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We discuss the existence of positive solutions to the following fractional m-point boundary value
problem with changing sign nonlinearity Dα

0+u(t) + λf(t, u(t)) = 0, 0 < t < 1, u(0) = 0, Dβ

0+u(1) =
∑m−2

i=1 ηiD
β

0+u(ξi), where λ is a positive parameter, 1 < α ≤ 2, 0 < β < α − 1, 0 < ξ1 < · · · < ξm−2 < 1

with
∑m−2

i=1 ηiξ
α−β−1
i < 1, Dα

0+ is the standard Riemann-Liouville derivative, f and may be singular
at t = 0 and/or t = 1 and also may change sign. The work improves and generalizes some previous
results.

1. Introduction

In this paper, we consider the following fractional differential equation with m-point boun-
dary conditions:

Dα
0+u(t) + λf(t, u(t)) = 0, 0 < t < 1,

u(0) = 0, D
β

0+u(1) =
m−2∑

i=1

ηiD
β

0+u(ξi),
(1.1)

where 1 < α ≤ 2, λ > 0 is a parameter, 0 < β < α−1, 0 < ξ1 < · · · < ξm−2 < 1 with
∑m−2

i=1 ηiξ
α−β−1
i <

1,Dα
0+ is the standard Riemann-Liouville derivative, and f ∈ C((0, 1)× [0,+∞) → (−∞,+∞))

may be singular at t = 0 and/or t = 1 and also may change sign. In this paper, by a positive
solution to (1.1), we mean a function u ∈ C[0, 1]which is positive on (0, 1] and satisfies (1.1).
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In recent years, great efforts have been made worldwide to study the existence of
solutions for nonlinear fractional differential equations by using nonlinear analysis methods
[1–24]. Fractional-order multipoint boundary value problems (BVP) have particularly
attracted a great deal of attention (see, e.g., [13–19]). In [10], the authors discussed some
properties of the Green function for the Direchlet-type BVP of nonlinear fractional differential
equations

Dα
0+u(t) + f(t, u(t)) = 0, 0 < t < 1,

u(0) = 0, u(1) = 0,
(1.2)

where 1 < α < 2,Dα
0+ is the standard Riemann-Liouville derivative and f : C([0, 1]×[0,+∞) →

[0,+∞)) is continuous. By using the Krasnosel’skii fixed-point theorem, the existence of
positive solutions was obtained under some suitable conditions on f .

In [14], the authors investigated the existence and multiplicity of positive solutions by
using some fixed-point theorems for the fractional differential equation given by

Dα
0+u(t) + f(t, u(t)) = 0, 0 < t < 1,

u(0) = 0, D
β

0+u(1) = aD
β

0+u(ξ),
(1.3)

where 1 < α ≤ 2, 0 ≤ β ≤ 1, 0 < ξ < 1, 0 ≤ a ≤ 1 with aξα−β−2 < 1 − β, 0 ≤ α − β − 1, f is
nonnegative.

It should be noted that in most of the works in literature the nonlinearity needs to
be nonnegative in order to establish positive solutions. As far as we know, semipositone
fractional nonlocal boundary value problems with 1 < α ≤ 2 have been seldom studied due
to the difficulties in finding and analyzing the corresponding Green function.

In [23], the authors investigated the following fractional differential equation with
three-point boundary conditions:

Dα
0+u(t) + f(t, u(t)) + e(t) = 0, 0 < t < 1,

u(0) = 0, D
β

0+u(1) = aD
β

0+u(ξ),
(1.4)

where 1 < α ≤ 2, 0 < β ≤ 1, 0 < ξ < 1, 0 ≤ a ≤ 1,0 ≤ α − β − 1, e(t) ∈ L[0, 1], and f satisfies the
Caratheodory conditions. The authors obtained the properties of the Green function for (1.4)
as follows:

βtα−1s(1 − s)α−β−1

Γ(α)
≤ G(t, s) ≤ tα−1(1 − s)α−β−1

Γ(α)
(
1 − aξα−β−1

) . (1.5)

By using the Schauder fixed-point theorem, the authors obtained the existence of positive
solution of (1.4)with the following assumptions:

(A1) for each L > 0, there exists a function φL � 0 such that f(t, tα−1x) ≥ φL(t) for a.e.
t ∈ (0, 1), for all x ∈ (0, L];
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(A2) there exist g(x), h(x), and k(t) � 0, such that

0 ≤ f(t, x) ≤ k(t)
{
g(x) + h(x)

}
, ∀x ∈ (0,∞), a.e. t ∈ (0, 1), (1.6)

here g : (0,∞) → [0,∞) is continuous and nonincreasing, h : [0,∞) → [0,∞) is continuous,
and h/g is nondecreasing;

(A3) There exist two positive constants R > r > 0 such that

R > ΦR1 + γ∗ ≥ r > 0,
∫1

0
k(s)g

(
rsα−1

)
ds < +∞,

R ≥
(

1 +
h(R)
g(R)

)∫1

0

(1 − s)α−β−1

Γ(α)
(
1 − aξα−β−1

)k(s)g
(
rsα−1

)
ds + γ∗.

(1.7)

Here

ΦR1 =
∫1

0

βs(1 − s)α−β−1

Γ(α)
φR(s)ds. (1.8)

The assumptions on nonlinearity are not suitable for frequently used conditions, such as
superlinear or some sublinear. For instance, f(t, x) = xμ, μ > 0, obviously, f does not satisfy
(A1).

Inspired by the previous work, the aim of this paper is to establish conditions for the
existence of positive solutions of the more general BVP (1.1). Our work presented in this
paper has the following new features. Firstly, we consider few cases of 1 < α ≤ 2 which
has been studied before, and in dealing with the difficulties related to the Green function
for this case, some new properties of the Green function have been discovered. Secondly, the
BVP (1.1) possesses singularity; that is, f may be singular at t = 0 and/or t = 1. Thirdly,
the nonlinearity f may change sign and may be unbounded from below. Finally, we impose
weaker positivity conditions on the nonlocal boundary term; that is, some of the coefficients
ηi may be negative.

The rest of the paper is organized as follows. In Section 2, we present some
preliminaries and lemmas that are to be used to prove our main results. We also discover
some new positive properties of the corresponding Green function. In Section 3, we discuss
the existence of positive solutions of the semipositone BVP (1.1). In Section 4, we give an
example to demonstrate the application of our theoretical results.

2. Basic Definitions and Preliminaries

For the convenience of the reader, we present here the necessary definitions from fractional
calculus theory. These definitions can also be found in the recent literature.
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Definition 2.1. The fractional integral of order α > 0 of a function u : (0,+∞) → R is given by

Iα0+u(t) =
1

Γ(α)

∫ t

0
(t − s)α−1u(s)ds, (2.1)

provided that the right-hand side is pointwisely defined on (0,+∞).

Definition 2.2. The Riemann-Liouville fractional derivative of order α > 0 of a function u :
(0,+∞) → R is given by

Dα
0+u(t) =

1
Γ(n − α)

(
d

dt

)n ∫ t

0
(t − s)n−α−1u(s)ds, (2.2)

where n = [α] + 1 and [α] denotes the integer part of the number α, provided that the right-
hand side is pointwisely defined on (0,+∞).

Lemma 2.3 (see [3]). Let α > 0. Then the following equality holds for u ∈ L(0, 1), Dα
0+u ∈ L(0, 1);

Iα0+D
α
0+u(t) = u(t) + c1t

α−1 + c2t
α−2 + · · · + cnt

α−n, (2.3)

where ci ∈ R, i = 1, 2, . . . , n, n − 1 < α ≤ n.

Set

G0(t, s) =
1

Γ(α)

⎧
⎨

⎩

tα−1(1 − s)α−β−1, 0 ≤ t ≤ s ≤ 1,

tα−1(1 − s)α−β−1 − (t − s)α−1, 0 ≤ s ≤ t ≤ 1,
(2.4)

p(s) = 1 −
∑

s≤ξi
ηi

(
ξi − s

1 − s

)α−β−1
, (2.5)

G(t, s) = G0(t, s) + q(s)tα−1, (2.6)

where

q(s) =
p(s) − p(0)
Γ(α)p(0)

(1 − s)α−β−1, p(0) = 1 −
m−2∑

i=1

ηiξ
α−β−1
i . (2.7)

For convenience in presentation, we here list the assumption to be used throughout the paper.

(H1) p(0) > 0, q(s) ≥ 0 on [0, 1].

Remark 2.4. If ηi = 0 (i = 1, . . . , m−2), we have p(0) = 1 and q(s) ≡ 0. If ηi ≥ 0 (i = 1, . . . , m−2)
and

∑m−2
i=1 ηiξ

α−β−1
i < 1, we have q(s) ≥ 0 on [0, 1].
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Lemma 2.5 (see [14]). Assume that g(t) ∈ L[0, 1] and α > β > 0. Then

D
β

0+

∫ t

0
(t − s)α−1g(s)ds =

Γ(α)
Γ
(
α − β

)

∫ t

0
(t − s)α−β−1g(s)ds. (2.8)

Lemma 2.6. Assume (H1) holds, and y(t) ∈ L[0, 1]. Then the unique solution of the problem

Dα
0+u(t) + y(t) = 0, 0 < t < 1,

u(0) = 0, D
β

0+u(1) =
m−2∑

i=1

ηiD
β

0+u(ξi)
(2.9)

is

u(t) =
∫1

0
G(t, s)y(s)ds, (2.10)

where G(t, s) is the Green function of the boundary value problem (2.9).

Proof. From Lemma 2.3, the solution of (2.9) is

u(t) = −Iα0+y(t) + c1t
α−1 + c2t

α−2. (2.11)

Consequently,

u(t) = − 1
Γ(α)

∫ t

0
(t − s)α−1y(s)ds + c1t

α−1 + c2t
α−2. (2.12)

From u(0) = 0, we have c2 = 0.
By Lemma 2.5, we have

D
β

0+u(t) = − 1
Γ
(
α − β

)

∫ t

0
(t − s)α−β−1y(s)ds +

c1Γ(α)
Γ
(
α − β

) tα−β−1. (2.13)

Therefore,

D
β

0+u(1) = − 1
Γ
(
α − β

)

∫1

0
(1 − s)α−β−1y(s)ds +

c1Γ(α)
Γ
(
α − β

) ,

D
β

0+u(ξi) = − 1
Γ
(
α − β

)

∫ ξi

0
(ξi − s)α−β−1y(s)ds +

c1Γ(α)
Γ
(
α − β

)ξ
α−β−1
i .

(2.14)
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By D
β

0+u(1) =
∑m−2

i=1 ηiD
β

0+u(ξi), we have

c1 =

∫1
0 (1 − s)α−1y(s)ds −∑m−2

i=1 ηi
∫ ξi
0 (ξi − s)α−β−1y(s)ds

Γ(α)p(0)

=

∫1
0 (1 − s)α−β−1p(s)y(s)ds

Γ(α)p(0)
.

(2.15)

Therefore, the solution of (2.9) is

u(t) = c1t
α−1 − 1

Γ(α)

∫ t

0
(t − s)α−1y(s)ds

=
∫1

0
G(t, s)y(s)ds.

(2.16)

Lemma 2.7. The function G0(t, s) has the following properties:

(1) G0(t, s) > 0, for t, s ∈ (0, 1);

(2) Γ(α)G0(t, s) ≤ tα−1, for t, s ∈ [0, 1];

(3) βtα−1h(s) ≤ Γ(α)G0(t, s) ≤ h(s)tα−2, for t, s ∈ (0, 1),

where

h(s) = s(1 − s)α−β−1. (2.17)

Proof. (1) When 0 < t ≤ s < 1, it is clear that

G0(t, s) =
1

Γ(α)
tα−1(1 − s)α−β−1 > 0. (2.18)

When 0 < s ≤ t < 1, we have

tα−1(1 − s)α−β−1 − (t − s)α−1 ≥ tα−1(1 − s)α−β−1 − tα−1(1 − s)α−1

= tα−1(1 − s)α−β−1
[
1 − (1 − s)β

]
> 0.

(2.19)

(2) By (2.4), for any t, s ∈ [0, 1], we have

Γ(α)G0(t, s) ≤ tα−1(1 − s)α−β−1 ≤ tα−1. (2.20)

In the following, we will prove (3).
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(i) When 0 < s ≤ t < 1, noticing that 0 < β < α − 1 ≤ 1, we have

∂

∂β

{
tα−2s(1 − s)α−β−1 − tα−1(1 − s)α−β−1

}
= tα−2(1 − s)α−β−1(t − s) ln(1 − s) ≤ 0. (2.21)

Therefore,

tα−2s(1 − s)α−β−1 −
(
tα−1(1 − s)α−β−1 − (t − s)α−1

)
≥ tα−2s − tα−1 + (t − s)α−1

= − tα−2(t − s) + (t − s)α−1 ≥ 0,
(2.22)

which implies

Γ(α)G0(t, s) ≤ h(s)tα−2. (2.23)

On the other hand, we have

d

ds

{
βs + (1 − s)β

}
≤ 0, s ∈ [0, 1). (2.24)

Therefore, βs + (1 − s)β ≤ 1, which implies

[
1 − (1 − s)β

]
≥ βs. (2.25)

Then

Γ(α)G0(t, s) = tα−1(1 − s)α−β−1 − (t − s)α−1

≥ tα−1(1 − s)α−β−1 − (t − s)β(t − ts)α−β−1

=
[

1 −
(
1 − s

t

)β]

tα−1(1 − s)α−β−1

≥
[
1 − (1 − s)β

]
tα−1(1 − s)α−β−1

≥ βtα−1h(s).

(2.26)

(ii) When 0 < t ≤ s < 1, we have

Γ(α)G0(t, s) = tα−1(1 − s)α−β−1 = tα−2t(1 − s)α−β−1

≤ tα−2s(1 − s)α−β−1 = h(s)tα−2,
(2.27)
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On the other hand, clearly we have

Γ(α)G0(t, s) = tα−1(1 − s)α−β−1 ≥ βtα−1h(s). (2.28)

The inequalities (2.23)–(2.28) imply that (3) holds.

By Lemma 2.7, we have the following results.

Lemma 2.8. Assume (H1) holds, then the Green function defined by (2.6) satisfies

(1) G(t, s) > 0, for all t, s ∈ (0, 1);

(2) G(t, s) ≤ tα−1((1/(Γ(α))) + q(s)), for all t, s ∈ [0, 1];

(3) βtα−1Φ(s) ≤ G(t, s) ≤ tα−2Φ(s), for all t, s ∈ (0, 1),

where

Φ(s) =
(
h(s)
Γ(α)

+ q(s)
)

. (2.29)

Lemma 2.9. Assume (H1) holds, then the function G∗(t, s) =: t2−αG(t, s) satisfies

(1) G∗(t, s) > 0, for all t, s ∈ (0, 1);

(2) G∗(t, s) ≤ t((1/(Γ(α))) + q(s)), for all t, s ∈ [0, 1];

(3) βtΦ(s) ≤ G∗(t, s) ≤ Φ(s), for all t, s ∈ [0, 1].

For convenience, we list here four more assumptions to be used later:

(H2) f ∈ C((0, 1) × [0,+∞), (−∞,+∞)) satisfies

f(t, x) ≥ −r(t), f
(
t, tα−2x

)
≤ z(t)g(x), t ∈ (0, 1), x ∈ [0,+∞), (2.30)

where r, z ∈ C((0, 1), [0,+∞)), g ∈ C([0,+∞), [0,+∞)).

(H3)
∫1
0 r(s)ds < +∞, 0 <

∫1
0 z(s)ds < +∞.

(H4) There exists [a, b] ⊂ (0, 1) such that

lim inf
x→+∞

min
t∈[a,b]

f(t, x)
x

= +∞. (2.31)

(H5) There exists [c, d] ⊂ (0, 1) such that

lim inf
x→+∞

min
t∈[c,d]

f(t, x) = +∞,

lim
x→+∞

g(x)
x

= 0.
(2.32)
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Remark 2.10. The second limit of (H5) implies

lim
u→+∞

g∗(u)
u

= 0, (2.33)

where

g∗(u) = max
x∈[0,u]

g(x). (2.34)

Proof. By limu→+∞(g(u)/u) = 0, for any ε > 0, there exists N1 > 0, such that for any u > N1

we have

0 ≤ g(u) < εu. (2.35)

Let N = max{N1, ((g∗(N1))/ε)}, for any u > N we have

0 ≤ g∗(u) < εu + g∗(N1) < 2εu. (2.36)

Therefore, limu→+∞((g∗(u))/u) = 0.

Lemma 2.11. Assume (H1) holds and r(t) ∈ C(0, 1) ∩ L[0, 1] is nonnegative, then the BVP

Dα
0+u(t) + r(t) = 0, 0 < t < 1,

u(0) = 0, D
β

0+u(1) =
m−2∑

i=1

ηiD
β

0+u(ξi)
(2.37)

has a unique solution ω(t) =
∫1
0 G(t, s)r(s)ds with ω(t) ≤ ktα−1, where

k =
∫1

0

(
1

Γ(α)
+ q(s)

)

r(s)ds, t ∈ [0, 1]. (2.38)

Proof. By Lemma 2.6, ω(t) =
∫1
0 G(t, s)r(s)ds is the unique solution of (2.37). By (2) of

Lemma 2.8, we have

ω(t) =
∫1

0
G(t, s)r(s)ds ≤ tα−1

∫1

0

(
1

Γ(α)
+ q(s)

)

r(s)ds. (2.39)

Let E = C[0, 1] be endowed with the maximum norm ‖u‖ = max0≤t≤1|u(t)| and define
a cone P by

P =
{
u(t) ∈ E : there exists lu > 0 such that βt‖u‖ ≤ u(t) ≤ lut

}
, (2.40)

and then set Br = {u(t) ∈ E : ‖u‖ < r}, Pr = P ∩ Br , ∂Pr = P ∩ ∂Br .
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Next we consider the following singular nonlinear BVP:

Dα
0+u(t) + λ

[
f
(
t, [u(t) − λω(t)]+

)
+ r(t)

]
= 0, 0 < t < 1,

u(0) = 0, D
β

0+u(1) =
m−2∑

i=1

ηiD
β

0+u(ξi),
(2.41)

where λ > 0, [v(t)]+ = max{v(t), 0}, ω(t) is defined in Lemma 2.11.
Let

Tu(t) = λ

∫1

0
G∗(t, s)

[
f
(
s,
[
sα−2u(s) − λω(s)

]+)
+ r(s)

]
ds. (2.42)

Clearly, if u(t) ∈ P is a fixed point of T , then y(t) = tα−2u(t) is a positive solution of
(2.41).

Lemma 2.12. Suppose that (H1)–(H3) hold. Then T : P → P is a completely continuous operator.

Proof. It is clear that T is well defined on P . For any u ∈ P , Lemma 2.9 implies

Tu(t) ≥ βtλ

∫1

0
Φ(s)

[
f
(
s,
[
sα−2u(s) − λω(s)

]+)
+ r(s)

]
ds. (2.43)

On the other hand,

Tu(t) ≤ λ

∫1

0
Φ(s)

[
f
(
s,
[
sα−2u(s) − λω(s)

]+)
+ r(s)

]
ds. (2.44)

Therefore, Tu(t) ≥ βt ‖Tu‖. Noticing that

Tu(t) ≤ λt

∫1

0

(
1

Γ(α)
+ q(s)

)[
f
(
s,
[
sα−2u(s) − λω(s)

]+)
+ r(s)

]
ds, (2.45)

we have T : P → P .
Using the Ascoli-Arzela theorem, we can then get that T : P → P is a completely

continuous operator.

Lemma 2.13 (see [25]). Let E be a real Banach space and let P ⊂ E be a cone. Assume that Ω1 and
Ω2 are two-bounded open subsets of E with θ ∈ Ω1,Ω1 ⊂ Ω2, T : P ∩ (Ω2 \Ω1) → P a completely
continuous operator such that either

(1) ‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω1 and ‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω2, or

(2) ‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω1 and ‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω2.

Then T has a fixed point in P ∩ (Ω2 \Ω1).
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3. Existence of Positive Solutions

Theorem 3.1. Suppose that (H1)–(H4) hold. Then there exists λ∗ > 0 such that the BVP (1.1) has
at least one positive solution for any λ ∈ (0, λ∗).

Proof . Choose r1 > kβ−1. Let

λ∗ = min

⎧
⎨

⎩
1,

r1
(
g∗(r1) + 1

) ∫1
0 Φ(s)(z(s) + r(s))ds

⎫
⎬

⎭
, (3.1)

where

g∗(r) = max
x∈[0,r]

g(x). (3.2)

In the following of the proof, we suppose λ ∈ (0, λ∗).
For any u ∈ ∂Pr1 , noticing u(t) ≥ βtr1 and Lemma 2.11, we have

tα−2u(t) − λω(t) ≥ (βr1 − λk
)
tα−1 ≥ (βr1 − k

)
tα−1 ≥ 0, (3.3)

r1 ≥ u(t) − λt2−αω(t) ≥ (βr1 − k
)
t ≥ 0. (3.4)

Therefore,

Tu(t) = λ

∫1

0
G∗(t, s)

(
f
(
s,
[
sα−2u(s) − λω(s)

]+)
+ r(s)

)
ds

≤ λ

∫1

0
Φ(s)

(
z(s)g

([
u(s) − λs2−αω(s)

]+)
+ r(s)

)
ds

≤ λ
(
g∗(r1) + 1

)
∫1

0
Φ(s)(z(s) + r(s))ds

< λ∗
(
g∗(r1) + 1

)
∫1

0
Φ(s)(z(s) + r(s))ds ≤ r1.

(3.5)

Thus,

‖Tu‖ ≤ ‖u‖, ∀u ∈ ∂Pr1 . (3.6)

Now choose a real number

L >
2

λβ2
∫b
a Φ(s)sα−1ds

. (3.7)
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By (H4), there exists a constant N > 0 such that

f(t, x) > Lx, for any t ∈ [a, b], x ≥ N. (3.8)

Let

r2 = r1 +
2k
β

+
2N
βaα−1 . (3.9)

Then for any u ∈ ∂Pr2 , we have

tα−2u(t) − λω(t) ≥ (βr2 − k
)
tα−1 ≥ βr2

2
tα−1, ∀t ∈ (0, 1]. (3.10)

Thus, for any t ∈ [a, b], we have tα−2u(t) − λω(t) > N. Hence, we get

‖Tu‖ = max
t∈[0,1]

λ

∫1

0
G∗(t, s)

[
f
(
s,
[
sα−2u(s) − λω(s)

]+)
+ r(s)

]
ds

≥ max
t∈[0,1]

λ

∫b

a

G∗(t, s)f
(
s,
[
sα−2u(s) − λω(s)

])
ds

≥ max
t∈[0,1]

λL

∫b

a

G∗(t, s)
(
sα−2u(s) − λω(s)

)
ds

≥ max
t∈[0,1]

λL

∫b

a

G∗(t, s)
βr2
2

sα−1ds

≥ max
t∈[0,1]

λLβ2r2
2

t

∫b

a

Φ(s)sα−1ds

=
λLβ2r2

2

∫b

a

Φ(s)sα−1ds ≥ r2.

(3.11)

Therefore,

‖Tu‖ ≥ ‖u‖, ∀u ∈ ∂Pr2 . (3.12)

By Lemma 2.13, T has a fixed point u ∈ P such that r1 ≤ ‖u‖ ≤ r2. Let u(t) = tα−2u(t) − λω(t).
Since ‖u‖ ≥ r1, by (3.3) we have u(t) ≥ 0 on (0, 1] and limt→ 0+ t

α−2u(t) = 0. Notice that ω(t) is
the solution of (2.37) and tα−2u(t) is the solution of (2.41). Thus, u(t) is a positive solution of
the BVP (1.1).

Theorem 3.2. Suppose that (H1)–(H3) and (H5) hold. Then there exists λ∗ > 0 such that the BVP
(1.1) has at least one positive solution for any λ ∈ (λ∗,+∞).
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Proof. By the first limit of (H5), there exists N > 0 such that

f(t, x) ≥ 2k

β2
∫d
c Φ(s)ds

, for any t ∈ [c, d], x ≥ N. (3.13)

Let

λ∗ =
N

kcα−1
. (3.14)

In the following part of the proof, we suppose λ > λ∗.
Let

R1 =
2λk
β

. (3.15)

Then for any u ∈ ∂PR1 , we have

tα−2u(t) − λω(t) ≥ (βR1 − λk
)
tα−1 = λktα−1 ≥ λ∗ktα−1, ∀t ∈ (0, 1]. (3.16)

Therefore, tα−2u(t) − λω(t) ≥ N, for any t ∈ [c, d] and u ∈ ∂PR1 . Then

Tu(t) = λ

∫1

0
G∗(t, s)

[
f
(
s,
[
sα−2u(s) − λω(s)

]+)
+ r(s)

]
ds

≥ λ

∫d

c

G∗(t, s)f
(
s,
[
sα−2u(s) − λω(s)

]+)
ds

≥ 2λk

β2
∫d
c Φ(s)ds

∫d

c

G∗(t, s)ds

≥ 2λkt

β
∫d
c Φ(s)ds

∫d

c

Φ(s)ds = R1t.

(3.17)

This implies

‖Tu‖ ≥ ‖u‖, ∀u ∈ ∂PR1 . (3.18)

On the other hand, g(x) is continuous on [0,+∞), and thus from the second limit of
(H5), we have

lim
x→+∞

g∗(x)
x

= 0, (3.19)
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where g∗(x) is defined by (3.2). For

ε =

(

2λ
∫1

0
Φ(s)z(s)ds

)−1
, (3.20)

there exists X0 > 0 such that g(u) ≤ εx for any x ≥ X0 and u ∈ [0, x].
Let

R2 = X0 + R1 + 2λ
∫1

0
Φ(s)r(s)ds. (3.21)

For any u ∈ ∂PR2 , by (3.16)we can get R2 ≥ u(t) − λt2−αω(t) ≥ 0, for all t ∈ [0, 1]. Therefore,

‖Tu‖ ≤ λ

∫1

0
Φ(s)

[
z(s)g

([
u(s) − λs2−αω(s)

]+)
+ r(s)

]
ds

≤ λεR2

∫1

0
Φ(s)z(s)ds + λ

∫1

0
Φ(s)r(s)ds

≤ R2

2
+
R2

2
= R2.

(3.22)

Thus,

‖Tu‖ ≤ ‖u‖, ∀u ∈ ∂PR2 . (3.23)

By Lemma 2.13, T has a fixed point u ∈ P such that R1 ≤ ‖u‖ ≤ R2. Let u(t) = tα−2u(t) − λω(t).
Since ‖u‖ ≥ R1, by (3.16) we have u(t) ≥ 0 on (0, 1] and limt→ 0+t

α−2u(t) = 0. Notice that ω(t)
is a solution of (2.37) and tα−2u(t) is a solution of (2.41). Thus, u(t) is a positive solution of
the BVP (1.1).

By the proof of Theorem 3.2, we have the following corollary.

Corollary 3.3. The conclusion of Theorem 3.2 is valid if (H5) is replaced by (H∗
5). There exist [c, d] ⊂

(0, 1) and N > 0 such that for any t ∈ [c, d] and x ≥ N,

f(t, x) ≥ 2k

β2
∫d
c Φ(s)ds

,

lim
x→+∞

g(x)
x

= 0.

(3.24)
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4. Example

Example 4.1 (a 4-point BVP with coefficients of both signs). Consider the following problem:

D7/4
0+ u(t) + λf(t, u(t)) = 0, t ∈ (0, 1), u(0) = 0,

D1/4
0+ u(1) = D1/4

0+ u

(
1
4

)

− 1
2
D1/4

0+ u

(
4
9

)

,
(4.1)

where

f(t, x) = x2 + ln t. (4.2)

We have

G0(t, s) =
1

Γ(7/4)

⎧
⎪⎪⎨

⎪⎪⎩

t3/4(1 − s)1/2, 0 ≤ t ≤ s ≤ 1,

t3/4(1 − s)1/2 − (t − s)3/4, 0 ≤ s ≤ t ≤ 1,

(4.3)

p(s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 −
(
(1/4) − s

1 − s

)1/2

− 1
2

(
(4/9) − s

1 − s

)1/2

, 0 ≤ s ≤ 1
4
,

1 − 1
2

(
(4/9) − s

1 − s

)1/2

,
1
4
< s ≤ 4

9
,

1,
4
9
< s ≤ 1.

(4.4)

By direct calculations, we have p(0) = (1/6) and q(s) ≥ 0, which implies that (H1) holds.
Let r(t) = − ln t, z(t) = t−1/2, g(x) = x2. It is easy to see that (H2) and (H3) hold.

Moreover,

lim inf
x→+∞

min
t∈[(1/4),(3/4)]

f(t, x)
x

= +∞. (4.5)

Therefore, the assumptions of Theorem 3.1 are satisfied. Thus, Theorem 3.1 ensures that there
exists λ∗ > 0 such that the BVP (4.1) has at least one positive solution for any λ ∈ (0, λ∗).

Remark 4.2. Noticing that λx2 does not satisfy (A1), therefore, the work in the present paper
improves and generalizes the main results of [23].
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