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Existence of extremal solutions of nonlinear discontinuous integral equations of Volterra type is
proved. This result is extended herein to functional Volterra integral equations (FVIEs) and to a
system of discontinuous VIEs as well.

1. Introduction

In this work the existence of extremal solutions of nonlinear discontinuous integral as well as
functional integral equations is proved by weakening all forms of Caratheodory’s condition.
We consider the nonlinear Volterra integral equation (for short VIEs):

x(t) = u(t) +
∫ t

0
f(t, τ, x(τ))dτ, (1.1)

and the functional Volterra integral equations (for short FVIEs):

x(t) = u(t) +
∫ t

0
f(t, τ, x(τ), x)dτ, (1.2)

where f may be discontinuous with respect to all of their arguments. The special case of (1.1)

x(t) =
∫ t

0
k(t − τ)g(x(τ))dτ, (1.3)
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has been studied extensively under continuity and/or monotonicity [1–4]. Meehan and
O’Regan [5] established, by placing some monotonicity assumption on a nonlinear L1-
Carathéodory kernel of the form k(t, s, x(s)), existence of a C[0, T] solution to (1.1). It is
proven in [6] that, providing some type of discontinuous nonlinearities, (1.1) has extremal
solutions. Dhage [7] proved under mixed Lipschitz, Carathéodory, and monotonicity
conditions existence of extremal solutions of nonlinear discontinuous functional integral
equations. Other remarkable work was done in [8–11].

The main objective in this paper is to emphasize that the kernel f is not required to
be neither continuous nor monotonic in any of its arguments to establish an existence of
extremal solutions for (1.1) (in R) which generalizes in some aspects some of the previously
mentioned works. A monotonicity type condition with respect to the functional term is
needed to establish existence of extremal solutions to (1.2). We base the proof of the main
result on, among other tools, the following lemmas which could analogously be proved as
Lemma 1.1 and Lemma 1.2, see [12], and hence the proofs are omitted.

Lemma 1.1. Suppose that f : [0, 1] × [0, 1] × R → R satisfies conditions (C1) and (C3). Let
x1, x2 : [0, 1] → R be continuous and satisfy the inequality x1(τ) < x2(τ) for all τ ∈ [0, 1]. Then
the functions

ϕ(t, τ) = inf
y∈(x1(τ),x2(t,τ))

f
(
t, τ, y

)
, ψ(t, τ) = sup

y∈(x1(τ),x2(τ))
f
(
t, τ, y

)
, (1.4)

are Lebesgue measurable for each fixed t ∈ [0, 1]. In particular, for each t ∈ [0, 1], f(t, ·, x(·)) is
Lebesgue measurable for each fixed x ∈ C([0, 1]).

Lemma 1.2. Suppose that f : [0, 1] × [0, 1] ×R → R satisfies conditions (C1), (C2), and (C3). Let
x1, x2 : [0, 1] → R be continuous and satisfy the inequality x1(τ) < x2(τ) for all τ ∈ [0, 1]. Let, for
each (t, τ, x) ∈ [0, 1] × [0, 1] × R,

f∗(t, τ, x) = lim inf
y↓x

f
(
t, τ, y

)
, f∗(t, τ, x) = lim sup

y↑x
f
(
t, τ, y

)
. (1.5)

The compositions f∗(t, ·, x(·)) and f∗(t, ·, x(·)) are Lebesgue measurable for all t ∈ [0, 1] any
continuous x : [0, 1] → R, and, for almost all τ ∈ [0, 1],

inf
y∈(x1(τ),x2(τ))

f∗
(
t, τ, y

)
= inf

y∈(x1(τ),x2(τ))
f
(
t, τ, y

)
= inf

y∈(x1(τ),x2(τ))
f∗(t, τ, y),

sup
y∈(x1(τ),x2(τ))

f∗
(
t, τ, y

)
= sup

y∈(x1(τ),x2(τ))
f
(
t, τ, y

)
= sup

y∈(x1(τ),x2(τ))
f∗(t, τ, y). (1.6)

The outline of the work is as follows. In Section 2 we present our existence theorem
for (1.1) in R. In Sections 3 and 4 generalizations of this established existence theorem for
functional Volterra integral equation as well as for system of nonlinear Volterra integral
equations are presented. Comparison with the literature is provided throughout the paper.
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2. Volterra Integral Equations

Theorem 2.1. Let u : [0, 1] → R and let f : [0, 1] × [0, 1] × R → R be given. Suppose that
(C1)–(C4) are fulfilled.

(C1) u is continuous.

(C2) For each (t, x) ∈ [0, 1] × R, the function τ �→ f(t, τ, x) is Lebesgue measurable. For all
(t, x) ∈ [0, 1] × R and for almost all τ ∈ [0, 1],

∣∣f(t, τ, x)∣∣ < M(τ), (2.1)

whereM : [0, 1] → [0,∞] is a Lebesgue integrable function.

(C3) For each (t, τ, x) ∈ [0, 1] × [0, 1] × R,

lim sup
y↑x

f
(
t, τ, y

) ≤ f(t, τ, x) = lim inf
y↓x

f
(
t, τ, y

)
. (2.2)

(C4) Let � = {y ∈ R; |y| ≤ |u| + | ∫10 M(τ)dτ |}, where, |u| = max{|u(t)|; t ∈ [0, 1]}. For every
y ∈ � and all n ∈N, the functions

t �→
∫ t

0
sup

|x−y|≤1/3n
f(t, τ, x)dτ, (2.3)

are equicontinuous and tend to zero as t ↓ 0.

Under the above assumptions VIE expressed by (1.1) has extremal solutions in the
interval [0, 1].

Proof. We will prove the existence of a maximal solution the proof of the existence of a
minimal solution is analogous and hence is omitted. The pattern of the proof consists of four
steps. Similarly as it was done in [13, 14] we define the maximal solution as the limit of an
appropriate sequence of approximations xn, n ∈N.

Step 1. Since u, being a continuous function on compact set, is uniformly continuous
and E �→ ∫

EMdτ , being absolutely continuous with respect to Lebesgue measure, is
uniformly continuous on [0, 1]; then for all n ∈N there exists δn > 0 such that

|u(s) − u(t)| +
∣∣∣∣∣
∫ t

s

M(τ)dτ

∣∣∣∣∣ ≤
1

3n+2
, (2.4)

for all s, t ∈ [0, 1], with |s − t| ≤ δn. Next, we take for n ∈N subdivisions Dn

tn0 < t
n
1 < · · · < tnkn (2.5)
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of [0, 1] in such a way that 0 = tn0 < tn1 < · · · < tnkn = 1, Dn+1 is a refinement of Dn, that is,
Dn ⊂ Dn+1 and

tnk+1 − tnk ≤ δn, k = 0, 1, . . . , kn − 1. (2.6)

For any n ∈ N, gn : [0, 1] × [0, 1] → R and xn : [0, 1] → R are recursively defined by, for
s, t ∈ [0, tn1],

gn(t, τ) = sup
|x−u(0)|≤2/3n

f(t, τ, x),

xn(t) = u(t) +
∫ t

0
gn(t, τ)dτ.

(2.7)

Once gn, xn have already been defined on [0, tnk], with k < kn, they are defined in [tnk, t
n
k+1] by

putting

gn(t, τ) = sup
|x−xn(tnk)|≤2/3n

f(t, τ, x), (2.8)

xn(t) = xn
(
tnk
)
+ u(t) − u(tnk) +

∫ t

tn
k

gn(t, τ)dτ. (2.9)

It follows, by Lemma 1.1, that functions gn are Lebesgue measurable; taking into account this
together with (C2), xn is well defined. Moreover it is easy to see that for all t ∈ [0, 1] and all
n ∈N

xn(t) = u(t) +
∫ t

0
gn(t, τ)dτ. (2.10)

Step 2. We claim that, for all n ∈N,

(i) xn+1 ≤ xn,
(ii) if x : [0, 1] → R is a continuous function, which serves as a dummy function,

satisfying, x(0) ≤ u(0) and x(t) ≤ x(s)+u(t)−u(s)+∫ ts f(t, τ, x(τ))dτ , for s, t ∈ [0, 1],
then x ≤ xn in [0, 1].

To prove these assertions we shall proceed inductively. Clearly, xn+1(0) = xn(0) = p(0).
Let us suppose that xn+1(t) ≤ xn(t), for t ∈ [0, tnk], with some k < kn. Since Dn ⊂ Dn+1,
there exist i, j ∈ {0, 1 . . . , kn+1}, i < j, such that tn+1i = tnk and tn+1j = tnk+1. Let us suppose that
xn+1(t) ≤ xn(t), for [0, tn+1m ], with an m ∈ {i, i + 1, . . . , j − 1}. At this point we have just two
possibilities:

(P11) xn+1(tn+1m ) < xn(tn+1m ) − 2/3n+1,
(P12) xn(tn+1m ) − 2/3n+1 ≤ xn+1(tn+1m ) ≤ xn(tn+1m ).
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If (P11) holds, since tn+1m+1−tn+1m ≤ δn+1, it follows, by (2.4) and (2.9), that for t ∈ [tn+1m , tn+1m+1]

xn+1(t) = xn+1
(
tn+1m

)
+ u(t) − u

(
tn+1m

)
+
∫ t

tn+1m

gn(t, τ)dτ

< xn+1
(
tn+1m

)
+

1
3n+2

< xn
(
tn+1m

)
− 2
3n+1

+
1

3n+2

= xn(t) +
[
xn

(
tn+1m

)
− xn(t)

]
− 5
3n+2

< xn(t) +
1

3n+2
− 5
3n+2

= xn(t) +
1

3n+1
− 5
3n+2

< xn(t).

(2.11)

Assume the validity of (P12); it follows, by (2.4) and (2.9), that

xn+1
(
tn+1m

)
− 2
3n+1

≥ xn
(
tn+1m

)
− 2
3n+1

− 2
3n+1

= xn
(
tnk
)
+
[
xn

(
tn+1m

)
− xn

(
tnk
)] − 4

3n+1

> xn
(
tnk
) − 1

3n+2
− 4
3n+1

= xn
(
tnk
) − 1

3n+1
− 4
3n+1

> xn
(
tnk
) − 2

3n
.

(2.12)

On the other hand we have

xn+1
(
tn+1m

)
+

2
3n+1

≤ xn
(
tn+1m

)
+

2
3n+1

= xn
(
tnk
)
+
[
xn

(
tn+1m

)
− xn

(
tnk
)]

+
2

3n+1

< xn
(
tnk
)
+

1
3n+2

+
2

3n+1
= xn

(
tnk
)
+

1
3n+1

+
2

3n+1
< xn

(
tnk
)
+

2
3n
.

(2.13)

We thus have

(
xn+1

(
tn+1m

)
− 2
3n+1

, xn+1
(
tn+1m

)
+

2
3n+1

)
⊂
(
xn

(
tnk
) − 2

3n
, xn

(
tnk
)
+

2
3n

)
, (2.14)

and hence, for each τ ∈ [tn+1m , tn+1m+1],

gn+1(t, τ) = sup
|x−xn+1(tn+1m )|≤2/3n

f(t, τ, x) ≤ sup
|x−xn(tnk)|≤2/3n

f(t, τ, x) = gn(t, τ). (2.15)

By (2.9),

xn
(
tn+1m

)
= xn

(
tnk
)
+ u

(
tn+1m

)
− u(tnk) +

∫ tn+1m

tn
k

gn(t, τ)dτ. (2.16)
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This in turn implies that, for all t ∈ [tn+1m , tn+1m+1],

xn+1(t) = xn+1
(
tn+1m

)
+ u(t) − u

(
tn+1m

)
+
∫ t

tn+1m

gn+1(t, τ)dτ

≤ xn
(
tn+1m

)
+ u(t) − u

(
tn+1m

)
+
∫ t

tn+1m

gn(t, τ)dτ

= xn
(
tni
)
+ u

(
tn+1m

)
− u(tnk) +

∫ tn+1m

tn
k

gn(t, τ)dτ + u(t) − u
(
tn+1m

)
+
∫ t

tn+1m

gn(t, τ)dτ

= xn
(
tnk
)
+ u(t) − u(tnk) +

∫ t

tn
k

gn(t, τ)dτ = xn(t),

(2.17)

which completes the proof of (i). Now we shall handle (ii) inductively too. Let us fix an
arbitrary n ∈ N, by assumption, x(0) ≤ u(0) = xn(0). Let us suppose that x(t) ≤ xn(t), for
t ∈ [0, tnk], with k < kn. At this point we have just two possibilities:

(P21) x(tnk) < xn(t
n
k
) − 2/3n+1,

(P22) xn(tnk) − 2/3n+1 ≤ x(tn
k
) ≤ xn(tnk).

Suppose that we are in (P21); since tnk+1 − tnk ≤ δn, k = 0, 1, 2, . . . , kn − 1, it follows, by
(2.4) and (2.9); and (ii), that

x(t) ≤ x(tnk) + u(t) − u(tnk) +
∫ t

tn
k

f(t, τ, x(τ))dτ

< x
(
tnk
)
+

1
3n+2

< xn
(
tnk
) − 2

3n+1
+

1
3n+2

= xn(t) +
[
xn

(
tnk
) − xn(t)] − 5

3n+2
< xn(t) +

1
3n+2

− 5
3n+2

< xn(t),

(2.18)

for t ∈ [tnk, t
n
k+1].

If we are in (P22), it follows, by (2.4) and (2.9), that, for t ∈ [tn
k
, tn
k+1],

x(t) = x
(
tnk
)
+
[
x(t) − x(tnk)] ≥ xn(tnk) − 2

3n+1
+
[
x(t) − x(tnk)]

> xn
(
tnk
) − 2

3n+1
− 1
3n+2

> xn
(
tnk
) − 2

3n
.

(2.19)

By (ii) and (2.9),

x(t) ≤ x(tnk) + u(t) − u(tnk) +
∫ t

tn
k

f(t, τ, x(τ))dτ

≤ xn
(
tnk
)
+ u(t) − u(tnk) +

∫ t

tn
k

f(t, τ, x(τ))dτ < xn
(
tnk
)
+

1
3n+2

< xn
(
tnk
)
+

2
3n
.

(2.20)



Abstract and Applied Analysis 7

We thus have for all τ ∈ [tnk, t
n
k+1], x(τ) ∈ (xn(tnk) − 2/3n, xn(tnk) + 2/3n), and hence

f(t, τ, x(τ)) ≤ sup
|x−xn(tnk)|≤2/3n

f(t, τ, x) = gn(t, τ), (2.21)

for all τ ∈ [tn
k
, tn
k+1], so it follows, by (2.4) and (2.9), that

x(t) ≤ xn
(
tnk
)
+ u(t) − u(tnk) +

∫ t

tn
k

f(t, τ, x(τ))dτ

≤ xn
(
tnk
)
+ u(t) − u(tnk) +

∫ t

tn
k

gn(t, τ)dτ = xn(t),

(2.22)

for t ∈ [tn
k
, tn
k+1], which completes the proof of the assertion (ii).

Step 3. It follows, by (C4), that the constructed bounded nonincreasing sequence xn,
n ∈N is uniformly convergence, and hence let us set

x+(t) = lim
n→∞

xn(t), t ∈ [0, 1]. (2.23)

By (2.4) and (2.9), we have |xn(τ) − xn(tnk)| ≤ 1/3n+2, for τ ∈ [tnk, t
n
k+1]. Thus,

gn(t, τ) = sup
|x−xn(tnk)|≤2/3n

f(t, τ, x) ≥ f(t, τ, xn(τ)), (2.24)

for τ ∈ [tn
k
, tn
k+1]. Therefore, by formula just before Step 2, for t ∈ [0, 1], and n ∈N

xn(t) = u(t) +
∫ t

0
gn(t, τ)dτ ≥ u(t) +

∫ t

0
f(t, τ, xn(τ))dτ. (2.25)

Applying Fatou Lemma and taking into account the condition (C3) and in view of
Lemma 1.2, we obtain

x+(t) = lim
n→∞

xn(t) = lim inf
n→∞

xn(t) ≥ u(t) +
∫ t

0
lim inf
n→∞

f(t, τ, xn(τ))dτ

= u(t) +
∫ t

0
f(t, τ, x+(τ))dτ,

(2.26)

for each t ∈ [0, 1]. Let us observe that

lim sup
n→∞

gn(t, τ) ≤ f(t, τ, x+(τ)), (2.27)
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almost everywhere in [0, 1]. Indeed, let us fix an n ∈ N. For any τ ∈ [0, 1] there exists a
k = 0, . . . , kn such that τ ∈ [tn

k
, tn
k+1]. Since

gn(t, τ) = sup
|x−xn(tnk)|≤2/3n

f(t, τ, x), (2.28)

there exists an x̂n, with |x̂n − xn(tnk)| ≤ 2/3n such that

gn(t, τ) − 1
3n

≤ f(t, τ, x̂n) ≤ gn(t, τ). (2.29)

Whence,

lim sup
n→∞

gn(t, τ) = lim sup
n→∞

f(t, τ, x̂n). (2.30)

|x̂n − xn(τ)| ≤
∣∣x̂n − xn(tnk)

∣∣ + ∣∣xn(tnk) − xn(τ)
∣∣ ≤ 4

3n
. (2.31)

We thus have

lim
n→∞

x̂n = lim
n→∞

xn(τ) = x+(τ), (2.32)

which together with (C3) and (2.30) implies that

lim sup
n→∞

gn(t, τ) ≤ f(t, τ, x+(τ)), (2.33)

almost everywhere in [0, 1]. Applying Fatou lemma once again we obtain

x+(t) = lim
n→∞

xn(t) = lim sup
n→∞

xn(t) ≤ u(t) +
∫ t

0
lim sup
n→∞

gn(t, τ)dτ ≤ u(t) +
∫ t

0
f(t, τ, x+(τ))dτ,

(2.34)

which together with (2.26) means that x+ is a solution (1.1).
Step 4. Let x : [0, 1] → R be a solution of (1.1). Clearly, x is continuous and satisfies

the conditions of the assertion (ii), so, x ≤ xn, for any n ∈ N. Since xn → x+ as n → ∞, then
x ≤ x+. This shows that x+ is a maximal solution of (1.1).

We proceed similarly to prove the existence of minimal solution; we first define
recursively the functions hn(t, τ) and xn(t), by setting

hn(t, τ) = inf
|x−xn(tnk)|≤2/3n

f(t, τ, x), τ ∈ [0, 1],

xn(t) = xn
(
tnk
)
+ u(t) − u(tnk) +

∫ t

tn
k

hn(t, τ)dτ, t ∈ [
tnk, t

n
k+1

]
.

(2.35)
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Taking x : [0, 1] → R to be a continuous function, which serves as a dummy function,
satisfying x(0) ≥ u(0) and x(t) ≥ x(s) + u(t) − u(s) + ∫ t

s f(t, τ, x(τ))dτ , for s, t ∈ [0, 1], and just
following the previous steps one can show that (1.1) has a minimal solution x− in [0, 1]. This
completes the proof.

It is interesting to point out that “=” in condition (C3) could not be replaced with “≤”
as it was done in [12]. Probably the reason consists in the fact that the composition f(t, ·, x(·))
is no longer measurable for any continuous function x : [0, 1] → R; the following example
illustrates this fact.

Example 2.2. Let S ⊂ [0, 1] be any non-Lebesgue measurable subset. Define f : [0, 1] × [0, 1] ×
R → R by

f(t, τ, x) =

⎧⎪⎪⎨
⎪⎪⎩
1 if x > τ,
1 if x = τ, τ ∈ S,
0 otherwise.

(2.36)

It is easy to see that conditions (C1) and (C2) are satisfied. Since f is nondecreasing in x, we
have, for all (t, τ, x) ∈ [0, 1] × [0, 1] × R,

lim sup
y↑x

f
(
t, τ, y

) ≤ f(t, τ, x) ≤ lim inf
y↓x

f
(
t, τ, y

)
. (2.37)

However the composition f(t, ·, x(·)) is not Lebesgue measurable if x(τ) = τ , for τ ∈ [0, 1].

3. Functional Volterra Integral Equations

Our main concern in this section is to extend result established herein (Theorem 2.1) to a
functional Volterra integral equation in deriving existence of extremal solutions for a class of
FVIEs (1.2).

Notations. M : [0, 1] → [0,∞] is a Lebesgue integrable function, CM([0, 1];R) is the set of
all continuous functions x : [0, 1] → R satisfying |x(t) − x(s)| ≥ |u(t) − u(s)| + | ∫ ts M(τ)dτ |
for all s, t ∈ [0, 1]. For a fixed ϕ ∈ CM([0, 1]) let fϕ : [0, 1] × [0, 1] × R → R be the function
defined by fϕ(t, τ, x) = f(t, τ, x, ϕ), and let Γϕ = {x ∈ CM([0, 1];R) | x(0) ≥ u(0), x(t) ≥
x(s) + u(t) − u(s) + ∫ t

s fϕ(t, τ, x(τ))dτ, for s, t ∈ [0, 1]}.

Theorem 3.1. Let Υ denote the set of all f : [0, 1] × [0, 1] × R × CM([0, 1];R) → R satisfying the
following conditions (F1)–(F5).

(F1) u : [0, 1] → R is continuous,

(F2) For each (t, x) ∈ [0, 1] × R and ϕ ∈ CM([0, 1];R), τ �→ f(t, τ, x, ϕ) is Lebesgue
measurable, and for almost all τ ∈ [0, 1],

∣∣f(t, τ, x, ϕ)∣∣ < M(τ). (3.1)
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(F3) For each (t, τ, x, ϕ) ∈ [0, 1] × [0, 1] × R × CM([0, 1];R),

lim sup
y↑x

f
(
t, τ, y, ϕ

) ≤ f(t, τ, x, ϕ) = lim inf
y↓x

f
(
t, τ, y, ϕ

)
. (3.2)

(F4) For each (t, τ, x) ∈ [0, 1] × [0, 1] × R, f(t, τ, x, ϕ) ≤ f(t, τ, x, ψ) whenever ϕ, ψ ∈
CM([0, 1];R) with ϕ ≤ ψ.

(F5) Let � = {y ∈ R; |y| ≤ |u| + | ∫10 M(τ)dτ |}, where, |u| = max{|u(t)|; t ∈ [0, 1]}. Let
ϕ ∈ CM([0, 1];R) be fixed, for every y ∈ � and all n ∈N; the functions

t �→
∫ t

0
sup

|x−y|≤1/3n
fϕ(t, τ, x)dτ, (3.3)

are equicontinuous and tend to zero as t ↓ 0.

Under the previous assumptions FVIE expressed by (1.2) has extremal solutions in the
interval [0, 1].

Proof. Since the proofs of existence of maximal and minimal solutions are similar, we
concentrate our attention on showing the existence of the minimal solution.

For a fixed ϕ ∈ CM([0, 1];R) let us consider the nonfunctional Volterra integral
equation N-FVIE:

x(t) = u(t) +
∫ t

0
fϕ(t, τ, x(τ))dτ. (3.4)

Obviously, the function fϕ(t, τ, x(τ)) satisfies the hypotheses of Theorem 2.1; we thus
conclude that N-FVIE (3.4) has a maximal solution which is given by

xϕ(t) = inf
x∈Γϕ

x(t). (3.5)

Let � = {ϕ ∈ CM([0, 1];R) | xϕ ≤ ϕ}. Since −u(t) − ∫ t
s M(τ)dτ belongs to �, then the set � is

not empty. Define

x(t) = inf
ϕ∈�

ϕ(t). (3.6)

Given ϕ ∈ � and x ∈ Γϕ, it follows, by (F4), that

x(t) ≥ x(s) + u(t) − u(s) +
∫ t

s

f
(
t, τ, x(τ), ϕ

)
dτ ≥ x(s) + u(t) − u(s) +

∫ t

s

f(t, τ, x(τ), x). (3.7)
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We thus have x ∈ Γx, Γϕ ⊆ Γx and xϕ ≥ xx. Since ϕ ∈ � is arbitrary, then ϕ ≥ xϕ ≥ xx, and
hence

x ≥ xx. (3.8)

On the other hand, for x ∈ Γϕ we have

x(t) ≥ x(s) + u(t) − u(s) +
∫ t

s

f
(
t, τ, x(τ), ϕ

)
dτ ≥ x(s) + u(t) − u(s) +

∫ t

s

f(t, τ, x(τ), x)

≥ x(s) + u(t) − u(s) +
∫ t

s

f(t, τ, x(τ), xx).

(3.9)

Thus x ∈ Γϕ ⊆ Γx ⊆ Γxx . Consequently, xϕ ≥ xx ≥ xxx which implies that xx ∈ �, and thus
x ≤ xx which together with (3.8) implies that x = xx. Since every solution of (1.2) belongs to
�, then x is a minimal solution. This completes the proof.

4. System of Volterra Integral Equations

The main obstacle to extending the results of the previous section for vector-valued functions
is that the usual order in R

n makes the condition,

lim sup
y↑x

f
(
t, τ, y

) ≤ f(t, τ, x) = lim inf
y↓x

f
(
t, τ, y

)
, (4.1)

used for scalar functions, does not have a good equivalence for vector-valued functions. We
now show how Theorem 2.1 may be exploited to derive existence of extremal solutions for a
class of systems of discontinuous VIEs. The proof is based on a technique similar to that used
for systems of differential and functional differential equations [12, 15].

Theorem 4.1. Given u = (u1, . . . , un) : [0, 1] → R
n and f = (f1, . . . , fn) : [0, 1]×[0, 1]×R

n → R
n

satisfying the conditions (B1)–(B4) below

(B1) f(t, ·, x(·))is Lebesgue measurable for any continuous x : [0, 1] → R
n,

(B2) for each i = 1, . . . , n and Lebesgue almost all t ∈ [0, 1], fi is nondecreasing in xk, k =
1, . . . , i − 1, i + 1, . . . , n and for all x = (x1, . . . , xn) ∈ R

n,

lim sup
y↑xi

fi
(
t, τ, x1, . . . , xi−1, y, xi+1, . . . , xn

) ≤ fi(t, τ, x1, . . . , xi−1, xi, xi+1, . . . , xn)

= lim
y↓xi

f i
(
t, τ, x1, . . . , xi−1, y, xi+1, . . . , xn

)
,

(4.2)

(B3) for each x ∈ R
n and Lebesgue almost all t ∈ [0, 1], ‖f(t, τ, x)‖ ≤ M(τ), where ‖x‖ =

max{|xi|; i = 1, . . . , n} andM : [0, 1] → [0,∞] is a Lebesgue integrable function,
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(B4) let � = {y ∈ R
n; ‖y‖ ≤ ‖u‖+ | ∫10 M(τ)dτ |}, for every y ∈ � and all k ∈N, the functions

t �→
∫ t

0
sup

|x−y|≤1/3k
f(t, τ, x)dτ, (4.3)

are equicontinuous and tend to zero as t ↓ 0, where sup f and
∫
f are interpreted

componentwise.

Under the above assumptions VIE expressed by (1.1) (in R
n) has extremal solutions in

the interval [0, 1].

Proof. We shall only prove the existence of a maximal solution, since the same pattern could
be followed to prove existence of a minimal solution. Note that, for x, y ∈ R

n, we write x ≤ y
if xi ≤ yi, for each i = 1, . . . , n. Let us denote by X the set of all x = (x1, . . . , xn) : [0, 1] → R

n

satisfying the following conditions

xi(t) ≤ ui(t) +
∫ t

0
fi(t, τ, x1(τ), . . . , xn(τ))dτ, i = 1, 2, . . . , n,

‖x(t) − x(s)‖ ≤ ‖u(t) − u(s)‖ +
∣∣∣∣∣
∫ t

s

M(τ)dτ

∣∣∣∣∣, s, t ∈ [0, 1].

(4.4)

For every i = 1, 2, . . . , n, we let

x+
i (t) = sup

(x1,...,xn)∈X
xi(t), t ∈ [0, 1]. (4.5)

It follows, by monotonicity, that for every x ∈ X, for each i = 1, . . . , n, and for all t ∈ [0, 1],

xi(t) ≤ ui(t) +
∫ t

0
fi
(
t, τ, x+

1 (τ), . . . , x
+
i−1(τ), xi(τ), x

+
i+1(τ), . . . , x

+
n(τ)

)
dτ. (4.6)

Let us define a nonincreasing sequence, whose existence is guaranteed by hypotheses and
for its recursively construction we follow arguments developed in Step 1 of the proof of
Theorem 2.1; (ym), ym = (y1

m, . . . , y
n
m) : [0, 1] → R

n such that, for each i = 1, . . . , n

yim(0) = ui(0), yim(t) = ui(t) +
∫ t

0
gim(τ)dτ,

∥∥y(t) − y(s)∥∥ ≤ ‖u(t) − u(s)‖ +
∣∣∣∣∣
∫ t

s

M(τ)dτ

∣∣∣∣∣, s, t ∈ [0, 1],

(4.7)

where

gim(τ) = sup
|x−yim(tnk)|≤2/3m

fi
(
t, τ, x+

1 (τ), . . . , x
+
i−1(τ), x, x

+
i+1(τ), . . . , x

+
n(τ)

)
. (4.8)
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Let, for each i = 1, . . . , n,

lim
m→∞

yim(τ) = y
+
i (τ), τ ∈ [0, 1]. (4.9)

Clearly x+
i (t) ≤ y+

i (t). Regarding fi as a function only of y+
i while the remaining variables are

considered to be constant. It follows, by similar arguments used in the proof of Theorem 2.1,
that for every i = 1, . . . , n, and for all t ∈ [0, 1],

y+
i (t) = ui(t) +

∫ t

0
fi
(
t, τ, x+

1 (τ), . . . , x
+
i−1(τ), y

+
i (τ), x

+
i+1(τ), . . . , x

+
n(τ)

)
dτ. (4.10)

By monotonicity

y+
i (t) ≤ ui(t) +

∫ t

0
fi
(
t, τ, y+

1 (τ), . . . , y
+
i−1(τ), y

+
i (τ), y

+
i+1(τ), . . . , y

+
n(τ)

)
dτ, i = 1, . . . , n. (4.11)

We thus have y+ = (y+
1 , . . . , y

+
n) ∈ X, so, y+ = x+, which together with (4.10) implies that y+ is

a solution of (1.1) on [0, 1]. Proceeding analogously as Step 4 of the proof of Theorem 2.1, one
can show that y+ is a maximal solution of (1) on [0, 1].
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