional order and four-dimensional Chen systems have been the subject of study by many
scholars.

The solution of nonchaotic, chaotic and hyperchaotic Chen system equations has
been obtained by different analytical and numerical methods such as Runge-Kutta-based
numerical schemes. In recent years, several analytical and seminumerical methods have
been utilized in solving the Chen system equations [5, 6]. Because the solutions for the
Chen systems rapidly oscillate within small intervals, conventional analytical and numerical
algorithms have been implemented in a sequence of small multiple intervals in order to
ensure accuracy convergence of the solution techniques. Recent multistagemethods that have
been reported for solving Chen systems include the multistage differential transformmethod
[7, 8], the multistage homotopy analysis method [9], the multistep homotopy perturbation
method [10] and the multistage variational iteration method [11].

The aim of this paper is to obtain the solution of the Chen system using the successive
linearization method (SLM) that is implemented in a sequence of intervals. This new
algorithm is called the piecewise successive linearization method (PSLM). The standard SLM
was developed primarily for solving nonlinear boundary value problems (see, e.g., [12–17]).
To the best of our knowledge, the method has not been extended to initial value problem
(IVPs) and in particular chaotic IVPs of the type (1.1). We remark that the standard SLM
is not suitable for solving dynamical systems of the type (1.1), hence the need to modify the
method and implement it on multiple intervals. The paper focuses on the use of the proposed
PSLM in solving the Chen system (1.1) using selected parameters that yield both chaotic
and nonchaotic results. Numerical results are presented graphically and are compared with
Runge-Kutta-based results and excellent agreement is observed.

The remainder of the paper is organized as follows. In Section 2, the basic description
of the standard SLM is briefly presented. In Section 3, the PSLM is introduced. The
application of the proposed method is numerically investigated in Section 4 to generate
results which are discussed therein. Finally, conclusions in Section 5 close the paper.

2. Successive Linearization Method (SLM)

In this section, we give a brief description of the basic idea behind the successive linearization
method (SLM) [13–15]. This will be followed by a description of the multistage extension of
the SLM algorithm which is applied to the Chen system (1.1).

The SLM approach assumes that the solution of (1.1) can be expressed as

x(t) = xs(t) +
s−1∑

m=0

xm(t), y(t) = ys(t) +
s−1∑

m=0

ym(t), z(t) = zs(t) +
s−1∑

m=0

zm(t). (2.1)
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Substituting (2.1) in the governing equation (1.1) and neglecting nonlinear terms in xs, ys, zs
we obtain

dxs

dt
+ axs − ays = r1,s−1, (2.2)

dys

dt
− cys + α1,s−1xs + α2,s−1zs = r2,s−1, (2.3)

dzs
dt

+ bzs − β1,s−1xs − β2,s−1ys = r3,s−1, (2.4)

subject to the initial conditions

xs(0) = ys(0) = zs(0) = 0, (2.5)

where

α1,s−1 = a − c +
s−1∑

m=0

zm, α2,s−1 =
s−1∑

m=0

xm,

β1,s−1 =
s−1∑

m=0

ym, β2,s−1 =
s−1∑

m=0

xm,

r1,s−1 = −
s−1∑

m=0

(
dxm

dt
− aym + axm

)
,

r2,s−1 = −
s−1∑

m=0

(
dym

dt
− (c − a)xm − cym

)
+

(
s−1∑

m=0

xm

)(
s−1∑

m=0

zm

)

,

r3,s−1 = −
s−1∑

m=0

(
dzm
dt

+ bzm

)
+

(
s−1∑

m=0

xm

)(
s−1∑

m=0

ym

)

.

(2.6)

Starting from a suitable initial approximation x0(t), y0(t), z0(t), the solutions for xs(t), ys(t),
zs(t) (for s = 1, 2, 3, . . .) can be obtained by iteratively solving the linear system (2.2)–(2.4).
A suitable initial guess to start off the SLM algorithm (2.2)–(2.4) is obtained by solving the
linear part of (1.1) subject to the problem’s initial condition x(0) = x0, y(0) = y0, z(0) = z0
where x0, y0, z0 are given initial values. For this system of first-order equations the initial
approximation can easily be solved analytically in any given interval t ∈ [t0, tn]. However,
the solution of the SLM algorithm (2.2)–(2.4) cannot be solved exactly. Spectral collocation
methods (or any other numerical method) can be used to solve (2.2)–(2.4) in any given
interval t ∈ [t0, tn]. After obtaining solutions for (2.3), the approximate solution x(t), y(t),
and z(t) is determined as the series solution

x(t) = x0(t) + x1(t) + x2(t) + · · · . (2.7)
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Similar expressions are obtained for y(t) and z(t). A SLM solution is said to be of order M if
the above series is truncated at s = M, that is, if

x(t) =
M∑

m=0

xm(t). (2.8)

3. Piecewise Successive Linearization Method

It was observed through numerical experimentation that, in its standard form, the SLM will
not give accurate solutions for initial value problems of the Chen system type. Thus, it can be
remarked that the SLM is ideally suited for boundary value problems whose solutions do not
rapidly change in behaviour or oscillate over small regions of the domain of the governing
problem. The SLM solution can thus be considered to be local in nature and may not be
suitable for initial value problems at very large values of the independent variable t. A simple
way of ensuring the validity of the approximations for all values of t is to determine the
solution in a sequence of equal intervals, which are subject to continuity conditions at the
end points of each interval. To extend this solution over the interval Ω = [t0, tn], we divide
the interval Ω into sub-intervals Ωi = [ti−1, ti], i = 1, 2, 3, . . . , n where t0 ≤ t1 ≤ · · · ≤ tn. We
solve (2.2)–(2.4) in each subinterval Ωi. When applied to the multiple subintervals the SLM
will be referred to as the piecewise SLM (PSLM).

Let x1(t), y1(t), z1(t) be the solution of (2.2)–(2.4) in the first subinterval [t0, t1] and
xi(t), yi(t), zi(t) be the solutions in the subintervals Ωi for 2 ≤ i ≤ n. The initial conditions
used in obtaining the solutions in the subinterval Ωi (2 ≤ i ≤ n) are obtained from the initial
conditions of the subinterval Ωi−1. Thus, we solve

dxi
s

dt
+ axi

s − ayi
s = ri1,i−1,

dyi
s

dt
− cyi

s + αi
1,s−1x

i
s + αi

2,s−1z
i
s = ri2,s−1,

dzis
dt

+ bzis − βi1,s−1x
i
s − βi2,s−1y

i
s = ri3,s−1,

(3.1)

subject to the initial conditions

xi
s

(
ti−1
)
= yi

s

(
ti−1
)
= zis

(
ti−1
)
= 0. (3.2)

The initial approximations for solving (3.1) are obtained as solutions of the system

dxi
0

dt
= a
(
yi
0 − xi

0

)
,

dyi
0

dt
= (c − a)xi

0 + cyi
0,

dzi0
dt

= −bzi0,

(3.3)
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subject to the initial condition

xi
0

(
ti−1
)
= xi−1

(
ti−1
)
, yi

0

(
ti−1
)
= yi−1

(
ti−1
)
, zi0

(
ti−1
)
= zi−1

(
ti−1
)
. (3.4)

An exact solution of (3.3) can easily be found. To solve (3.1) we use the Chebyshev spectral
collocation method on each interval [ti−1, ti]. Before applying the spectral method the region
[ti−1, ti] is transformed to the interval [−1, 1] on which the spectral collocation method is
defined. This can be achieved by using the linear transformation

t =

(
ti − ti−1

)
τ

2
+

(
ti + ti−1

)

2
, τ ∈ [−1, 1] (3.5)

in each interval [ti−1, ti] (for i = 1, . . . , n), After the transformation, the interval [ti−1, ti] is
discretized using the Chebyshev-Gauss-Lobatto collocation points [18, 19]

τij = cos
(
πj

N

)
, j = 0, 1, . . . ,N (3.6)

which are the extrema of the Nth-order Chebyshev polynomial

TN(τ) = cos
(
Ncos−1τ

)
. (3.7)

The basic idea behind the pseudo-spectral collocation method is the introduction of a
differentiation matrix D which is used to approximate the derivatives of the unknown
variables xi

s(t), y
i
s(t), z

i
s(t) at the collocation points as the matrix vector product

dxi
s

dt
=

N∑

k=0

Djkx
i
s

(
τik

)
= DXi

s, j = 0, 1, . . . ,N, (3.8)

where D = 2D/(ti − ti−1) and Xi
s = [xi

s(τ
i
0), x

i
s(τ

i
2), . . . , x

i
s(τ

i
N)]T is the vector function at the

collocation points τij . Similar expressions can be obtained for yi
s(t) and zis(t). The Chebyshev

derivative matrix D is of size (N + 1) × (N + 1) and its entries are defined [18, 19] as

Djk =
cj

ck

(−1)j+k
zj − zk

, j /= k; j, k = 0, 1, . . . ,N,

Dkk = − zk

2
(
1 − z2k

) , k = 1, 2, . . . ,N − 1,

D00 =
2N2 + 1

6
= −DNN,

(3.9)
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with

ck =

{
2 k = 0,N
1 −1 ≤ k ≤ N − 1.

(3.10)

Applying the Chebyshev spectral collocation method in (3.1) gives

Ai
s−1F

i
s = Ri

s−1, Fis
(
τi−1N

)
= 0, (3.11)

where

Ai
s−1 =

⎡

⎢
⎣

D + aI −aI O
α̃i
1,s−1 D − cI α̃i

2,s−1
−β̃i1,s−1 −β̃i2,s−1 D + bI

⎤

⎥
⎦, Ri

s−1 =

⎡

⎢
⎣

ri1,s−1
ri2,s−1
ri3,s−1

⎤

⎥
⎦, Fis =

⎡

⎣
Xi
s

Yi
s

Zi
s

⎤

⎦ (3.12)

and I is an (N + 1) × (N + 1) identity matrix, O is an (N + 1) × (N + 1) matrix of zeros.
The (̃) denotes an (N + 1) × (N + 1) diagonal matrix corresponding to () that is evaluated
at the collocation points and ri

k,s−1(k = 1, 2, 3) is an (N + 1) × 1 vector corresponding to the
quantities ri

k,s−1(t) that have been evaluated at the collocation points. Thus, starting from the
initial approximation obtained as a solution of (3.3)-(3.4), the recurrence formula

Fis =
(
Ai

s−1
)−1

Ri
s−1 (3.13)

can be used to obtain the solutions xi(t), yi(t), zi(t) in the interval [ti, ti−1]. The solution
approximating x(t), for example, in the entire interval [t0, tn] is given by

x(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x1(t), t ∈ [t0, t1]

x2(t), t ∈ [t1, t2]
...
xn(t), t ∈ [tn−1, tn].

(3.14)

Similar expressions can be obtained for y(t) and z(t). We observe that when n = 1, the
proposed piecewise successive linearization method (PSLM) becomes equivalent to the
original SLM algorithm.

4. Results and Discussion

In this section, numerical simulations are given to validate the proposed piecewise successive
linearization method. The PSLM results were obtained using N = 10 collocation points and
ten iterations (that is M = 10) in each [ti−1, ti] interval. Unless otherwise specified, the width
of each intervalΔt = ti − ti−1 was taken to beΔt = 0.1. We also fix the values of the parameters
a = 35 and c = 28 with b = 12 for the nonchaotic case and b = 3 for the chaotic case. The initial
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Figure 1: Time series PSLM (solid line) and ode45 (dots) results for nonchaotic case with parameters
a = 35, b = 12, and c = 28.
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Figure 2: Phase portraits of the Chen system using the PSLM for the nonchaotic case.
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Figure 3: Time series PSLM (solid line) and ode45 (dots) results for nonchaotic case with parameters
a = 35, b = 3, and c = 28.
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Figure 4: Phase portraits of the Chen system using the PSLM for the chaotic case.
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conditions are x(0) = −10, y(0) = 0, and z(0) = 37. The results for all the simulations done
in this paper are computed for the time span t ∈ [0, 10]. In order to assess the accuracy
and performance of the proposed PSLM approach, the present results are compared with
those obtained with the MATLAB built-in solver ode45. The ode45 solver integrates a system
of ordinary differential equations using explicit 4th and 5th Runge-Kutta (4,5) formula, the
Dormand-Prince pair [20].

The results of the PSLM simulation of the Chen system for the nonchaotic case are
shown in Figures 1 and 2. In Figure 1 the results of the comparison between the PSLM and
Runge-Kutta results for the time series evolution of the state variables are given. It can be seen
that there is good agreement between the two results. Figure 2 depicts the phase portraits for
the nonchaotic case. We observe that the system converges to a periodic orbit and results in a
limit cycle as shown in Figure 2 when the parameters a = 35, b = 12, and c = 28 are used.

The results of the PSLM simulation of the Chen system for the chaotic case are shown
in Figures 3 and 4. In Figure 3, the PSLM results are compared with the Runge-Kutta results
when parameters a = 35, c = 28, and b = 3 are used. For this set of parameters, the system
becomes chaotic and the chaotic attractors are shown in Figure 4. We observe that there is
good agreement between the PSLM and Runge-Kutta results in the time series illustration
depicted in Figure 3. This shows that the proposed method of solution has great potential
of being a useful tool for solving complex dynamical systems with chaotic and nonchaotic
behaviour.

5. Conclusion

In this paper, we carefully develop a novel piecewise successive linearizationmethod (PSLM)
which seeks to overcome the difficulties arising when the successive linearization method is
extended to initial value problemswith complex behaviour. The proposedmethod of solution
is implemented on the Chen system and results are generated using known parameters that
give both chaotic and nonchaotic outcomes. The validity of PSLM is verified by comparing its
results with the results of built in Matlab-based numerical Runge-Kutta method, ode45. Close
agreement of the two sets of results is observed thus demonstrating the accuracy of the PSLM
approach for the particular problem considered. In conclusion, the PSLM may be considered
as a robust refinement and extension of the existing SLM. The extended method may also be
valid for other complex nonlinear initial value problems with chaotic behaviour. This paper
can be used as a standard example for other applications in engineering and applied sciences.
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