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This paper studies the decentralized stabilization problem for an uncertain fuzzy large-scale
system with time delays. The considered large-scale system is composed of several T-S fuzzy
subsystems. The decentralized parallel distributed compensation (PDC) fuzzy control for each
subsystem is designed to stabilize the whole system. Based on Lyapunov criterion, some sufficient
conditions are proposed. Moreover, the positive definite matrices Pi and PDC gain Kij can be
solved by linear matrix inequality (LMI) toolbox of Matlab. Then, the optimization design method
for decentralized control is also considered with respect to a quadratic performance index. Finally,
numerical examples are given and compared with those of Zhang et al., 2004 to illustrate the
effectiveness and less conservativeness of our method.

1. Introduction

Many real-life problems, such as power system, economic systems, societal system, and
nuclear system are frequently of high dimension. Such systems are regarded as large-scale
system. They consist of a number of subsystems which serve particular functions, share
resources, and are governed by a set of interrelated goals and constrains [1]. Over the past
decades, many methods have been to investigate the stability and stabilization of large-scale
system [2–10].

Fuzzy systems of Takagi-Sugeno (T-S)models [11] have become an effectivemethod to
represent complex nonlinear dynamic system by fuzzy sets and fuzzy reasoning. The method
of T-S model is feasible since, in many situations, human experts can provide linguistic
descriptions of local systems in terms of IF-THEN rules [12–14]. Reference [15] proposed
a control concept “parallel distributed compensation” (PDC) for fuzzy controller design of
T-S fuzzy model. Under some conditions, PDC can stabilize the closed-loop fuzzy system
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asymptotically. Linear matrix inequalities (LMIs) methods to find the common positive
matrix Pi always play a key role work in PDC design [16].

Now let us consider the control problem of large-scale system. Accordingly, suppose
a large-scale system is composed of a number of subsystems with interconnection. Each
subsystem is described by a T-S fuzzy model. That is, each subsystem dynamic is captured
by a set of fuzzy implications that characterize local relations in the state space. Then,
the global model of large-scale system can be achieved by smoothly connecting the local
linear model in each fuzzy subspace together via the membership functions. Recently, the
fuzzy decentralized control design methods and stability condition are addressed [17–24].
Wang and Luoh [17] have studied a fuzzy decentralized control design method for a fuzzy
large-scale system on the assumption that all variables are available. Tseng and Chen [18]
dealt with the model reference tracking control problem by using H∞ decentralized fuzzy
control, which relaxed the condition that the state variables are measurable. Wang and Zhang
[19] considered the robust decentralized controller design method for nonlinear large-scale
descriptor system. Hsiao et al. [20] proposed fuzzy decentralized control design methods for
fuzzy large-scale system with time delays and gave the analysis of the closed-loop fuzzy
large-scale system. Robust decentralized H∞ output feedback controller was designed in
[21]. Tong and Zhao [22] proposed a stabilization criterion of continuous-time interconnected
fuzzy systems without uncertainties. Su and Liu [23] dealt with decentralized stabilization
problem for a large-scale system in which the system is composed of several T-S fuzzy
subsystems with nonlinear interconnections. Wang et al. [24] addressed robust H∞ fuzzy
controller design to overcome the parametric uncertainties of fuzzy large-scale systems
without time delay and get H∞ performance. Zhang et al. [25] proposed the stabilization
problem of fuzzy large-scale system without parametric uncertainties.

However, the proposed decentralized control designs and the sufficient conditions
of closed-loop system did not consider the parametric uncertainties or time delays, which
is important in both theory and real-world application. In this paper, the stabilization
problem of the uncertain fuzzy large-scale systems with time delays is considered. Based
on decentralized control concept, we like to synthesize a PDC controller for each subsystem
so that the whole system can be stabilized asymptotically. When applied to degenerated
cases, (without uncertainties or time delay), the stabilization criteria are better than existing
ones. Stability is one of the most important performance indecies, but it is not enough for
control systems. Linear quadratic performance can reflect a lot of performance requirements,
so a quadratic performance index is considered in this paper. Based on Lyapunov function
stability theory, the optimization design method for decentralized control with respect to the
quadratic performance index is transformed into solving linear inequality matrix by PDC
controller.

This paper is organized as follows. In Section 2, the considered systems are stated
and some preliminaries are presented.The problem of stabilization for fuzzy large-scale
system with uncertainty is proposed in Section 3. Section 4 provides examples to illustrate
the correctness of our theoretic results. Finally, a conclusion is given in Section 5.

2. System Description and Preliminaries

Consider a fuzzy large-scale system S, with uncertainties both in isolated subsystem and
in their interconnection, which consists of J interconnected subsystems Si. The ith fuzzy
subsystem is described by the following equations:
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ẋi(t) =
ri∑

j=1

hij(t)
[(
Aij + ΔAij(t)

)
xi(t) +

(
Bij + ΔBij(t)

)
ui(t)

]

+
J∑

k=1

[(Cki + ΔCki(t))xk(t) + (Dki + ΔDki(t))xk(t − τki)],

(2.1)

where

[
ΔAij(t),ΔBij(t)

]
= EijFij(t)

[
Gij ,Hij

]
, [ΔCki(t),ΔDki(t)] = EkiFki(t)[Lki,Mki] (2.2)

for for all t ≥ 0, j = 1, 2, . . . , ri, k = 1, 2, . . . , J , xi(t) is the state vector, ui(t) is the control
input,Aij , Bij , Gij ,Hij , Eij , Cki,Dki, Eki,Mki, Lki are known constant matrices with appropriate
dimensions. τki is the time delay. hij(t) is the normalized weigh in (2.6). Fij(t) and Fki(t) are
time-varying matrices with appropriate dimensions satisfying

Fij(t)FT
ij(t) ≤ I, Fki(t)F

T

ki(t) ≤ I. (2.3)

Each isolated subsystem Si is represented by a T-S fuzzy model. The jth rule of this T-S fuzzy
model is represented as follows.
Rule j. If z1i(t) is Mj1i and . . . and zpi(t) isMjpi, then

ẋi(t) =
(
Aij + ΔAij(t)

)
xi(t) +

(
Bij + ΔBij(t)

)
ui(t), (2.4)

where zi(t) = [z1i(t), z2i(t), . . . , zpi(t)]
T , z1i, . . . , zpi(t) are premise variables, and Mjli (l =

1, 2, . . . , p) are fuzzy sets. By “fuzzy blending,” the final output of the ith fuzzy subsystem
is described as follows:

ẋi(t) =

∑ri
j=1 ωij(t)

[(
Aij + ΔAij(t)

)
xi(t) +

(
Bij + ΔBij(t)

)
ui(t)

]

∑ri
j=1 ωij(t)

=
ri∑

j=1

hij(t)
[(
Aij + ΔAij(t)

)
xi(t) +

(
Bij + ΔBij(t)

)
ui(t)

]
(2.5)

with

ωij(t) =
p∏

l=1

Mjli(zli(t)), hij(t) =
ωij(t)

∑ri
j=1 ωij(t)

, (2.6)

where Mjil(zil(t)) is the grade of membership of zil(t) in Mjil, and ri is the number of fuzzy
rules of subsystem Si. We assumed that ωij(t) ≥ 0 for all t, j = 1, 2, . . . , ri. Therefore

ri∑

j=1

hij(t) = 1. (2.7)
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Define a quadratic performance index

J =
J∑

i=1

∫∞

0

(
xT
i (t)Qixi(t) + uT

i (t)Riui(t)
)
dt, (2.8)

where Qi and Ri are positive matrices.
The main propose of this paper is to synthesize a decentralized PDC fuzzy controller

ui(t) for each subsystem such that the closed-loop large-scale T-S fuzzy systems (2.1) is
asymptotically stable and the optimization design method for decentralized control respect
to the quadratic performance index.

Before starting the main results, we need the following lemmas.

Lemma 2.1 (see [26]). Let Q be any of n × n matrix; one will have for any constant k ≥ 0; and any
positive matrix S > 0 that

2xTQy ≤ kxTQS−1QTx +
1
k
yTSy (2.9)

for all x, y ∈ Rn.

Lemma 2.2 (see [26]). Let D,E be any constant matrices and FTF ≤ I, where a is a positive
constant, all matrices with appropriate dimensions; one will have for any constant k > 0 such that

2xTDEFy ≤ kxTDDTx +
a

k
yTETEy, (2.10)

for all x, y ∈ Rn.

Lemma 2.3 (see [27]). Let Ri be any positive matrix; one will have for any 0 ≤ hij(t) ≤ 1 such that

⎛

⎝
ri∑

j=1

hij(t)Kij

⎞

⎠
T

Ri

⎛

⎝
ri∑

j=1

hij(t)Kij

⎞

⎠ ≤
ri∑

j=1

hij(t)KT
ijRiKij (2.11)

for all Kij ∈ Rn.

3. Stabilization and PDC Synthesis of Fuzzy Large-Scale System

In this section, the decentralized concept and PDC approach are applied to synthesize a local
feedback controller for each local subsystem. Let the fuzzy controller be as the PDC form:
Rule j. If z1i(t) is Mj1i and... and zpi(t) isMjpi, then

ui(t) = −Kijxi(t), (3.1)
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where i = 1, 2, . . . , J, j = 1, 2, . . . , ri. The overall state feedback fuzzy control law is represented
by:

ui(t) = −
∑ri

j=1 ωij(t)Kijxi(t)
∑ri

j=1 ωij(t)
= −

ri∑

j=1

hij(t)Kijxi(t). (3.2)

Substituting (3.2) into (2.1), the closed-loop fuzzy subsystem becomes

ẋi(t) =
ri∑

j=1

ri∑

n=1

hij(t)hin(t)
[(
Aij + ΔAij

) − (Bij + ΔBij

)
Kin

]
xi(t)

+
J∑

k=1

[(Cki + ΔCki)xk(t) + (Dki + ΔDki)xk(t − τki)].

(3.3)

Now, our work is to determine the local feedback gains Kij such that the whole fuzzy
large-scale system (3.3) is asymptotically stable.

Theorem 3.1. The fuzzy large-scale system (2.1) can be asymptotically stabilized by the decentralized
PDC fuzzy control (3.2), if there exist matrices Fij , positive definite matricesXi to satisfy the following
LMIs:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

XiA
T
ij +AijXi − FT

inB
T
ij − BijFin XiG

T
ij − FT

inH
T
ij XiM

T
i Ci Ei Xi

GijXi −HijFin −I 0 0 0 0
MiXi 0 −I 0 0 0

C
T

i 0 0 −I 0 0

E
T

i 0 0 0 −1
2
I 0

Xi 0 0 0 0 − 1
2J

I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

< 0, (3.4)

for i = 1, 2, . . . , J , j = 1, 2, . . . , ri, n = 1, 2, . . . , ri, where MT
i = [Mi1,Mi2, . . . ,MiJ , Li1,

Li2, . . . , LiJ]
T , Ci = [Eij , C1i, C2i, . . . , CJi, D1i, D2i, . . . , DJi], Ei = [E1i, E2i, . . . , EJi], Xi = P−1

i ,
Fin = KinP

−1
i .

Proof. Let the Lyapunov functional be

V (t) =
J∑

i=1

Vi(t) =
J∑

i=1

[
xT
i Pixi +

J∑

k=1

∫ t

t−τki
xT
k (s)
(
I +MT

kiMki

)
xk(s)ds

]
, (3.5)

where Pi > 0 is to be selected. It is obviously that there exist σ1 and σ2 such that

σ1‖xi(t)‖2 ≤ Vi(t) ≤ σ2‖xi(t)‖2. (3.6)
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Taking the derivative of the Vi(t) along the trajectories of (3.3),

V̇i(t)

= ẋT
i (t)Pixi(t) + xT

i (t)Piẋ
T
i (t) +

J∑

k=1

xT
k (t)
(
I +MT

kiMki

)
xk(t)

−
J∑

k=1

xT
k (t − τki)

(
I +MT

kiMki

)
xk(t − τki)

=
ri∑

j=1

ri∑

n=1

hij(t)hin(t)

{
xT
i (t)
[(
Aij + ΔAij

)T
Pi + Pi

(
Aij + ΔAij

)

−KT
in

(
Bij + ΔBij

)T
Pi − Pi

(
Bij + ΔBij

)
Kin

]
xi(t)

+ 2xT
i (t)Pi

J∑

k=1

(Cki+ΔCki)xk(t)+2xT
i (t)Pi

J∑

k=1

(Dki+ΔDki)xk(t−τki)

+
J∑

k=1

xT
k (t)
(
I+MT

kiMki

)
xk(t)−

J∑

k=1

xT
k (t−τki)

(
I+MT

kiMki

)
xk(t−τki)

}

=
ri∑

j=1

ri∑

n=1

hij(t)hin(t)

{
xT
i (t)
[
Nij + ΔAT

ijPi + PiΔAij −KT
inΔBT

ijPi − PiΔBijKin

]
xi(t)

+ 2xT
i (t)Pi

J∑

k=1

Ckixk(t) + 2xT
i (t)Pi

J∑

k=1

ΔCkixk(t) + 2xT
i (t)Pi

J∑

k=1

Dkixk(t)

+ 2xT
i (t − τki)Pi

J∑

k=1

ΔDkixk(t − τki) +
J∑

k=1

xT
k (t)
(
I +MT

kiMki

)
xk(t)

−
J∑

k=1

xT
k (t − τki)

(
I +MT

kiMki

)
xk(t − τki)

}
,

(3.7)

where Nij = AT
ijPi + PiAij −KT

inB
T
ijPi − PiBijKin.

Using Lemma (2.2), we have

xT
i (t)
[
ΔAT

ijPi + PiΔAij −KT
inΔBT

ijPi − PiΔBijKin

]
xi(t)

= xT
i (t)
[
PiEijFij(t)

(
Gij −HijKin

)
+
(
Gij −HijKin

)T
FT
ij(t)E

T
ijPi

]
xi(t)

≤ xT
i (t)
(
Gij −HijKin

)T(
Gij −HijKin

)
xi(t) + xT

i (t)PiEijE
T
ijPixi(t),

2xT
i (t)Pi

J∑

k=1

ΔCkixk(t)

= 2
J∑

k=1

xT
i (t)PiEkiFki(t)Lkixk(t)

≤ xT
i (t)Pi

J∑

k=1

EkiE
T

kiPixi(t) +
J∑

k=1

xT
k (t)LkiL

T
kixk(t),
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2xT
i (t)Pi

J∑

k=1

ΔDkixk(t − τki)

= 2
J∑

k=1

xT
i (t)PiEkiFki(t)Mkixk(t − τki)

≤ xT
i (t)Pi

J∑

k=1

EkiE
T

kiPixi(t) +
J∑

k=1

xT
k (t − τki)MkiM

T
kixk(t − τki).

(3.8)

Using Lemma 2.1, we get

2xT
i (t)Pi

J∑

k=1

Ckixk(t) ≤ xT
i (t)Pi

J∑

k=1

CkiC
T
kiPixi(t) +

J∑

k=1

xT
k (t)xk(t),

2xT
i (t)Pi

J∑

k=1

Dkixk(t − τki) ≤ xT
i (t)Pi

J∑

k=1

DkiD
T
kiPixi(t) +

J∑

k=1

xT
k (t − τki)xk(t − τki),

(3.9)

Noticing that the facts as follows:

J∑

i=1

J∑

k=1

xT
k (t)xk(t) =

J∑

i=1

J∑

k=1

xT
i (t)xi(t) =

J∑

i=1

xT
i (t)(JI)xi(t),

J∑

i=1

J∑

k=1

xT
k (t)LkiL

T
kixk(t) =

J∑

i=1

J∑

k=1

xT
i (t)LikL

T
ikxi(t),

J∑

i=1

J∑

k=1

xT
k (t)MkiM

T
kixk(t) =

J∑

i=1

J∑

k=1

xT
i (t)MikM

T
ikxi(t)

(3.10)

Based on (3.7)–(3.10), we have

V̇ (t) =
J∑

i=1

V̇i(t)

≤
J∑

i=1

⎧
⎨

⎩

ri∑

j=1

ri∑

n=1

hij(t)hin(t)xT
i (t)

×
[
AT

ijPi + PiAij −KT
inB

T
ijPi − PiBijKin +

(
Gij −HijKin

)T × (Gij −HijKin

)

+ PiEijE
T
ijPi + 2Pi

J∑

k=1

EkiE
T

kiPi + 2JI + Pi

J∑

k=1

CkiC
T
kiPi

+Pi

J∑

k=1

DkiD
T
kiPi +

J∑

k=1

MikM
T
ik +

J∑

k=1

LikL
T
ik

]
xi(t)

}
.

(3.11)
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From Schur complement, we know

AT
ijPi + PiAij −KT

inB
T
ijPi − PiBijKin +

(
Gij −HijKin

)T(
Gij −HijKin

)
+ PiEijE

T
ijPi

+ 2Pi

J∑

k=1

EkiE
T

kiPi + 2JI + Pi

J∑

k=1

CkiC
T
kiPi + Pi

J∑

k=1

DkiD
T
kiPi +

J∑

k=1

MikM
T
ik +

J∑

k=1

LikL
T
ik < 0

(3.12)

is equivalent to

⎛
⎜⎜⎜⎜⎜⎜⎝

AT
ijPi + PiAij −KT

inB
T
ijPi − PiBijKin + 2JI GT

ij −KT
inHij MT

i Ci Ei

Gij −HijKin −I 0 0 0
Mi 0 −I 0 0
CT

i 0 0 −I 0

ET
i 0 0 0 −1

2
I

⎞
⎟⎟⎟⎟⎟⎟⎠

< 0, (3.13)

where MT
i = [Mi1,Mi2, . . . ,MiJ , Li1, Li2, . . . , LiJ]

T , Ci = Pi[Eij , C1i, C2i, . . . , CJi, D1i, D2i, . . . ,

DJi], Ei = Pi[E1i, E2i, . . . , EJi].
So we have V̇ (t) < 0 while xi(t) (i = 1, 2, . . . , J) are not all zero vectors. Note that the

matrix inequalities in (3.13) can be transformed into certain forms of linearmatrix inequalities
(LMIs). Therefore, multiplying both sides of matrix inequalities (3.13) by diag{P−1

i , I, I, I, I}
and applying the change of variables such that Pi = X−1

i , Kin = FinX
−1
i , (i = 1, 2, . . . , J, n =

1, 2, . . . , ri), then (3.4) is obtained.

With the similar proof of Theorem 3.1, the stabilization criterion of large-scale system
(2.1) without uncertainties is also discussed. The result is presented as follows.

Corollary 3.2. The fuzzy large-scale system (2.1) without uncertainties can be asymptotically
stabilized by the decentralized PDC fuzzy control (3.2), if there exist matrices Fij , positive definite
matrices Xi to satisfy the following LMIs:

⎛
⎜⎜⎜⎝

XiA
T
ij +AijXi − FT

inB
T
ij − BijFin Ci Xi

C
T

i −I 0

Xi 0 − 1
2J

I

⎞
⎟⎟⎟⎠ < 0 (3.14)

for i = 1, 2, . . . , J , j = 1, 2, . . . , ri, n = 1, 2, . . . , ri, where Ci = [C1i, C2i, . . . , CJi, D1i, D2i, . . . , DJi].

Proof. The proof is similar with that of Theorem 3.1; therefore details are omitted.

Remark 3.3. This corollary is similar with Theorem 1 in [10], so the theorem in this paper is
more general.
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Theorem 3.4. If there exist matrices Fij , positive definite matrices Xi to satisfy the following LMIs:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

XiA
T
ij +AijXi − FT

inB
T
ij − BijFin XiG

T
ij − FT

inH
T
ij XiM

T
i Ci Ei Xi Xi FT

in

GijXi −HijFin −I 0 0 0 0 0 0
MiXi 0 −I 0 0 0 0 0

C
T

i 0 0 −I 0 0 0 0

E
T

i 0 0 0 −I 0 0 0

Xi 0 0 0 0 − 1
2J

I 0 0

Xi 0 0 0 0 0 −Q−1
i 0

Fin 0 0 0 0 0 0 −R−1
i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

< 0,

(3.15)

the fuzzy large-scale system (2.1) can be asymptotically stabilized by the decentralized PDC fuzzy
control (3.2), and the performance index (2.8) is satisfied the following inequality:

J ≤ J∗ =
J∑

i=1

[
xT
i (0)Pixi(0) +

J∑

k=1

∫0

−τki
xT
k (s)
(
I +MT

kiMki

)
xk(s)ds

]
, (3.16)

for i = 1, 2, . . . , J , j = 1, 2, . . . , ri, n = 1, 2, . . . , ri, where MT
i = [Mi1,Mi2, . . . ,MiJ , Li1, Li2, . . .,

LiJ]
T , Ci = [Eij , C1i, C2i, . . . , CJi, D1i, D2i, . . . , DJi], Ei = [E1i, E2i, . . . , EJi], Xi = P−1

i , Fin =
KinP

−1
i .

Proof. From the proof of Theorem 3.1, we know if

Gij = AT
ijPi + PiAij −KT

inB
T
ijPi − PiBijKin +

(
Gij −HijKin

)T(
Gij −HijKin

)
+ PiEijE

T
ijPi

+ 2Pi

J∑

k=1

EkiE
T

kiPi + 2JI + Pi

J∑

k=1

CkiC
T
kiPi + Pi

J∑

k=1

DkiD
T
kiPi +

J∑

k=1

MikM
T
ik +

J∑

k=1

LikL
T
ik < 0

(3.17)

then V̇ (t) < 0. Noticing that Qi and Ri are positive matrices, if inequality

AT
ijPi + PiAij −KT

inB
T
ijPi − PiBijKin +

(
Gij −HijKin

)T(
Gij −HijKin

)
+ PiEijE

T
ijPi

+ 2Pi

J∑

k=1

EkiE
T

kiPi + 2JI + Pi

J∑

k=1

CkiC
T
kiPi + Pi

J∑

k=1

DkiD
T
kiPi +

J∑

k=1

MikM
T
ik +

J∑

k=1

LikL
T
ik +Qi

+KT
inRiKin < 0,

(3.18)
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holds, we obtain V̇ (t) < 0:

J =
J∑

i=1

∫∞

0

(
xT
i (t)Qixi(t) + uT

i (t)Riui(t)
)
dt

=
J∑

i=1

∫∞

0
xT
i (t)

(
Qi +

ri∑

n=1

hin(t)KT
inRi

ri∑

n=1

hin(t)Kin

)
xi(t)dt.

(3.19)

Using Lemma 2.3, we get

J ≤
J∑

i=1

∫∞

0
xT
i (t)

(
Qi +

ri∑

n=1

hin(t)KT
inRiKin

)
xi(t)dt. (3.20)

If (3.18) holds, we have

J ≤ −
J∑

i=1

ri∑

j=1

ri∑

n=1

∫∞

0
hij(t)hin(t)xT

i (t)Gijxi(t)dt

≤ −
J∑

i=1

∫∞

0
V̇i(t)dt = V (0) − V (∞)

=
J∑

i=1

[
xT
i (0)Pixi(0) +

J∑

k=1

∫0

−τki

(
I +MT

kiMki

)
ds

]
.

(3.21)

Therefore, multiply both sides of (3.18) by P−1
i , and let Xi = P−1

i , Fin = KinP
−1
i . From Schur

complement, the proof is completed.

4. Numerical Examples

In this section, some numerical simulations for uncertain fuzzy large-scale system will be
given to illustrate the effectiveness of the proposed stabilization criteria and also compared
with the existing results.

Example 4.1. Consider an uncertain FLSS time delays S composed of three fuzzy subsystems
Si, i = 1, 2, 3 by the following equations:

ẋ1(t) =
2∑

j=1

h1j(t)
[(
A1j + ΔA1j

)
x1(t) +

(
B1j + ΔB1j

)
u1(t)

]

+
3∑

k=1

[(Ck1 + ΔCk1)xk(t) + (Dk1 + ΔDk1)xk(t − τk1)],
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ẋ2(t) =
2∑

j=1

h2j(t)
[(
A2j + ΔA2j

)
x2(t) +

(
B2j + ΔB2j

)
u2(t)

]

+
3∑

k=1

[(Ck2 + ΔCk2)xk(t) + (Dk2 + ΔDk2)xk(t − τk2)],

ẋ3(t) =
2∑

j=1

h3j(t)
[(
A3j + ΔA3j

)
x3(t) +

(
B3j + ΔB3j

)
u3(t)

]

+
3∑

k=1

[(Ck3 + ΔCk3)xk(t) + (Dk3 + ΔDk3)xk(t − τk3)],

(4.1)

in which xT
1 (t) = [x11, x21]

T , xT
2 (t) = [x12, x22]

T , xT
1 (t) = [x13, x23]

T

[
ΔA1j ,ΔB1j

]
= E1jF1j

[
G1j ,H1j

]
,

[
ΔA2j ,ΔB2j

]
= E2jF2j

[
G2j ,H2j

]
,

[
ΔA3j ,ΔB3j

]
= E3jF3j

[
G3j ,H3j

]
, [ΔCk1,ΔDk1] = Ek1Fk1[Lk1,Mk1],

[ΔCk2,ΔDk2] = Ek2Fk2[Lk2,Mk2], [ΔCk3,ΔDk3] = Ek3Fk3[Lk3,Mk3],

(4.2)

for i, k = 1, 2, 3, j = 1, 2.

A11 =
(

0.6 2.4
0.209 1.9

)
, A12 =

(
0.6 2.4
0 1.9

)
, A21 =

(−1 −0.5
1 3

)
,

A22 =
(

0.6 2.4
−0.209 1.9

)
, A31 =

(
0.6 1.2

0.209 1.9

)
, A32 =

(
0.6 1.2
0 1.9

)
,

B11 =
(
2 0
0 1

)
, B12 =

(
1 0
0 2

)
, B21 =

(
3 1
0 3

)
,

B22 =
(
2 0
3 2

)
, B31 =

(
1 0
0 1

)
, B32 =

(
1 0
1 1

)
,

C11 =
(−0.1 0.1

0 0

)
, C21 =

(
0 0
0.1 0.1

)
, C31 =

(−0.2 0.15
0 −1

)
,

C12 =
(

0 0
0.1 0.1

)
, C22 =

(
0 0
0 0.1

)
, C32 =

(−0.3 −0.2
0.2 0.1

)
,

C13 =
(−0.1 0

0 0

)
, C23 =

(
0.1 0
0 0.1

)
, C33 =

(
0 0
0.1 0

)
,

D11 =
(
0.1 0.1
0 0

)
, D21 =

(
0.1 0
0 0.1

)
, D31 =

(−1.08 0.36
0 −0.72

)
,

D12 =
(

0.1 0
−0.1 0.1

)
, D22 =

(
0 0.1
0 0

)
, D32 =

(
0.6 −0.3
0.1 0

)
,

D13 =
(
0 0
0 0

)
, D23 =

(−0.1 0
0 0

)
, D33 =

(−0.1 0
0 −0.1

)
,

E11 =
(−0.28 −0.028
−0.14 0.182

)
, E12 =

(−0.21 −0.084
−1.26 −0.42

)
, E21 =

(−0.5 0.25
1.35 0.75

)
,
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E22 =
(−0.27 0

75.0 0.81

)
, E31 =

(−0.28 0.28
0.14 0.182

)
, E32 =

(
0.21 0.84
1.26 −0.42

)
,

E11 =
(−0.28 0.028
−0.14 0.182

)
, E21 =

(−0.21 −840.0
−1.26 −0.42

)
, E31 =

(
0.21 −0.084
−1.26 0.42

)
,

E12 =
(−0.5 0.25
1.35 0.75

)
, E22 =

(−0.27 0
0.81 0.81

)
, E32 =

(−0.27 0
0.75 0.81

)
,

E13 =
(−0.28 0.28

0.14 0.182

)
, E23 =

(
0.21 0.84
1.26 −0.42

)
, E33 =

(−0.21 0.84
1.26 0.42

)
,

F11(t) =
(
1 − sin4t 0

0 1 − cos4t

)
, F11(t) =

(
sin t2 0
0 cos t2

)
,

G11 = H11 = E11, G12 = H12 = E12, G21 = H21 = E21, G22 = H22 = E22,

G31 = H31 = E31, G32 = H32 = E32, L11 = M11 = E11, L21 = M21 = E21,

L31 = M31 = E31, L12 = M12 = E12, L22 = M22 = E22, L32 = M32 = E32,

L13 = M13 = E13, L23 = M23 = E23, L33 = M33 = E33,

F11(t) = F12(t) = F21(t) = F22(t) = F31(t) = F32(t),

F11(t) = F21(t) = F31(t) = F12(t) = F22(t) = F32(t) = F13(t) = F23(t) = F33(t).

(4.3)

Here, the T-S fuzzy models of the isolated subsystem are of the following:

Subsystem 1

Rule 1. If x11(t) isM111 then

ẋ1(t) = (A11 + ΔA11(t))x1(t) + (B11 + ΔB11(t))u1(t). (4.4)

Rule 2. If x11(t) isM211 then

ẋ1(t) = (A12 + ΔA12(t))x1(t) + (B12 + ΔB12(t))u1(t), (4.5)

and the membership functions for Rules 1 and 2 are, respectively, M111(x11(t)) = 1/(1 +
exp(−3x11(t))),M211(x11(t)) = 1 −M111(x11(t)).

Subsystem 2

Rule 1. If x12(t) isM112 Then

ẋ2(t) = (A21 + ΔA21(t))x2(t) + (B21 + ΔB21(t))u2(t). (4.6)
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Figure 1: The state response with ui(t) = 0.

Rule 2. If x12(t) isM212 then

ẋ2(t) = (A22 + ΔA22(t))x2(t) + (B22 + ΔB22(t))u2(t), (4.7)

and themembership functions for Rules 1 and 2 are, respectively,M112(x12(t)) = exp(−2x2
12(t)),

M212(x12(t)) = 1 −M112(x12(t)).

Subsystem 3

Rule 1. If x13(t) isM113 then

ẋ3(t) = (A31 + ΔA31(t))x3(t) + (B31 + ΔB31(t))u3(t). (4.8)

Rule 2. If x13(t) isM213 then

ẋ3(t) = (A32 + ΔA32(t))x3(t) + (B32 + ΔB32(t))u3(t), (4.9)

and the membership functions for Rules 1 and 2 are, respectively, M113(x13(t)) = 1/(1 +
exp(−1.5x13(t))),M213(x13(t)) = 1 −M113(x13(t)).
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It is noted that the above large-scale system without control (ui(t) = 0) has unstable
responses with initial conditions x1(t) = [−3, 3]T , x2(t) = [−2, 2]T , x3(t) = [1,−1]T as shown in
Figure 1.

In order to stabilize the large-scale fuzzy system, three decentralized PDC fuzzy
controllers are designed in the following.

Fuzzy Controller C1

Rule 1. If x11(t) isM111 then

u1(t) = −K11x1(t). (4.10)

Rule 2. If x11(t) isM211 then

u1(t) = −K12x1(t). (4.11)

Fuzzy Controller C2

Rule 1. If x12(t) isM112 then

u2(t) = −K21x2(t). (4.12)

Rule 2. If x12(t) isM212 then

u2(t) = −K22x2(t). (4.13)

Fuzzy Controller C3

Rule 1. If x13(t) isM113 then

u3(t) = −K31x3(t). (4.14)

Rule 2. If x13(t) isM213 Then

u3(t) = −K32x3(t). (4.15)

By using the approaches of Theorem 3.1, we obtain the matrices Kij for subsystems
S1, S2, and S3:

K11 =
(
1.5681 0.4733
0.5296 3.0430

)
, K12 =

(
2.2261 0.2680
0.5801 1.7275

)
, K21 =

(
0.8717 0.7769
−0.4856 1.2398

)
,

K22 =
(
1.4831 0.5179
0.2098 1.7072

)
, K31 =

(
1.6548 0.7281
0.4122 2.9992

)
, K32 =

(
1.5769 0.4958
0.5823 2.0029

)
.

(4.16)
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Figure 2: The state response with fuzzy control by Theorem 3.1.

The complete simulation results with initial conditions x1(t) = [−3, 3]T , x2(t) =
[−2, 2]T , x3(t) = [1,−1]T are shown in Figure 2. It is obvious that they are stabilized asymp-
totically.

Example 4.2. Consider the fuzzy large-scale system S composed of two subsystems Si as
follows [25]:

ẋ1(t) =
2∑

j=1

h1j(t)
(
A1jx1(t) + B1ju1(t)

)
+

2∑

h=1

Ch1xh(t),

ẋ2(t) =
2∑

j=1

h2j(t)
(
A2jx2(t) + B2ju2(t)

)
+

2∑

h=1

Ch2xh(t),

(4.17)
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where x1(t) = [x11(t), x12(t)]
T , x2(t) = [x21(t), x22(t)]

T

A11 =
(
5 1
0 −4

)
, A12 =

(−4 0
2 −8

)
, B11 =

(
1
0

)
,

B12 =
(
0
1

)
, C11 = C22 =

(
0 0
0 0

)
, A21 =

(−3 0
4 −2

)
,

A22 =
(−4 −5

1 −3
)
, B21 =

(
1
−2
)
, B22 =

(−1
1

)
,

C21 =
(
5 1
0 0

)
, C12 =

(
1 0
1 0

)

(4.18)

and the membership functions are, respectively, M111(x11(t)) = exp(−x2
11(t)), M211(x11(t)) =

1 −M111(x11(t)),M112(x21(t)) = 1/(1 + exp(−x21(t))),M212(x21(t)) = 1 −M112(x21(t)).
In order to stabilize the large-sale fuzzy system, three decentralized PDC fuzzy

controllers are designed in the following.

Fuzzy Controller C1

Rule 1. If x11(t) isM111 then

u1(t) = −K11x1(t). (4.19)

Rule 2. If x11(t) isM211 then

u1(t) = −K12x1(t). (4.20)

Fuzzy Controller C2

Rule 1. If x21(t) isM112 then

u2(t) = −K21x2(t). (4.21)

Rule 2. If x21(t) isM212 then

u2(t) = −K22x2(t). (4.22)

We let Q1 = Q2 =
( 5 0
0 1

)
, R1 = 1, R2 = 2. By using the approaches of Theorem 3.4, we

obtain

P1 =
(
5.5084 1.6329
1.6329 1.5120

)
, P2 =

(
0.9692 −0.0406
−0.0406 1.0681

)
. (4.23)

The control gain Kij for subsystem S1, S2 is compared with [24] in Table 1. The
complete simulation results with initial conditions x1(t) = [1,−1]T , x2(t) = [2,−2]T are shown
in Figure 3.



Journal of Applied Mathematics 17

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time (s)

1

0.5

0

−0.5

−1

x11(t)
x12(t)

St
at

e 
va

ri
ab

le
s

(a)

−2

−1

0

1

2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time (s)

x21(t)
x22(t)

St
at

e 
va

ri
ab

le
s

(b)

Figure 3: The state response with fuzzy control by Theorem 3.4.

Table 1: Comparison of fuzzy controller, for example, with Zhang et al. [25].

Index K11 K12 K21 K22 J∗ ‖K‖2
Zhang et al. [25] [10.7602 4.8931] [7.1424 1.0899] [2.2702 0.1348] [1.9527 0.8715] 21.0606 14.2011
This paper [9.0414 1.0000] [2.0000 1.8284] [1.1604 0.0740] [0.3515 2.2722] 12.2288 9.8351

Remark 4.3. From Figure 3, we can see that the system can be stabilized through appropriate
decentralized control. Obviously, in Table 1, we can see the method of this paper has smaller
gain matrices and performance index, so it has better control effectiveness.

5. Conclusions

In this paper we explore the stabilization problems for uncertain fuzzy large-scale system
with time delays. The decentralized PDC fuzzy controller has been designed under some
conditions such that the whole closed-loop large-scale fuzzy system is asymptotically stable.
Then, the optimization design method for decentralized control is also considered with
respect to a quadratic performance index. Finally, numerical examples are provided to
demonstrate the correctness and less conservativeness of the theoretical results. However,
there are still some other problems to be addressed, such that time-varying delays and delay-
dependent stability and stabilization of fuzzy large-scale system and the results developed
in the paper can be extended to the case that the underlying systems are invovled with any
switching dynamics.
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