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This paper studies the following third order neutral delay discrete equationΔ(anΔ2(xn+pnxn−τ ))+
f(n, xn−d1n , . . . , xn−dln

) = gn, n ≥ n0, where τ, l ∈ N, n0 ∈ N ∪ {0}, {an}n∈Nn0
, {pn}n∈Nn0

, {gn}n∈Nn0
are

real sequences with an /= 0 for n ≥ n0, {din}n∈Nn0
⊆ Z with limn→∞(n − din) = +∞ for i ∈ {1, 2, . . . , l}

and f ∈ C(Nn0 × R
l ,R). By using a nonlinear alternative theorem of Leray-Schauder type, we get

sufficient conditions which ensure the existence of bounded positive solutions for the equation.
Three examples are given to illustrate the results obtained in this paper.

1. Introduction and Preliminaries

The oscillatory, nonoscillatory and asymptotic behaviors and existence of solutions for
various difference equations have received more and more attentions in recent years. For
details, we refer the reader to [1–11] and the references therein.

In 2005, M. Migda and J. Migda [10] studied the asymptotic behavior of solutions for
the second order neutral difference equation

Δ2(xn + pxn−k
)
+ f(n, xn) = 0, n ≥ 1, (1.1)

where p ∈ R, k is a nonnegative integer and f : N × R → R. In 2008, Cheng and Chu [7]
established sufficientand necessary conditions of oscillation for the second order difference
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equation

Δ(rn−1Δxn−1) + pnx
γ
n = 0, n ≥ 1, (1.2)

where γ is the quotient of two odd positive integers and pn, rn ∈ (0,+∞) for n ∈ N. In 2000, Li
et al. [9] gave several necessary and/or sufficient conditions of the existence of unbounded
positive solution for the nonlinear difference equation

Δ(rnΔxn) + f(n, xn) = 0, n ≥ n0, (1.3)

where n0 is a fixed nonnegative integer, r : Nn0 → (0,+∞) and f : Nn0 × R → R. In 2003,
using the Leray-Schauder’s nonlinear alternative theorem, Agarwal et al. [1] presented the
existence of nonoscillatory solutions for the discrete equation

Δ
(
anΔ

(
xn + pxn−τ

))
+ F(n + 1, xn+1−σ) = 0, n ≥ 1, (1.4)

where τ, σ are fixed nonnegative integers, p ∈ R, a : N → (0,+∞) and F : N × (0,+∞) →
[0,+∞) is continuous. In 1995, Yan and Liu [11] proved the existence of a bounded
nonoscillatory solution for the third order difference equation

Δ3xn + f(n, xn, xn−r) = 0, n ≥ n0 (1.5)

by utilizing the Schauder’s fixed point theorem. In 2005, Andruch-Sobiło and Migda [2]
studied the third order linear difference equations of neutral type

Δ3(xn − pnxσn

) ± qnxτn = 0, n ≥ n0 (1.6)

and obtained sufficient conditions under which all solutions of (1.6) are oscillatory.
The aim of this paper is to study the following third order neutral delay discrete

equation

Δ
(
anΔ2(xn + pnxn−τ

))
+ f(n, xn−d1n , . . . , xn−dln) = gn, n ≥ n0, (1.7)

where τ, l ∈ N,n0 ∈ N ∪ {0}, {an}n∈Nn0
, {pn}n∈Nn0

, {gn}n∈Nn0
are real sequences with an /= 0 for

n ≥ n0, {din}n∈Nn0
⊆ Z with limn→∞(n−din) = +∞ for i ∈ {1, 2, . . . , l} and f ∈ C(Nn0 ×R

l,R). By
making use of the Leray-Schauder’s nonlinear alternative theorem, we establish the existence
results of bounded positive solutions for (1.7), which extend substantially Theorem 2 in [11].
Three nontrivial examples are given to illustrate the superiority and applications of the results
presented in this paper.
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Let us recall and introduce the below concepts, signs and lemmas. Let R,Z and N

denote the sets of all real numbers, integers and positive integers, respectively,

Nn0 = {n : n ∈ Nwithn ≥ n0}, Zβ =
{
n : n ∈ Zwithn ≥ β

}
,

β = min{n0 − τ, inf{n − din : 1 ≤ i ≤ l, n ∈ Nn0}}
(1.8)

and l∞β stand for the Banach space of all bounded sequences on Zβ with norm

‖x‖ = sup
n∈Zβ

|xn| forx = {xn}n∈Zβ
∈ l∞β . (1.9)

For any constants M > N > 0, put

E(N) =
{
x = {xn}n∈Zβ

∈ l∞β : xn ≥ N forn ∈ Zβ

}
,

U(M) = {x ∈ E(N) : ‖x‖ < M}.
(1.10)

It is easy to verify that E(N) is a nonempty closed convex subset of l∞
β

and U(M) is a
nonempty open subset of E(N).

By a solution of (1.7), we mean a sequence {xn}n∈Zβ
with a positive integer T ≥ τ + |β|

such that (1.7) holds for all n ≥ T .
For any subset U of a Banach space X, letU and ∂U denote the closure and boundary

ofU in X, respectively.

Lemma 1.1 (see [8]). A bounded, uniformly Cauchy subset D of l∞
β
is relatively compact.

Lemma 1.2 (Leray-Schauder’s Nonlinear Alternative Theorem [1]). Let E be a nonempty closed
convex subset of a Banach space X and U be an open subset of E with p∗ ∈ U. Also G : U → E is a
continuous, condensing mapping with G(U) bounded. Then either

(A1) G has a fixed point inU; or

(A2) there are x ∈ ∂U and λ ∈ (0, 1) with x = (1 − λ)p∗ + λGx.

2. Existence of Bounded Positive Solutions

Now we investigate sufficient conditions of the existence of bounded positive solutions for
(1.7) by using the Leray-Schauder’s Nonlinear Alternative Theorem.
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Theorem 2.1. Assume that there exist constants k0 ∈ Nn0 and M,N, p and p satisfying

∞∑

s=k0

∞∑

k=s

1
|ak|

∞∑

j=k

sup
{∣∣f

(
j,w1, . . . , wl

)∣∣ : wi ∈ [N,M], 1 ≤ i ≤ l
}
< +∞; (2.1)

∞∑

s=k0

∞∑

k=s

1
|ak|

∞∑

j=k

∣
∣gj
∣
∣ < +∞; (2.2)

0 < N <
(
1 − p − p

)
M, min

{
p, p

}
≥ 0, p + p < 1 (2.3)

−p ≤ pn ≤ p, n ≥ k0. (2.4)

Then (1.7) possesses a bounded positive solution inU(M).

Proof. Let L ∈ (pM + N,M(1 − p)). It follows from (2.1)–(2.3) that there exists a positive
integer T > 1 + τ + k0 + |β| sufficiently large satisfying

∞∑

s=T

∞∑

k=s

1
|ak|

∞∑

j=k

[∣∣gj
∣∣ + sup

{∣∣f
(
j,w1, . . . , wl

)∣∣ : wi ∈ [N,M], 1 ≤ i ≤ l
}]

< min
{
L − pM −N, M

(
1 − p

)
− L
}
.

(2.5)

Choose p∗ = M − ε0 with ε0 ∈ (0,min{L − pM −N,M(1 − p) − L}) and

∞∑

s=T

∞∑

k=s

1
|ak|

∞∑

j=k

[∣∣gj
∣∣ + sup

{∣∣f
(
j,w1, . . . , wl

)∣∣ : wi ∈ [N,M], 1 ≤ i ≤ l
}]

≤ min
{
L − pM −N,M

(
1 − p

)
− L
}
− ε0.

(2.6)

Note that

M > M − ε0 = p∗ > M −min
{
L − pM −N,M

(
1 − p

)
− L
}
≥ N +M

(
1 + p

) − L > N,

(2.7)

which implies that p∗ = {p∗}n∈Zβ
∈ U(M). Define two mappings AL, BL : U(M) → l∞

β
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by

ALxn =

{
L − pnxn−τ , n ≥ T + 1
L − pTxT , β ≤ n ≤ T ;

(2.8)

BLxn =

⎧
⎪⎪⎨

⎪⎪⎩

−
n−1∑

s=T

∞∑

k=s

1
ak

∞∑

j=k

[
−gj + f

(
j, xj−d1j , . . . , xj−dlj

)]
, n ≥ T + 1

0, β ≤ n ≤ T

(2.9)

for all x = {xn}n∈Zβ
∈ U(M).

We now show that

DL = AL + BL : U(M) −→ E(N). (2.10)

For each x = {xn}n∈Zβ
∈ U(M), by (2.4)–(2.9), we have

ALxn + BLxn = L − pnxn−τ −
n−1∑

s=T

∞∑

k=s

1
ak

∞∑

j=k

[
−gj + f

(
j, xj−d1j , . . . , xj−dlj

)]

≥ L − pM −
n−1∑

s=T

∞∑

k=s

1
|ak|

∞∑

j=k

[∣∣gj
∣∣ +
∣∣∣f
(
j, xj−d1j , . . . , xj−dlj

)∣∣∣
]

≥ L − pM −min
{
L − pM −N,M

(
1 − p

)
− L
}
+ ε0

≥ N + ε0

> N, n ≥ T + 1

ALxn + BLxn = L − pTxT ≥ L − pM > N, β ≤ n ≤ T,

(2.11)

We next assert that

BL : U(M) −→ l∞β is a continuous, compact mapping. (2.12)

Let {xα}α∈N
⊆ U(M) be an arbitrary sequence and x0 ∈ l∞β with

∥∥∥xα − x0
∥∥∥ −→ 0 asα −→ ∞. (2.13)

Since U(M) is closed, it follows that x0 ∈ U(M). Given ε > 0. Using (2.1), (2.13) and the
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continuity of f , we infer that there exists T ∗∗, T ∗ ∈ N with T ∗ > T + 1 satisfying

∞∑

s=T∗

∞∑

k=s

1
|ak|

∞∑

j=k

sup
{∣∣f

(
j,w1, . . . , wl

)∣∣ : wi ∈ [N,M], 1 ≤ i ≤ l
}
<

ε

16
; (2.14)

∞∑

k=T∗

1
|ak|

∞∑

j=k

sup
{∣∣f

(
j,w1, . . . , wl

)∣∣ : wi ∈ [N,M], 1 ≤ i ≤ l
}
<

ε

16(T ∗ − T)
; (2.15)

T∗−1∑

s=T

T∗−1∑

k=s

1
|ak|

∞∑

j=T∗
sup

{∣∣f
(
j,w1, . . . , wl

)∣∣ : wi ∈ [N,M], 1 ≤ i ≤ l
}
<

ε

16
; (2.16)

T∗−1∑

s=T

T∗−1∑

k=s

1
|ak|

T∗−1∑

j=k

∣
∣
∣f
(
j, xα

j−d1j
, . . . , xα

j−dlj

)
− f
(
j, x0

j−d1j
, . . . , x0

j−dlj

)∣∣
∣ <

ε

2
, α ≥ T ∗∗. (2.17)

Combining (2.9) and (2.14)–(2.17), we conclude that
∥∥∥BLx

α − BLx
0
∥∥∥

= max

{

sup
β≤n≤T

∣∣∣BLx
α
n − BLx

0
n

∣∣∣, sup
n≥T+1

∣∣∣BLx
α
n − BLx

0
n

∣∣∣

}

≤ max

⎧
⎨

⎩
0, sup

n≥T+1

n−1∑

s=T

∞∑

k=s

1
|ak|

∞∑

j=k

∣∣∣f
(
j, xα

j−d1j
, . . . , xα

j−dlj

)
− f
(
j, x0

j−d1j
, . . . , x0

j−dlj

)∣∣∣

⎫
⎬

⎭

≤
T∗−1∑

s=T

∞∑

k=s

1
|ak|

∞∑

j=k

∣∣∣f
(
j, xα

j−d1j
, . . . , xα

j−dlj

)
− f
(
j, x0

j−d1j
, . . . , x0

j−dlj

)∣∣∣

+
∞∑

s=T∗

∞∑

k=s

1
|ak|

∞∑

j=k

[∣∣∣f
(
j, xα

j−d1j
, . . . , xα

j−dlj

)∣∣∣ +
∣∣∣f
(
j, x0

j−d1j
, . . . , x0

j−dlj

)∣∣∣
]

≤
T∗−1∑

s=T

T∗−1∑

k=s

1
|ak|

∞∑

j=k

∣∣∣f
(
j, xα

j−d1j
, . . . , xα

j−dlj

)
− f
(
j, x0

j−d1j
, . . . , x0

j−dlj

)∣∣∣

+
T∗−1∑

s=T

∞∑

k=T∗

1
|ak|

∞∑

j=k

∣∣∣f
(
j, xα

j−d1j
, . . . , xα

j−dlj

)∣∣∣ +
∣∣∣f
(
j, x0

j−d1j
, . . . , x0

j−dlj

)∣∣∣

+ 2
∞∑

s=T∗

∞∑

k=s

1
|ak|

∞∑

j=k

sup
{∣∣f

(
j,w1, . . . , wl

)∣∣ : wi ∈ [N,M], 1 ≤ i ≤ l
}

≤
T∗−1∑

s=T

T∗−1∑

k=s

1
|ak|

T∗−1∑

j=k

∣∣∣f
(
j, xα

j−d1j
, . . . , xα

j−dlj

)
− f
(
j, x0

j−d1j
, . . . , x0

j−dlj

)∣∣∣

+
T∗−1∑

s=T

T∗−1∑

k=s

1
|ak|

∞∑

j=T∗

[∣∣∣f
(
j, xα

j−d1j
, . . . , xα

j−dlj

)∣∣∣ +
∣∣∣f
(
j, x0

j−d1j
, . . . , x0

j−dlj

)∣∣∣
]

+ 2(T ∗ − T)
∞∑

k=T∗

1
|ak|

∞∑

j=k

sup
{∣∣f

(
j,w1, . . . , wl

)∣∣ : wi ∈ [N,M], 1 ≤ i ≤ l
}
+ 2 · ε

16

<
ε

2
+ 2 · ε

16
+ 2(T ∗ − T) · ε

16(T ∗ − T)
+
ε

8
< ε, α ≥ T ∗∗,

(2.18)
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which means that BL is continuous in U(M). On the other hand, in light of (2.6) and (2.9),
we get that for each x = {xn}n∈Zβ

∈ U(M)

‖BLx‖ = max

{

sup
β≤n≤T

|BLxn|, sup
n≥T+1

|BLxn|
}

≤ sup
n≥T+1

n−1∑

s=T

∞∑

k=s

1
|ak|

∞∑

j=k

[∣
∣gj
∣
∣ +
∣
∣
∣f
(
j, xj−d1j , . . . , xj−dlj

)∣∣
∣
]

≤
∞∑

s=T

∞∑

k=s

1
|ak|

∞∑

j=k

[∣∣gj
∣
∣ + sup

{∣∣f
(
j,w1, . . . , wl

)∣∣ : wi ∈ [N,M], 1 ≤ i ≤ l
}]

≤ min
{
L − pM −N,M

(
1 − p

)
− L
}
− ε0

≤ M,

(2.19)

which yields that BL(U(M)) is a bounded subset of l∞β . By virtue of (2.1) and (2.2), we deduce
that for any ε > 0, there exists T0 > T satisfying

∞∑

s=T0

∞∑

k=s

1
|ak|

∞∑

j=k

[∣∣gj
∣∣ + sup

{∣∣f
(
j,w1, . . . , wl

)∣∣ : wi ∈ [N,M], 1 ≤ i ≤ l
}]

< ε, (2.20)

which together with (2.9) gives that for any x = {xn}n∈Zβ
∈ U(M)

|BLxn − BLxm|

=

∣∣∣∣∣∣

n−1∑

s=T

∞∑

k=s

1
ak

∞∑

j=k

[
−gj + f

(
j, xj−d1j , . . . , xj−dlj

)]
−

m−1∑

s=T

∞∑

k=s

1
ak

∞∑

j=k

[
−gj + f

(
j, xj−d1j , . . . , xj−dlj

)]
∣∣∣∣∣∣

≤
m−1∑

s=n

∞∑

k=s

1
|ak|

∞∑

j=k

[∣∣gj
∣∣ +
∣∣∣f
(
j, xj−d1j , . . . , xj−dlj

)∣∣∣
]

<
∞∑

s=T0

∞∑

k=s

1
|ak|

∞∑

j=k

[∣∣gj
∣∣ + sup

{∣∣f
(
j,w1, . . . , wl

)∣∣ : wi ∈ [N,M], 1 ≤ i ≤ l
}]

< ε, m > n ≥ T0,

(2.21)

which means that BL(U(M)) is uniformly Cauchy. Thus Lemma 1.1 ensures that BL(U(M))
is a relatively compact subset of l∞

β
.

Let x = {xn}n∈Zβ
, y = {yn}n∈Zβ

∈ U(M). In view of (2.3), (2.4) and (2.8), we know that

∣∣ALxn −ALyn

∣∣ =
∣∣L − pnxn−τ − L + pnyn−τ

∣∣ ≤ ∣∣pn
∣∣∥∥x − y

∥∥ ≤
(
p + p

)∥∥x − y
∥∥, n ≥ T + 1,

∣∣ALxn −ALyn

∣∣ =
∣∣L − pTxT−τ − L + pTyT−τ

∣∣ ≤ ∣∣pT
∣∣∥∥x − y

∥∥ ≤
(
p + p

)∥∥x − y
∥∥, β ≤ n ≤ T,

(2.22)
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which implies that

∥
∥Ax −Ay

∥
∥ ≤

(
p + p

)∥
∥x − y

∥
∥, (2.23)

which together with (2.10) and (2.12) guarantees that DL : U(M) → E(N) is a continuous,
condensing mapping.

In order to show the existence of a fixed point of DL, we need to prove that (A2) in
Lemma 1.2 does not hold. Otherwise there exist x = {xn}n∈Zβ

∈ ∂U(M) and λ ∈ (0, 1) such
that x = (1 − λ)p∗ + λDLx. Let

S1 =
{
x ∈ l∞β : N ≤ xn ≤ M, ∀n ≥ β, ‖x‖ = M

}
,

S2 =
{
x ∈ l∞β : N ≤ xn ≤ M, ∀n ≥ β, and there existsn∗ ≥ β satisfyingxn∗ = N

}
.

(2.24)

It is easy to verify that ∂U(M) = S1 ∪ S2. Now we have to discuss two possible cases as
follows:

Case 1. Let x ∈ S1. It follows from (2.3), (2.4), (2.8) and (2.9) that

xn = (1 − λ)p∗ + λ[ALxn + BLxn]

= (1 − λ)p∗ + λ

⎡

⎣L − pnxn−τ −
n−1∑

s=T

∞∑

k=s

1
ak

∞∑

j=k

[
−gj + f

(
j, xj−d1j , . . . , xj−dlj

)]
⎤

⎦

≤ (1 − λ)p∗ + λ

⎡

⎣L + pM +
n−1∑

s=T

∞∑

k=s

1
|ak|

∞∑

j=k

[∣∣gj
∣∣ +
∣∣∣f
(
j, xj−d1j , . . . , xj−dlj

)∣∣∣
]
⎤

⎦

≤ (1 − λ)(M − ε0) + λ
[
L + pM +min

{
L − pM −N, M

(
1 − p

)
− L
}
− ε0

]

≤ (1 − λ)(M − ε0) + λ(M − ε0)

= M − ε0, n ≥ T + 1,

(2.25)

xn = (1 − λ)p∗ + λ
[
L − pTxT

] ≤ (1 − λ)p∗ + λ
(
L + pM

)

≤ (1 − λ)(M − ε0) + λ(M − ε0) = M − ε0, β ≤ n ≤ T,

(2.26)

which yield that

M = ‖x‖ ≤ M − ε0 < M, (2.27)

which is a contradiction;



Abstract and Applied Analysis 9

Case 2. Let x ∈ S2. If n∗ ≥ T + 1, by (2.3), (2.4), (2.8) and (2.9), we deduce that

N = xn∗ = (1 − λ)p∗ + λ[ALxn∗ + BLxn∗]

= (1 − λ)p∗ + λ

⎡

⎣L − pn∗xn∗−τ −
n∗−1∑

s=T

∞∑

k=s

1
ak

∞∑

j=k

[
−gj + f

(
j, xj−d1j , . . . , xj−dlj

)]
⎤

⎦

≥ (1 − λ)(M − ε0) + λ

⎡

⎣L − pM −
n∗−1∑

s=T

∞∑

k=s

1
|ak|

∞∑

j=k

[∣
∣gj
∣
∣ +
∣
∣
∣f
(
j, xj−d1j , . . . , xj−dlj

)∣∣
∣
]
⎤

⎦

> (1 − λ)N + λ
[
L − pM −min

{
L − pM −N, M

(
1 − p

)
− L
}
+ ε0

]

≥ (1 − λ)N + λ(N + ε0)

= N + ε0

> N,

(2.28)

which is impossible; if n∗ ≤ T , by (2.3), (2.4), (2.8) and (2.9), we arrive at

N = xn∗ = (1 − λ)p∗ + λ
[
L − pTxT

] ≥ (1 − λ)p∗ + λ
(
L − pM

)

≥ (1 − λ)N + λ(N + ε0) = N + ε0

> N,

(2.29)

which is absurd.
Consequently Lemma 1.2 ensures that there is x = {xn}n∈Zβ

∈ U(M) such that DLx =
ALx + BLx = x, which is a bounded positive solution of (1.7). This completes the proof.

Remark 2.2. Under the conditions of Theorem 2.1 we prove also that (1.7) has uncountably
many bounded positive solutions inU(M).

In fact, as in the proof of Theorem 2.1, for any different L1, L2 ∈ (pM+N,M(1−p))we
conclude that for each r ∈ {1, 2}, there exist a constant Tr > 1 + τ + k0 + |β| and two mappings
Ar, Br : U(M) → l∞

β
satisfying (2.6)–(2.9) and

∞∑

s=min{T1,T2}

∞∑

k=s

1
|ak|

∞∑

j=k

[∣∣gj
∣∣ + sup

{∣∣f
(
j,w1, . . . , wl

)∣∣ : wi ∈ [N,M], 1 ≤ i ≤ l
}] ≤ |L1 − L2|

4
,

(2.30)

where T, L,AL and BL are replaced by Tr, r,Ar and Br , respectively, and Ar + Br has a fixed
point zr = {zrn}n∈Zβ

∈ U(M), which is a bounded positive solution of (1.7). In order to prove
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that (1.7) possesses uncountably many bounded positive solutions inU(M), we need only to
prove that z1 /= z2. It follows from (2.8), (2.9) and (2.30) that for n ≥ min{T1, T2}

∣
∣
∣z1n − z2n

∣
∣
∣ =

∣
∣
∣
∣
∣
∣
L1 − pnz

1
n−τ −

n−1∑

s=T1

∞∑

k=s

1
ak

∞∑

j=k

[
−gj + f

(
j, z1j−d1j

, . . . , z1j−dlj

)]

−L2 + pnz
2
n−τ +

n−1∑

s=T2

∞∑

k=s

1
ak

∞∑

j=k

[
−gj + f

(
j, z2j−d1j

, . . . , z2j−dlj

)]
∣
∣
∣
∣
∣
∣

≥ |L1 − L2| −
(
p + p

)∥∥
∥z1 − z2

∥
∥
∥

− 2
∞∑

s=min{T1,T2}

∞∑

k=s

1
|ak|

∞∑

j=k

[∣∣gj
∣
∣ + sup

{∣∣f
(
j,w1, . . . , wl

)∣∣ : wi ∈ [N,M], 1 ≤ i ≤ l
}]

≥ |L1 − L2| −
(
p + p

)∥∥∥z1 − z2
∥∥∥ − |L1 − L2|

2
,

(2.31)

which implies that

∥∥z1 − z2
∥∥ ≥ |L1 − L2|

2
(
1 + p + p

) > 0, (2.32)

which yields that z1 /= z2.

Remark 2.3. If either p = 0 or p = 0, then Theorem 2.1 reduces to the below results,
respectively.

Theorem 2.4. Assume that there exist constants k0 ∈ Nn0 and M,N and p satisfying (2.1), (2.2)
and

0 < N <
(
1 − p

)
M, 0 ≤ pn ≤ p < 1, n ≥ k0. (2.33)

Then (1.7) possesses a bounded positive solution inU(M).

Theorem 2.5. Assume that there exist constants k0 ∈ Nn0 and M,N and p satisfying (2.1), (2.2)
and

0 < N <
(
1 − p

)
M, −1 < −p ≤ pn ≤ 0, n ≥ k0. (2.34)

Then (1.7) possesses a bounded positive solution inU(M).

Remark 2.6. Theorems 2.1–2.3 include Theorem 2 in [11] as special cases. Examples 3.1–3.3 in
Section 3 explain that Theorems 2.1–2.3 are genuine generalizations of Theorem 2 in [11].
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3. Examples and Applications

Now we construct three nontrivial examples to explain the superiority and applications of
Theorems 2.1-2.3, respectively.

Example 3.1. Consider the third order neutral delay discrete equation

Δ

(

(−1)nn3Δ2

(

xn +
n sin

(
n2)

3n + 1
xn−τ

))

+
n3xn2−2 −

√
nx3

n3−6
n5 + 5n + nx2

2n+5

=
cos
(
n ln

(
n2 + 1

))

√
n3 + 1

, n ≥ 1,

(3.1)

where τ ∈ N is fixed. Let l = 3, n0 = 1, k0 = 2, p = 1/2, p = 1/3, M = 7, N = 1,

an = (−1)nn3, pn =
n sin

(
n2)

3n + 1
,

gn =
cos
(
n ln

(
n2 + 1

))

√
n3 + 1

, d1n = −n2 + n + 2,

d3n = −n − 5, f(n, u, v,w) =
n3u − √

nv3

n5 + 5n + nw2
, ∀(n, u, v,w) ∈ N × R

3.

(3.2)

It is easy to verify that (2.1)–(2.4) hold. It follows from Theorem 2.1 that (3.1) has a bounded
positive solution inU(M). However Theorem 2 in [11] is useless for (3.1).

Example 3.2. Consider the third order neutral delay discrete equation

Δ
(
(n + 1)2ln3(n + 2)Δ2

(
xn +

3n − 4
4n + 2

xn−τ

))
+
x2
n(n+1)/2x

3
n(n−1)/2√

n3 + 1
=

(−1)n
n2

, n ≥ 1, (3.3)

where τ ∈ N is fixed. Let l = 2, n0 = 1, k0 = 2, p = 3/4, M = 40, N = 8,

an = (n + 1)2ln3(n + 2), pn =
3n − 4
4n + 2

, d1n =
n(1 − n)

2
, d2n =

n(3 − n)
2

,

gn =
(−1)n
n2

, f(n, u, v) =
u2v3

√
n3 + 1

, ∀(n, u, v) ∈ N × R
2.

(3.4)

It is clear that (2.1), (2.2) and (2.33) hold. Consequently Theorem 2.4 guarantees that (3.3) has
a bounded positive solution inU(M). But Theorem 2 in [11] is inapplicable for (3.3).

Example 3.3. Consider the third order neutral delay discrete equation

Δ

(√
n5 + 1Δ2

(

xn − n3 + 1
3n3 + 4

xn−τ

))

+

√
nx6

n2−2n
n4 + n + 1

+
x3
2n+3

n2 + 2
=

sin
(
n2 − n

)

n2 + 1
, n ≥ 1, (3.5)
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where τ ∈ N is fixed. Let l = 2, n0 = 1, k0 = 3, p = 1/3, M = 30, N = 19,

an =
√
n5 + 1, pn = − n3 + 1

3n3 + 4
, d1n = n(3 − n), d2n = −n − 3,

gn =
sin
(
n2 − n

)

n2 + 1
, f(n, u, v) =

u6√n

n4 + n + 1
+

v3

n2 + 2
, ∀(n, u, v) ∈ N × R

2.

(3.6)

Obviously, (2.1), (2.2) and (2.34) hold. Thus Theorem 2.5 ensures that (3.5) has a bounded
positive solution in U(M). While Theorem 2 in [11] is unfit for (3.5)
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