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Diversity of the population in a genetic algorithm plays an important role in impeding premature
convergence. This paper proposes an adaptive neurofuzzy inference system genetic algorithm
based on sexual selection. In this technique, for choosing the female chromosome during sexual
selection, a bilinear allocation lifetime approach is used to label the chromosomes based on
their fitness value which will then be used to characterize the diversity of the population.
The motivation of this algorithm is to maintain the population diversity throughout the search
procedure. To promote diversity, the proposed algorithm combines the concept of gender and
age of individuals and the fuzzy logic during the selection of parents. In order to appraise
the performance of the techniques used in this study, one of the chemistry problems and some
nonlinear functions available in literature is used.

1. Introduction

A large scale of design, control, scheduling, or other engineering problems results in solution
of optimization problems. Genetic algorithms (GAs) were first considered by Holland [1].
A genetic algorithm is a numerical optimization procedure that is based on evolutionary
principles such as selection, recombination, and mutation. In many areas of chemistry, there
are problems to which GAs can be used. For example, one of the principal subfield of
analytical chemistry is the qualitative and quantitative identification of the main components
of unknown mixtures by means of spectroscopic methods that investigate the molecules
utilizing electromagnetic radiation. Genetic algorithms have been used here as they are
effective at finding patterns in data even when the data contains a large amount of extraneous
information. Genetic algorithms have also been used for the generation of regression curves,
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protein folding, and structure elucidation and for system optimization [2–4]. Yang et al. [5–8]
utilized GA in real applications of various soft-computing techniques in different fields.

Premature convergence is a classical problem in finding optimal solution in GA. The
population diversity is a way of avoiding the premature convergence in a GA. In a traditional
GA, chromosomes reproduce asexually where any two chromosomes may be parents during
crossover. Gender division and sexual selection here inspire amodel of genderedGA inwhich
crossover takes place only between chromosomes of opposite sex. The sex of chromosomes
is not only accountable for preserving diversity in population and maintaining a victorious
genetic pool by means of selection, crossover, and mutation, but it is also accountable for the
optimization of the different tasks which are very important for survival.

Jalali Varnamkhasti and Lee [9] introduced a new sexual selection. In their technique,
the population is divided into two groups of males and females. During the sexual selection,
the female chromosome is selected by the tournament selection while the male chromosome
is selected based on the hamming distance from the selected female chromosome, fitness
value, or active genes. In another study conducted by Jalali Varnamkhasti and Lee [10],
a fuzzy genetic algorithm based on this technique for selection mechanism was suggested.
They used some nonlinear numerical functions, and by considering the results from
each test function, they showed that the proposed technique of grouping the male and
female chromosomes alternately outperforms other grouping techniques of sexual selection
mechanisms. Also, the application of this technique for sexual selection is given by Jafari et al.
[11] for committee neural networks.

In this study, an obvious characteristic between the two gender groups, with the
possibility of embedding different tasks for each one, is considered such as the determination
of which partners are suitable for mating and crossover. We believe the relations between
age, effectiveness and fitness as in biological systems will affect the selection procedure. A
bilinear allocation lifetime approach is used to label the chromosomes based on their fitness
value [12]. The obtained chromosomes labels are used to characterize the diversity of the
population. The population is then divided into two groups: male and female, so that they
are selected in an alternate way. In each generation, the layout of selection formale and female
is different.

In short, the aim of this paper is to keep the diversity of population by female
preference. The selection of the female chromosome is done through a set of fuzzy rules and
a newly developed genetic-neurofuzzy algorithm.

2. Neurofuzzy Inference Systems Genetic Algorithm

In this section, we concentrate on the discussion of the proposed neurofuzzy inference sys-
tems genetic algorithm for solving combinatorial optimization problems. In the remainder of
this section, we explained the framework of the proposed algorithm as illustrated in Figure 1.

2.1. Initial Population

For the nonlinear functions, a solution can be simply encoded by a string of 0’s and 1’s. A
good initial population makes it easy for a GA to converge to good solutions while a poor ini-
tial population can prolong a GA convergence. There are different approaches in generating
initial population for a GA. The most common method is by random generation [10]. In this
paper, we use the random generation method to achieve better diversity in the population.
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Figure 1: Framework of neurofuzzy inference systems genetic algorithm.

2.2. Lifetime

Three methods are presented for the calculation of chromosomes lifetime in genetic algo-
rithms with varying population size, chromosomes are categorized according to their fitness.
The purpose is to use the allowed range of lifetime values in a way which is more suitable
to search the optimum than proportional, linear, and bilinear strategies [12]. In this study, a
bilinear allocation lifetime approach proposed in [12] is used to label the chromosomes based
on their fitness value which will then be used to characterize the diversity of the population.
In this case, a linguistic variable “age” is utilized for chromosomes. Figure 2 describes the
linguistic variable age where infant, adult and old are the linguistic values. The membership
functions for the linguistic terms are called semantic rules.

To find the membership function, we use the fitness value of each chromosome and
the minimum, maximum, and average fitness values of the population in each generation.
Each chromosome has its own label determined by the age function.
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Let ϕ = fi−fmin/favr−fmin, φ = fi−favr/fmax−favr, and τ = favr−fi, where fi is fitness
value of chromosome i; favr is average fitness value; fmin is minimum fitness value; and fmax

is maximum fitness value of population.
The age function can be written as

age(ci) =

⎧
⎪⎪⎨

⎪⎪⎩

L + αϕ
n

; τ ≥ 0,

β + αφ
n

; τ < 0,

(2.1)

age(ci) =

⎧
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⎪⎪⎪⎩

U − (
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)

n
; τ ≥ 0,

U − (
β + αφ

)

n
; τ < 0,

(2.2)

where ci is chromosome i; n is population size; α = (U −L)/2 and β = (U +L)/2; L andU are
minimum and maximum age respectively.

Equation (2.1) is suited for maximization problems which relate to higher fitness
values while (2.2) is more suitable for minimization problems which relate to lower fitness
values. The fuzzification interface defines for each chromosome the possibilities of the three
linguistic values. These values determine the applicability degree for each rule premise.
The computation takes into account all chromosomes in each generation and relies on the
triangular membership functions shown in Figure 3 with L = 2 andU = 10.
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On the other hand, we can consider linguistic rules and membership function for each
rule as follows:

age =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Infant μ1 = −2x + 1 0 ≤ x ≤ 0.50,

Adult μ2

{
2x 0 ≤ x ≤ 0.50,
−2x + 2 0.50 < x ≤ 1,

Old μ3 = 2x − 1 0.50 ≤ x ≤ 1,

(2.3)

A bilinear allocation lifetime approach proposed in [12] is used to label the chromosomes
based on their fitness value which will then be used to characterize the diversity of the
population:

D(ci) =

{
L + αϕ; τ ≥ 0,
β + αφ; τ < 0,

(2.4)

Let ψ be the label of half of the population, and then the population can be divided into three
levels, low, medium and high diversity as follows:

population diversity =

⎧
⎪⎪⎨

⎪⎪⎩

High, 0 ≤ ψ ≤ 2L + t,
Medium, 0 ≤ ψ ≤ 4L + 2t,
Low, 2L + t ≤ ψ ≤ 4L + 2t,

(2.5)

where t = [λ(L + U)/n] is a parameter that has correlation with the domain of labels in
the population and λ = [n/10] ([x] means nearest integer number to x, e.g., [2.3] = 2 and
[2.8] = 3). This computation is performed in every generation and relies on the triangular
membership functions shown in Figure 4.
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We can consider linguistic rules and membership function for each rule as follows:

D =

⎧
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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5
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1
5
x 0 ≤ x ≤ 5,

1
4
x − 1

4
5 < x ≤ 10,

Low, η3 =
1
5
x − 1 5 ≤ x ≤ 10.

(2.6)

2.3. Sexual Selection

Darwin differentiated sexual and natural selections as different types of processes operating
on different sorts of traits each in accordance with varying evolutionary dynamics types.
FromDarwin’s perspectives, natural selection enhances the abilities of an organism to survive
in a competitory environment whereas sexual selection (SX) pertains more to the capabilities
of attracting and selecting mates in an effort to generate an offspring that is viable and
attractive.

Indeed, organisms reproducing sexually should refrain from randommating since the
genetic quality of a mate will dictate half of the genetic quality of the respective offspring.
The clue to successful selection of mates is evolving a mechanism for mate selection that
internalizes the long-term fitness reproducing results with various types of possible mates.
The gain of mate selection is that passive fitness features which in the past posed threat to
survival can be escaped while in the meantime the positive ones can be utilized. Accordingly,
choice of mate is well calibrated if the recognized sexual attractiveness of the likely mates is
strongly linked with the factual attractiveness, viability, and fertility of those offspring they
may produce.

In numerous species, females choose the males for mating and producing offspring.
This, on one hand, implies that the males must compete with one and another to make sure
they will be selected as mates. On the other hand, females will be concerned in finding those
males having high fitness and attractiveness as by mating with them they will guarantee
production of offspring having high survival potentials and being attractive well enough to
be later selected as mates by females in the succeeding generations.

Inspired by the nongenetic sex determination system prevalent in some reptile species
where sex is determined by the temperature at which the egg is incubated, the population is
divided such that the male and female would be selected in an alternate way. The layout of
the male and female chromosomes in each generation is different [10].

During the sexual selection, the male chromosome is selected randomly from the male
category and the selection of the female chromosome is done through a set of fuzzy rules and
a newly developed genetic-neurofuzzy algorithm.

2.3.1. Adaptive Neurofuzzy Inference Systems Genetic Algorithm

The Sugeno fuzzy model [13] was proposed for a systematic approach to generate fuzzy
rules from a given input-output dataset. A typical Sugeno fuzzy model given in Figure 5
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Figure 5: Adaptive neurofuzzy inference systems [13].

shows the ANFIS architecture that corresponds to the first-order Sugeno fuzzy model. For
simplicity, we assume that the ANFIS has two inputs x1 and x2 but only one output y.

In adaptive neurofuzzy inference systems genetic algorithm (ANFISGA), there are two
inputs: x1 = male’s age and x2 = population diversity and one output: y = female’s age, Fage.

In ANFISGA, we have five layers. Layer 1 is the input layer. Neurons in this layer
simply pass external crisp signal to Layer 2. Layer 2 is the fuzzification layer. Neurons in this
layer perform fuzzification. Layer 3 is the rule layer. Each neuron in this layer corresponds to
signal Sugeno-type fuzzy rule. Layer 4 is the normalization layer. Each neuron in this layer
receives inputs from all neurons in the rule layer and calculates the normalized firing strength
of given rule. Layer 5 is the defuzzification layer. Each neuron in this layer is connected to the
respective normalization neuron, and also receives initial inputs, α and β.

Themain difference betweenANFISGA andANFIS is the adaptation. TheANFIS relies
on the weights, wi during adaptation. But in the ANFISGA, the weights are all constant. For
adaptation, we use sexual selection based on female choice and population diversity. Figure 6
shows the ANFISGA architecture that corresponds to the first-order Sugeno fuzzymodel. The
rules for ANFISGA are given in Table 1, where wi = i(i = 1, 2, 3, 4), Wi = Wi/

∑ |wi|, α and
β are defined in (2.1), μi is given in (2.3), ηi is taken from (2.6), and the output of ANFISGA
is Di = Fage which refers to the lower bound of the Fage during the selection of the female
chromosome.

After finding Fage, if we are not able to find a chromosome that has a value at least
equal to Fage, then we select a chromosome having the nearest fitness value to Fage. On the
other hand, if we are able to find more than one chromosome which satisfies having Fage

condition, then we choose a chromosome having the highest fitness value among them. This
technique is called complement method.
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Figure 6: Adaptive neurofuzzy inference systems genetic algorithm (ANFISGA).

Table 1: Rules for ANFISGA.

Layer 3 Layer 5
W1 = w1μ1 +w2μ2 +w3η1 +w4η2 D1 =W1 + β/2
W2 = w1μ1 +w2μ2 +w3η2 +w4η3 D2 =W2 + β/3
W3 = w1μ2 +w2μ3 +w3η1 +w4η2 D3 =W3 + α/2
W4 = w1μ2 +w2μ3 +w3η2 +w4η4 D4 =W4 + α/3

3. Computational Experiments

The experiments are conducted to compare the performance of our proposed ANFISGA to
other GAs found in [14] (see Table 2) for solving the well-known generalised Rosenbrock’s
Function introduced in [15] and one of the chemistry problems, namely, multieffect systems.

3.1. Generalized Rosenbrock’s Function (fRos)

The generalized Rosenbrock’s function is a continuous and unimodal function, with the
optimum located in a steep parabolic valley with a flat bottom. This feature will probably
cause slow progress in many algorithms since they must continually change their search
direction to reach the optimum:

fRos(x) =
n−1∑

i=1

[

100
(
xi+1 − x2

i

)2
+ (xi − 1)2

]

, (3.1)

where −5.12 ≤ xi ≤ 5.12.
We also included a binary-coded GA (BGA) with 30 genes per variable, multiple

crossovers with two points and proportional selection probability into the experiments. Each
algorithm is tested for 30 times with a maximum of 5000 generations per each run. The results
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Table 2: Real Coded Genetic Algorithms (RGA) [14].

Algorithms Mutation Crossover
RGA1 Random Simple
RGA2 Nonuniform Simple
RGA3 Random Uniform α = 0.35
RGA4 Nonuniform Uniform α = 0.35
RGA5-α Nonuniform BLX (α: 0, 0.15, 0.3, 0.5)
RGA6 Nonuniform Discrete
RGA7 Nonuniform Linear
RGA8 Nonuniform Extended intermediate
RGA9 Nonuniform Extended line
ANFISGA Pm ∈ [0.001, 0.2] Pc = 0.70

Table 3: Comparison of GAs with ANFISGA.

Algorithms Average Algorithms Average
BGA 1.9045e + 00 RGA5-0.30 4.8854e − 01
RGA1 6.0669e + 00 RGA5-0.50 1.7329e + 00
RGA2 4.7343e − 01 RGA6 3.5106e − 01
RGA3 6.3745e + 00 RGA7 5.1499e − 01
RGA4 8.9244e − 01 RGA8 5.3325e − 01
RGA5-0.0 9.1602e − 01 RGA9 3.8014e − 02
RGA5-0.15 7.0929e − 01 ANFISGA 2.3240e − 03

of the test function are listed in Table 3. The entries reported the average over 30 runs of the
best fitness value found at the end of each run.

3.2. Multieffect Systems

Multieffect systems have two sequences of integration: forward integration sequence, where
the heat integration is in the direction of the mass flow and backward or reverse integration
sequence, where the integration is in the opposite direction of the mass flow as shown in
Figure 7.

In this study, we considered multieffect distillation that is used in [16]. In this
multieffect distillation of methanol/water system comprised of two 16 staged columns. The
feed stream contains 0.73 mole percentage of methanol is fed to the column at the rate of
4320 kmol/h.

The objectives are to determine the appropriate configuration, feed locations, reflux,
and boilup flows in both columns that minimize the operating cost.

For formulation, Preechakul and Kheawhom [16] used the common assumptions
of equi-molar overflow, total condenser, and partial reboiler. This method creates acostly
product by using as little energy as possible. The product from both columns must contain
at least 99% methanol, and the methanol concentration in bottom stream from the second
column must not be larger than 1%. The temperature difference between the condenser of
high-pressure column and the reboiler of low-pressure column must be larger than 10◦C.
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Figure 7: Conventional distillation sequences for the separation of ternary mixtures [17].

The following equations describe the model:

0 =
(
Vi−1yi−1 + Li+1xi + 1

) − (
Viyi + Lixi

)
i /=nf ,

0 =
(
Vi−1yi−1 + Li+1xi + 1

) − (
Viyi + Lixi

)
+ Fz i = nf ,

0 = L2x2 −
(
V1y1 + Bx1

)
,

0 = Vn−1yn−1 − (L +D)xn,

0 = L2h2 − V1H1 +QR,

0 = Vn−1Hn − 1 − (L +D)hn −Qc,

y =
γxp0

p
,

ln
p0

p
=

Δhvap
R

(
1
Tb

− 1
T

)

,

ln γ1 = − ln(x1 + Λ12x2) + x2
(

Λ12

x1 + Λ12x2
− Λ21

x2 + Λ21x1

)

,

ln γ2 = − ln(x2 + Λ21x1) + x1
(

Λ12

x1 + Λ12x2
− Λ21

x2 + Λ21x1

)

,

Λ12 =
vL2
vL1

exp
(−λ12
RT

)

,

Λ21 =
vL1
vL2

exp
(−λ21
RT

)

,

(3.2)

where γ : activity coefficient; λij : binary parameter; B: bottom stream flow rate; D: overhead
stream flow rate; F: feed stream flow rate; H: enthalpy of vapor; h: enthalpy of liquid;
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Table 4: Best results for GA, HSS, and ANFISGA algorithms.

Algorithm Forward Integration kgmol/h Backward Integration kgmol/h
GA 1975.95 879.63
HSS 2288.72 1885.24
ANFISGA 2293.07 1891.21

Li: liquid flow rate at stage i; n: number of equilibrium stages; nf : feed location; p: pressure;
p0: absolute pressure, Qc: heat flow rate at condenser; QR: heat flow rate at reboiler; R: ideal
gas constant; T : temperature; Tb: normal boiling point temperature; v: molar volume; Vi:
vapor flow rate at stage i; xi: mole fraction of liquid phase at stage i.

The objective function is

MaxF = DHP +DLP −w(QRLP +QCHP), (3.3)

where DHP and DLP are the products (methanol) of the high-pressure and low-pressure
column, respectively. QR is the heat load to the column, and w = 0.3244mol/MJh is the
relative cost of energy [16].

This fuzzy genetic algorithm is used in order to find the suitable configuration and to
seek other operating situation.

The performance of our algorithms was compared with the presentation of the
classical genetic algorithm and Hammersley sequence sampling (HSS) in [16] these results
are shown in Table 4.

For traditional GA and genetic algorithm based on HSS, the population size 500 is
considered and probability of crossover and mutation used are 0.8 and 0.1 respectively. In
ANFISGA, probability of crossover is considered 1 and probability mutation and population
size are the same other algorithms.

4. Conclusion

The principle conclusions derived from the results of experiments carried out are the follow-
ing.

(i) The procedure presented is the most successful one for controlling diversity as
compared with other methods proposed in the GA literature that have been
considered for the experiments.

(ii) The adaptation capability of this procedure allows suitable parent to be used for
producing a robust operation for test function with different difficulties.

Therefore, we may conclude that the female choice by ANFISGA is a suitable way for
improving the performance of GAs in keeping the diversity of the population.
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