
Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2012, Article ID 256930, 9 pages
doi:10.1155/2012/256930

Research Article
On the Strong Convergence of an Algorithm about
Firmly Pseudo-Demicontractive Mappings for the
Split Common Fixed-Point Problem

Yanrong Yu and Delei Sheng

Department of Mathematics, Tianjin Polytechnic University, Tianjin 300387, China

Correspondence should be addressed to Yanrong Yu, tjpuyyr@sina.com

Received 26 January 2012; Accepted 16 February 2012

Academic Editor: Yonghong Yao

Copyright q 2012 Y. Yu and D. Sheng. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

Based on the recent work by Censor and Segal (2009 J. Convex Anal.16), and inspired by Moudafi
(2010 Inverse Problems 26), we modify the algorithm of demicontractive operators proposed
by Moudafi and study the modified algorithm for the class of firmly pseudodemicontractive
operators to solve the split common fixed-point problem in a Hilbert space. We also give the strong
convergence theorem under some appropriate conditions. Our work improves and/or develops
the work of Moudafi, Censor and Segal, and other results.

1. Introduction

Throughout, let H1 and H2 be real Hilbert spaces, and let A : H1 → H2 be a bounded linear
operator. The split feasibility problem (SFP) [1–4] is to find a point

x ∈ C such that Ax ∈ Q, (1.1)

where C is a closed convex subset of a Hilbert space H1 and Q is a closed convex subset of a
Hilbert space H2. If the two closed convex subsets C and Q are fixed point sets of U and T ,
respectively, where U : H1 → H1 and T : H2 → H2 are nonlinear operators, we obtain the
two-set split common fixed-point problem (SCFP).

The split common fixed-point problem [5–8] requires to find a common fixed point
of a family of operators in one space such that its image under a linear transformation is a
common fixed point of another family of operators in the image space. This generalizes the
split feasibility problem (SFP) and the convex feasibility problem (CFP).
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In 2008, Censor and Segal proposed the split common fixed-point problem (SCFP) in
[5] for directed operators in finite-dimensional Hilbert spaces. They invented an algorithm
for the two-set SCFP which generated a sequence {xn} according to the iterative procedure

xk+1 = U
(
xk + γA∗(T − I)Axk

)
, k ∈ N, (1.2)

where γ ∈ (0, 2/λ) with λ being the spectral radius of the operator A∗A. Let x0 ∈ Rn be
arbitrary.

They proved the convergence of the algorithm in finite-dimension spaces. Inspired by
the work of Censor and Segal, Moudafi [6] introduced the following algorithm for μ-demi-
contractive operators in Hilbert spaces:

uk = xk + γA∗(T − I)Axk, (1.3)

and let

xk+1 = (1 − tk)uk + tkU(uk), k ∈ N, (1.4)

where γ ∈ (0, (1 − μ)/λ) with λ being the spectral radius of the operator A∗A, tk ∈ (0, 1). Let
x0 ∈ H1 be arbitrary. Using Féjer-monotone and the demiclosed properties of U − I and T − I

at the origin, Moudafi proved the convergence theorem. Based on the work of Censor, Segal,
andMoudafi, Sheng and Chen gave their results of pseudo-demicontractive operators for the
split common fixed-point problem recently.

Furthermore, we modify the algorithm (1.4) proposed by Moudafi and extend the
operators to the class of firmly pseudo-demicontractive operators [9] in this paper. The firmly
pseudo-demicontractive operators are more general class, which properly includes the class
of demicontractive operators, pseudo-demicontractive operators, and quasi-nonexpansive
mappings and is more desirable, for example, in fixed-point methods in image recovery
where, in many cases, it is possible to map the set of images possessing a certain property to
the fixed-point set of a nonlinear quasi-nonexpansive operator. Also for the hybrid steepest
descent method, see [10], which is an algorithmic solution to the variational inequality
problem over the fixed-point set of certain quasi-nonexpansive mappings and applicable to
a broad range of convexly constrained nonlinear inverse problems in real Hilbert spaces.
Our work is related to significant real-world applications, see, for instance, [2–4, 11], where
such methods were applied to the inverse problem of intensity-modulated radiation therapy
(IMRT) and to the dynamic emission tomographic image reconstruction. Based on the very
recent work in this field, we give an extension of their unified framework to firmly pseudo-
demicontractive operators and obtain convergence results of a modified algorithm in the
context of general Hilbert spaces.

Our paper is organized as follows. Section 2 reviews some preliminaries. Section 3
gives a modified algorithm and shows its strong convergence under some appropriate con-
ditions. Section 4 gives some conclusions briefly.
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2. Preliminaries

To begin with, let us recall that the split common fixed point problem [5] proposed by Censor
and Segal in finite spaces.

Given operators Ui : Rn → Rn, i = 1, 2, . . . , p, and Tj : Rm → Rm, j = 1, 2, . . . , r, with
nonempty fixed points sets Ci, i = 1, 2, . . . , p and Qj , j = 1, 2, . . . , r, respectively. The split
common fixed point problem (SCFP) is to find a vector

x∗ ∈ C :=
p⋂

i=1

Ci such that Ax∗ ∈ Q :=
r⋂

j=1

Qj . (2.1)

In the sequel, we concentrate on the study of the two-set split common fixed-point
problem, which is to find that

x∗ ∈ C such that Ax∗ ∈ Q, (2.2)

where H1 and H2 are two Hilbert spaces, C and Q are two nonempty closed convex subsets,
A : H1 → H2 is a bounded linear operator, U : H1 → H1,T : H2 → H2 are two firmly
pseudo-demicontractive operators with Fix(U) = C and Fix(T) = Q. α, β, and μ, θ are coeffi-
cients of U, T , respectively.

Definition 2.1. We say that T is demicontractive [6]means that there exists constant β < 1 such
that

∥∥Tx − q
∥∥2 ≤ ∥∥x − q

∥∥ 2 + β‖x − Tx‖ 2, ∀(x, q) ∈ H × Fix(T), (2.3)

T is pseudo-demicontractive [9]means that there exists constant α > 1 such that

∥∥Tx − q
∥∥2 ≤ α

∥∥x − q
∥∥2 + ‖x − Tx‖2, ∀(x, q) ∈ H × Fix(T). (2.4)

Definition 2.2. We say that T is firmly pseudo-demicontractive means that there exist con-
stants α > 1, β > 1 such that

∥∥Tx − q
∥∥2 ≤ α

∥∥x − q
∥∥2 + β‖x − Tx‖2, ∀(x, q) ∈ H × Fix(T). (2.5)

The inequality (2.5) is equivalent to

〈
x − Tx, x − q

〉 ≥ 1 − α

2
∥∥x − q

∥∥2 +
1 − β

2
‖Tx − x‖2, ∀(x, q) ∈ H × Fix(T), (2.6)

An operator satisfying (2.5)will be referred to as a α, β firmly pseudo-demicontractive
mapping. It is worth noting that the class of firmly pseudo-demicontractive maps contains
important operators such as the demicontractive maps, quasi-nonexpansive maps, and the
strictly pseudo-contractive maps with fixed points.
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Next, let us recall several concepts:

(1) a mapping T : H → H is said to be nonexpansive if

∥
∥Tx − Ty

∥
∥ ≤ ∥

∥x − y
∥
∥, ∀(x, y) ∈ H ×H; (2.7)

(2) a mapping T : H → H is said to be quasi-nonexpansive if

∥
∥Tx − q

∥
∥ ≤ ∥

∥x − q
∥
∥, ∀(x, q) ∈ H × Fix(T); (2.8)

(3) a mapping T : H → H is said to be strictly pseudo-contractive if

∥∥Tx − Ty
∥∥2≤ ∥∥x − y

∥∥2 + β
∥∥x − y − (

Tx − Ty
)∥∥2

, ∀(x, y) ∈ H ×H
(
β ∈ [0, 1)

)
.

(2.9)

Obviously, the nonexpansive operators are both quasi-nonexpansive and strictly pseudo-
contractive maps and are well known for being demiclosed.

Lemma 2.3 (see [5]). An operator T is said to be closed at a point y ∈ Rn if for every x ∈ Rn and
every sequence xk in Rn, such that, xk → x (k → ∞) and T(xk) → y, we have Tx = y.

In what follows, only the particular case of closed at zero will be used, which is the particular
case when y = 0.

Lemma 2.4 (see [12]). Let {an},{bn} and {δn} be sequences of nonnegative real numbers satisfying
the inequality

an+1 ≤ (1 + δn)an + bn, n ≥ 1, (2.10)

where {δn} ⊂ l1, {bn} ⊂ l1, then limn→∞an exists.

Motivated by the former works in [5–9], we modify the algorithm proposed by
Moudafi in [6] for solving SCFP in the more general case when the operators are firmly
pseudo-demicontractive, defined on a general Hilbert space and also change several condi-
tions. Then, we prove a strong convergence theorem of the modified algorithm about firmly
pseudo-demicontractive operators, which improves and/or develops several corresponding
results in this field. We present in this paper only theoretical results of algorithmic devel-
opments and convergence theorems. Experimental computational work in other literatures
[4, 10] shows the practical viability of this class of algorithms.

3. Main Results

Let us consider now the two operators split common fixed-point problem (SCFP) [5, 6]

find x∗ ∈ C such that Ax∗ ∈ Q, (3.1)
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where A : H1 → H2 is a bounded linear operator, U : H1 → H1, T : H2 → H2 are two
firmly pseudo-demicontractive operators with Fix(U) = C and Fix(T) = Q,

∥
∥Tx − q

∥
∥2 ≤ α

∥
∥x − q

∥
∥2 + β‖x − Tx‖2, ∀(x, q) ∈ H2 × Fix(T),

∥
∥Ux − q

∥
∥2 ≤ μ

∥
∥x − q

∥
∥2 + θ‖x −Ux‖2, ∀(x, q) ∈ H1 × Fix(U),

(3.2)

where α, β and μ, θ are two firmly pseudo-demicontractive coefficients of U, T , respectively.
α > 1, β > 1, μ > 1, θ > 1, H1, H2 are two Hilbert spaces.

In what follows we always assume that the solution set of the two-operator SCFP is
not empty, which denotes by

Γ =
{
y ∈ C | Ay ∈ Q

}
. (3.3)

Based on the algorithm of [5, 6], we develop the following modified algorithm to solve
(3.1).

Algorithm 3.1. Initialization: let x0 ∈ H1 be arbitrary.
Iterative step: for k ∈ N set uk = xk + γA∗(T − I)Axk and let

xk+1 = (1 − tk)uk + tkU(uk), k ∈ N, (3.4)

where (1 − β)/λ < γ < 0 with λ being the spectral radius of the operator A∗A, tk > 0.

Theorem 3.2. LetH1,H2 are two Hilbert spaces,A is a bounded linear operator,U : H1 → H1, T :
H2 → H2 are two firmly pseudo-demicontractive operators with Fix(U) = C and Fix(T) = Q,α, β,
and μ, θ are two firmly pseudo-demicontractive coefficients ofU, T , respectively. Let bk = tk(θ+ tk−1)
‖U(uk) − uk‖2, δk = tk(μ − 1) and {bk} ⊂ l1, {δk} ⊂ l1. T − I is closed at the origin, λ the spectral
radius of the operator A∗A, then the sequence generated by the modified algorithm (3.4) converges
strongly to the solution of (3.1).

Proof. Taking y ∈ Γ, that is, y ∈ Fix(U), Ay ∈ Fix(T), and using (2.6), we obtain that

∥∥xk+1 − y
∥∥2 =

∥∥(1 − tk)uk + tkU(uk) − y
∥∥2

=
∥∥uk − y

∥∥2 − 2tk
〈
uk − y, uk −U(uk)

〉
+ t2k‖U(uk) − uk‖2

≤ ∥∥uk − y
∥∥2 − 2tk

(
1 − μ

2
∥∥uk − y

∥∥2 +
1 − θ

2
‖U(uk) − uk‖2

)
+ t2k‖U(uk) − uk‖2

≤ (
1 − tk

(
1 − μ

))∥∥uk − y
∥∥2 − tk(1 − θ − tk)‖U(uk) − uk‖2.

(3.5)
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Using the expression of uk in Algorithm 3.1, we also have

∥
∥uk − y

∥
∥2 =

∥
∥xk + γA∗(T − I)Axk − y

∥
∥2

=
∥
∥xk − y

∥
∥2 + γ2‖A∗(T − I)Axk‖2 + 2γ

〈
xk − y,A∗(T − I)Axk

〉

=
∥
∥xk − y

∥
∥2 + γ2〈(T − I)Axk,AA∗(T − I)Axk〉

+ 2γ
〈
Axk −Ay, (T − I)Axk

〉
.

(3.6)

From the definition of λ, it follows that

γ2〈(T − I)Axk,AA∗(T − I)Axk〉 ≤ λγ2‖(T − I)Axk‖2. (3.7)

Now, by setting θ = 2γ〈xk−y,A∗(T −I)Axk〉 and using the fact (2.5) and its equivalent
form (2.6), we infer that

θ = 2γ
〈
Axk −Ay, T(Axk) −Axk

〉

≤ 2γ
(
α − 1
2

∥∥Axk −Ay
∥∥2 +

β − 1
2

‖T(Axk) −Axk‖2
)

= γ(α − 1)
∥∥Axk −Ay

∥∥2 + γ
(
β − 1

)‖T(Axk) −Axk‖2.

(3.8)

Substituting (3.8), (3.7), and (3.6) into (3.5), we get the following inequality:

∥∥xk+1 − y
∥∥2 ≤ (

1 − tk
(
1 − μ

))∥∥uk − y
∥∥2 − tk(1 − θ − tk)‖U(uk) − uk‖2

≤ (
1 − tk

(
1 − μ

)) (∥∥xk − y
∥∥2 + γ(α − 1)

∥∥Axk −Ay
∥∥2

+γ
(
β − 1 + γλ

)‖(T − I)(Axk)‖2
)
− tk(1 − θ − tk)‖U(uk) − uk‖2

=
(
1 + tk

(
μ − 1

))∥∥xk − y
∥∥2 +

(
1 − tk

(
1 − μ

))
γ(α − 1)

∥∥Axk −Ay
∥∥2

+
(
1 − tk

(
1 − μ

))
γ
(
β − 1 + γλ

)‖(T − I)(Axk)‖2 + tk(θ + tk − 1)‖U(uk) − uk‖2.
(3.9)

Since ((1 − β)/λ) < γ < 0, tk > 0 and α > 1, β > 1, μ > 1, θ > 1, we obtain that −tk(1 − μ) > 0,
(1 − tk(1 − μ))γ(α − 1) < 0, (1 − tk(1 − μ))γ(β − 1 + γλ) < 0, and tk(θ + tk − 1) > 0, thus,

∥∥xk+1 − y
∥∥2≤ (

1 + tk
(
μ − 1

))∥∥xk − y
∥∥2 + tk(θ + tk − 1)‖U(uk) − uk‖2. (3.10)

Setting bk = tk(θ + tk − 1)‖U(uk) − uk‖2 and δk = tk(μ − 1), (3.10) can be formulated as

∥∥xk+1 − y
∥∥2≤ (1 + δk)

∥∥xk − y
∥∥2 + bk. (3.11)
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We also can denote that ak+1 = ‖xk+1 − y‖2, ak = ‖xk − y‖2, thus (3.11) can be rewritten as

ak+1 ≤ (1 + δk)ak + bk. (3.12)

Obviously, {ak}, {bk}, and {δk} are sequences of nonnegative real numbers. Since
{bk} ⊂ l1, {δk} ⊂ l1, that is,

∑∞
k=1 δk < ∞,

∑∞
k=1 bk < ∞ from Lemma 2.4, limk→∞‖xk − y‖2

exists.
Since λ being the spectral radius of the operator A∗A, (3.9) also can be reformulated

as the following:

∥
∥xk+1 − y

∥
∥2 ≤ (

1 + tk
(
μ − 1

))∥∥xk − y
∥
∥2 +

(
1 − tk

(
1 − μ

))
γ(α − 1)

∥
∥Axk −Ay

∥
∥2

+
(
1 − tk

(
1 − μ

))
γ
(
β − 1 + γλ

)‖(T − I)(Axk)‖2 + tk(θ + tk − 1)‖U(uk) − uk‖2

=
(
1 + tk

(
μ − 1

))∥∥xk − y
∥∥2 +

(
1 − tk

(
1 − μ

))
γ(α − 1)

〈
xk − y,A∗A

(
xk − y

)〉

+
(
1 − tk

(
1 − μ

))
γ
(
β − 1 + γλ

)‖(T − I)(Axk)‖2 + tk(θ + tk − 1)‖U(uk) − uk‖2

≤ (
1 + tk

(
μ − 1

))∥∥xk − y
∥∥2 +

(
1 − tk

(
1 − μ

))
γ(α − 1 )λ

∥∥xk − y
∥∥2

+
(
1 − tk

(
1 − μ

))
γ
(
β − 1 + γλ

)‖(T − I)(Axk)‖2 + tk(θ + tk − 1)‖U(uk) − uk‖2.
(3.13)

Taking limits from both side of (3.13), (1− tk(1−μ))γ(α− 1)λ < 0, tk(μ− 1) → 0, (1− tk(1−μ))
γ(β − 1 + γλ) < 0, tk(θ + tk − 1)‖U(uk) − uk‖2 → 0, we obtain that

lim
k→∞

∥∥xk − y
∥∥2 −→ 0, that is, xk −→ y(k −→ ∞). (3.14)

If we take limits from both sides of (3.9), we can get the following:

lim
k→∞

∥∥Axk −Ay
∥∥2 −→ 0, that is, Axk −→ Ay(k −→ ∞), (3.15)

lim
k→∞

‖(T − I)(Axk)‖2 −→ 0, that is, (T − I)(Axk) −→ 0(k −→ ∞). (3.16)

Because T − I is closed at the origin, from (3.15) and (3.16), using Lemma 2.3, we have

(T − I)
(
Ay

)
= 0, that is, T

(
Ay

)
= Ay. (3.17)

The sequence generated bymodified algorithm (3.1) converges strongly to the solution
of SCFP. The proof is completed.

Under the same conditions as in Thereom 3.2, if we take β = θ = 1 (i.e.,U, T are pseudo-
demicontractive operators), the strong convergence also holds, so we get the following
corollary.
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Corollary 3.3. Let H1,H2 are two Hilbert spaces, A is a bounded linear operator, U : H1 → H1,
T : H2 → H2 are two pseudo-demicontractive operators with Fix(U) = C and Fix(T) = Q, α
and μ are two pseudo-demicontractive coefficients of U, T , respectively. Let bk = (1 − tk(1 − μ))
γ2λ‖(T − I)(Axk)‖2 + t2k‖U(uk) − uk‖2, δk = tk(μ − 1), and {bk} ⊂ l1, {δk} ⊂ l1. T − I is closed
at the origin, and λ is the spectral radius of the operator A∗A, then the sequence generated by the
modified algorithm (3.4) converges strongly to the solution of (3.1).

Proof. Taking β = θ = 1, here (3.9) as the following:

∥
∥xk+1 − y

∥
∥2 ≤ (

1 + tk
(
μ − 1

))∥∥xk − y
∥
∥2 +

(
1 − tk

(
1 − μ

))
γ(α − 1)

∥
∥Axk −Ay

∥
∥2

+
(
1 − tk

(
1 − μ

))
γ2λ‖(T − I)(Axk)‖2 + t2k‖U(uk) − uk‖2.

(3.18)

Because

bk =
(
1 − tk

(
1 − μ

))
γ2λ‖(T − I)(Axk)‖2 + t2k‖U(uk) − uk‖2, δk = tk

(
μ − 1

)
, (3.19)

from (3.18), we get

ak+1 ≤ (1 + δk)ak + bk. (3.20)

The same lines as the proof of Thereom 3.2, we obtain the desired result.

At last, we want to say that the condition {bk} ⊂ l1, {δk} ⊂ l1 actually controls the dis-
tance between independent variable and dependent variable of the related operators. Pro-
vided that the distance may not fluctuate too severely, the condition can always be satisfied
with some appropriate coefficients, for example, taking tk = 1/k2.

4. Conclusion

In this paper, we generalize the algorithm proposed by Moudafi for demicontractive oper-
ators to firmly pseudo-demicontractive operators for SCFP and use some beautiful lemmas
to prove the strong convergence of the modified algorithm. Our results improve and/or de-
velop Moudafi, Censor, and some other people’s work.
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