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Iterative methods for pseudocontractions have been studied by many authors in the literature.
In the present paper, we firstly propose a new iterative method involving sunny nonexpansive
retractions for pseudocontractions in Banach spaces. Consequently, we show that the suggested
algorithm converges strongly to a fixed point of the pseudocontractive mapping which also solves
some variational inequality.

1. Introduction

Let C be a nonempty closed convex subset of a real Banach space E. A mapping T : C → C
is said to be nonexpansive, if

∥
∥Tx − Ty

∥
∥ ≤ ∥

∥x − y
∥
∥, (1.1)

for all x, y ∈ C.
Now we know that the involved operators in the many practical applications can be

reduced to the nonexpansive mappings, that is, there are a large number of applied areas
which are closely related to the nonexpansive mappings, for example, inverse problem,
partial differential equations, image recovery, and signal processing. Based on these facts,
recently, iterative methods for finding fixed points of nonexpansive mappings have received
vast investigations. For related works, please see [1–26] and the references therein.

In the present paper, we focus on a class of strictly pseudocontractive mappings which
strictly includes the class of nonexpansive mappings. Recall that a mapping T : C → C is
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said to be strictly pseudocontractive if there exists a constant λ > 0 and j(x − y) ∈ J(x − y)
such that

〈

Tx − Ty, j
(

x − y
)〉 ≤ ∥

∥x − y
∥
∥
2 − λ

∥
∥x − y − (

Tx − Ty
)∥
∥
2
, (1.2)

for all x, y ∈ C. We use Fix(T) to denote the set of fixed points of T .
We know that the strict pseudocontractions have more powerful applications than

nonexpansive mappings in solving inverse problems. There are some related references in the
literature for strictly pseudocontractive mappings; see, for example, [27–30]. Motivated and
inspired by the works in the literature, in the present paper, we firstly propose a new iterative
method involving sunny nonexpansive retractions for pseudocontractions in Banach spaces.
Consequently, we show that the suggested algorithm converges strongly to a fixed point of
the pseudocontractive mapping which also solves some variational inequality.

2. Preliminaries

LetE∗ be the dual space of a Banach spaceE. Let Jq (q > 1) be the generalized dualitymapping
from E into 2E

∗
given by

Jq(x) =
{

g ∈ E∗ :
〈

x, g
〉

= ‖x‖∥∥g∥∥,∥∥g∥∥ = ‖x‖q−1
}

, (2.1)

where 〈·, ·〉 denotes the generalized duality pairing. In particular, J2 is called the normalized
duality mapping and it is usually denoted by j. It is well known that E is a uniformly smooth
Banach space if and only if Jq is single valued and uniformly continuous on any bounded
subset of E.

Let C be a nonempty closed convex subset of a Banach space E, and let D be a
nonempty subset of C. Recall that a mapping Q : C → D is called a retraction from C
onto D provided Q(x) = x for all x ∈ D. A retraction Q : C → D is sunny provided
Q(x + t(x − Q(x))) = Q(x) for all x ∈ C and t ≥ 0 whenever x + t(x − Q(x)) ∈ C. A
sunny nonexpansive retraction is a sunny retraction which is also nonexpansive. Sunny non-
expansive retractions are characterized as follows.

Lemma 2.1. If E is a smooth Banach space, then Q : C → D is a sunny nonexpansive retraction if
and only if there holds the inequality

〈

x −Qx, J
(

y −Qx
)〉 ≤ 0, (2.2)

for all x ∈ C and y ∈ D.

Lemma 2.2 (see [31]). Let E be a real q-uniformly smooth Banach space, and let 1 < q ≤ 2. Then,
one has

∥
∥x + y

∥
∥
q ≤ ‖x‖q + q

〈

y, Jq(x)
〉

+ 2
∥
∥Ky

∥
∥
q
, (2.3)

for all x, y ∈ E.
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Lemma 2.3 (see [16]). Let {xn} and {zn} be two bounded sequences in Banach spaces, and let
{βn} be a sequence in [0, 1] with 0 < lim infn→∞βn ≤ lim supn→∞βn < 1. Suppose that xn+1 =
(1−βn)xn +βnzn for all n ≥ 0 and lim supn→∞(‖zn+1 −zn‖−‖xn+1 −xn‖) ≤ 0. Then limn→∞‖zn −
xn‖ = 0.

Lemma 2.4 (see [14]). Let C be a nonempty closed convex subset of a real q-uniformly smooth and
uniformly convex Banach space E. Let T : C → C be a strictly pseudocontractive mapping. Then
I − T is demiclosed.

Lemma 2.5 (see [32]). Assume {an} is a sequence of nonnegative real numbers such that an+1 ≤
(1 − γn)an + γnδn for n ≥ 0 where {γn} is a sequence in (0, 1) and {δn} is a sequence in R such that

(i)
∑∞

n=0 γn = ∞;

(ii) lim supn→∞δn ≤ 0 or
∑∞

n=0 |δnγn| < ∞.

Then limn→∞an = 0.

3. Main Results

In this section, we will give our main results. In the sequel, we assume the following:

(C1) E is a uniformly convex and 2-uniformly smooth Banach space which admits a
weakly sequentially continuous duality mapping j from E to E∗;

(C2) C is a nonempty closed convex subset of E;

(C3) QC is a sunny nonexpansive retraction from E onto C;

(C4) T : C → C is a λ-strict pseudocontraction;

(C5) ϑ : E → E is a ρ-contraction;

(C6) A : E → E is strongly positive (i.e., 〈Ax, j(x)〉 ≥ γ‖x‖2 for some 0 < γ < 1) and
linear bounded operator with ‖(1 − ζ)I − θA‖ ≤ 1 − ζ − θ for all ζ > 0, θ > 0 and
0 < ζ + θ < 1;

(C7) Fix(T)/= ∅.
First, we consider the following VI: finding x† ∈ Fix(T) such that

〈

(A − δϑ)x†, j
(

x̃ − x†
)〉

≥ 0, x̃ ∈ Fix(T). (3.1)

The set of solutions of (3.1) is denoted by V I(Fix(T), A). In the sequel, we assume that
V I(Fix(T), A)/= ∅. Note that (3.1) has the unique solution.

Next, we propose our algorithm.

Algorithm 3.1. For the initial point x0 ∈ C, we generate a sequence {xn} via the following
manner:

xn+1 = αnδϑ(xn) +
[(

1 − η
)

I − αnA
]

xn + η[(1 − k)QCxn + kTQCxn], n ≥ 0, (3.2)

where {αn} is a sequence in (0, 1) and δ > 0, 0 < η < 1, δρ < γ, 0 < k < λ/K2.
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Theorem 3.2. If the sequence {αn} satisfies limn→∞an = 0 and
∑∞

n=0 αn = ∞, then the sequence
{xn} generated by (3.2) converges strongly to the unique solution x† of VI (3.1).

Proof. First, by using Lemma 2.2, we know that (1 − k)I + kT is nonexpansive. QC is sunny
nonexpansive. Thus, (1− k)QC + kTQC is nonexpansive. Let x† ∈ Fix(T). From (3.2), we have

∥
∥
∥xn+1 − x†

∥
∥
∥ =

∥
∥
∥αnδϑ(xn) +

[(

1 − η
)

I − αnA
]

xn + η[(1 − k)QCxn + kTQCxn] − x†
∥
∥
∥

=
∥
∥
∥αn

(

δϑ(xn) −Ax†
)

+
[(

1 − η
)

I − αnA
](

xn − x†
)

+η
[

(1 − k)QCxn + kTQCxn − x†
]∥
∥
∥

≤ αn

∥
∥
∥δϑ(xn) −Ax†

∥
∥
∥ +

∥
∥
(

1 − η
)

I − αnA
∥
∥

∥
∥
∥xn − x†

∥
∥
∥

+ η
∥
∥
∥(1 − k)QCxn + kTQCxn − x†

∥
∥
∥

≤ αnδ
∥
∥
∥ϑ(xn) − ϑ

(

x†
)∥
∥
∥ + αn

∥
∥
∥δϑ

(

x†
)

−Ax†
∥
∥
∥ +

(

1 − η − αnγ
)
∥
∥
∥xn − x†

∥
∥
∥

+ η
∥
∥
∥xn − x†

∥
∥
∥

≤ αnδρ
∥
∥
∥xn − x†

∥
∥
∥ + αn

∥
∥
∥δϑ

(

x†
)

−Ax†
∥
∥
∥ +

(

1 − η − αnγ
)
∥
∥
∥xn − x†

∥
∥
∥

+ η
∥
∥
∥xn − x†

∥
∥
∥

=
[

1 − (

γ − δρ
)

αn

]
∥
∥
∥xn − x†

∥
∥
∥ + αn

∥
∥
∥δϑ

(

x†
)

−Ax†
∥
∥
∥.

(3.3)

Thus,

∥
∥
∥xn+1 − x†

∥
∥
∥ ≤ max

{
∥
∥
∥xn − x†

∥
∥
∥,

∥
∥δϑ

(

x†) −Ax†∥∥

γ − δρ

}

≤ max

{
∥
∥
∥x0 − x†

∥
∥
∥,

∥
∥δϑ

(

x†) −Ax†∥∥

γ − δρ

}

.

(3.4)

This indicates that {xn} is bounded.
We write xn+1 = (1 − η)xn + ηun for all n ≥ 0. So,

un =
xn+1 −

(

1 − η
)

xn

η

=
αnδϑ(xn)

η
− αnAxn

η
+ (1 − k)QCxn + kTQCxn

= αn
δϑ −A

η
xn + [(1 − k)QC + kTQC]xn.

(3.5)
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Hence,

un+1 − un = αn+1
δϑ −A

η
xn+1 + [(1 − k)QC + kTQC]xn+1 − αn

δϑ −A

η
xn

− [(1 − k)QC + kTQC]xn.

(3.6)

It follows that

‖un+1 − un‖ ≤ αn+1

∥
∥
∥
∥

δϑ −A

η
xn+1

∥
∥
∥
∥
+ αn

∥
∥
∥
∥

δϑ −A

η
xn

∥
∥
∥
∥

+ ‖[(1 − k)QC + kTQC]xn+1 − [(1 − k)QC + kTQC]xn‖
≤ (αn + αn+1)M + ‖xn+1 − xn‖,

(3.7)

where M > 0 is a constant satisfying sup{‖((δϑ −A)/η)xn‖} ≤ M. This implies that

lim sup
n→∞

(‖un+1 − un‖ − ‖xn+1 − xn‖) ≤ 0. (3.8)

By Lemma 2.3, we deduce

lim
n→∞

‖un − xn‖ = 0. (3.9)

Therefore,

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

η‖un − xn‖ = 0. (3.10)

Note that Fix(T) = Fix(TQC). As a matter of fact, if p ∈ Fix(T), that is p = Tp, then p ∈
Fix(TQC). Since T is a self-mapping, it is clear that p ∈ C. So, QCp = p. Therefore, TQCp =
Tp = p. Conversely, if q ∈ Fix(TQC), that is q = TQCq, we also have q ∈ C. Thus, q = Tq. Set
S = (1− k)I + kT . We observe that Fix(S) = Fix(T) = Fix(TQC) = Fix(SQC). Next, we estimate
‖xn − SQCxn‖.

Since

‖xn − SQCxn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − SQCxn‖
≤ ‖xn − xn+1‖ +

(

1 − η
)‖xn − SQCxn‖ + η‖un − SQCxn‖

≤ ‖xn − xn+1‖ +
(

1 − η
)‖xn − SQCxn‖ + αn‖δϑ(xn) −Axn‖,

(3.11)

we have

‖xn − SQCxn‖ ≤ 1
η
‖xn+1 − xn‖ + αn

η
‖δϑ(xn) −Axn‖ −→ 0. (3.12)
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Next, we show

lim sup
n→∞

〈

δϑ
(

x†
)

−Ax†, j
(

xn+1 − x†
)〉

≤ 0, (3.13)

where x† ∈ V I(Fix(T), A).
First, we have

lim sup
n→∞

〈

δϑ
(

x†
)

−Ax†, j
(

xn+1 − x†
)〉

= lim
i→∞

〈

δϑ
(

x†
)

−Ax†, j
(

xni+1 − x†
)〉

. (3.14)

Since the sequence {xn} is bounded, hence {xni} is bounded. Thus, we can take a subsequence
{xnij

} of {xn} such that xnij
→ x̃ weakly. Without loss of generality, we may assume that

xni → x̃ weakly. Note that SQC is nonexpansive and ‖xni − SQCxni‖ → 0. By using the
demiclosed principle of nonexpansive mappings (see Lemma 2.4), we get x̃ ∈ Fix(SQC) =
Fix(T). At the same time, j is weakly sequentially continuous. Therefore,

lim sup
n→∞

〈

δϑ
(

x†
)

−Ax†, j
(

xn+1 − x†
)〉

= lim
i→∞

〈

δϑ
(

x†
)

−Ax†, j
(

xni+1 − x†
)〉

=
〈

δϑ
(

x†
)

−Ax†, j
(

x̃ − x†
)〉

≤ 0.
(3.15)

Finally we show that xn → x†. From (3.2), we have

∥
∥
∥xn+1 − x†

∥
∥
∥

2
=
∥
∥
∥αn

(

δϑ(xn) −Ax†
)

+
((

1 − η
)

I − αnA
)(

xn − x†
)

+η
(

(1 − k)QCxn + kTQCxn − x†
)∥
∥
∥

2

≤
∥
∥
∥

((

1 − η
)

I − αnA
)(

xn − x†
)

+ η
(

(1 − k)QCxn + kTQCxn − x†
)∥
∥
∥

2

+ 2αn

〈

δϑ(xn) −Ax†, j
(

xn+1 − x†
)〉

≤
(∥
∥
∥

((

1 − η
)

I − αnA
)(

xn − x†
)∥
∥
∥

2
+
∥
∥
∥η

(

(1 − k)QCxn + kTQCxn − x†
)∥
∥
∥

)2

+ 2αnδ
〈

ϑ(xn) − ϑ
(

x†
)

, j
(

xn+1 − x†
)〉

+ 2αn

〈

δϑ
(

x†
)

−Ax†, j
(

xn+1 − x†
)〉

≤
[(

1 − η − αnγ
)
∥
∥
∥xn − x†

∥
∥
∥ + η

∥
∥
∥xn − x†

∥
∥
∥

]2
+ 2αnδρ

∥
∥
∥xn − x†

∥
∥
∥

∥
∥
∥xn+1 − x†

∥
∥
∥

+ 2αn

〈

δϑ
(

x†
)

−Ax†, j
(

xn+1 − x†
)〉

≤ (

1 − αnγ
)2
∥
∥
∥xn − x†

∥
∥
∥

2
+ αnδρ

(∥
∥
∥xn − x†

∥
∥
∥

2
+
∥
∥
∥xn+1 − x†

∥
∥
∥

2
)

+ 2αn

〈

δϑ
(

x†
)

−Ax†, j
(

xn+1 − x†
)〉

.

(3.16)
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It follows that

∥
∥
∥xn+1 − x†

∥
∥
∥

2 ≤ 1 − 2αnγ + α2
nγ

2 + αnδρ

1 − αnδρ

∥
∥
∥xn − x†

∥
∥
∥

2

+
2αn

1 − αnδρ

〈

δϑ
(

x†
)

−Ax†, j
(

xn+1 − x†
)〉

=

[

1 − 2
(

γ − δρ
)

αn

1 − αnδρ

]
∥
∥
∥xn − x†

∥
∥
∥

2
+

α2
nγ

2

1 − αnδρ

∥
∥
∥xn − x†

∥
∥
∥

2

+
2αn

1 − αnδρ

〈

δϑ
(

x†
)

−Ax†, j
(

xn+1 − x†
)〉

=

[

1 − 2
(

γ − δρ
)

αn

1 − αnδρ

]
∥
∥
∥xn − x†

∥
∥
∥

2
+
2
(

γ − δρ
)

αn

1 − αnδρ

×
{

αnγ
2
∥
∥xn − x†∥∥2

2
(

γ − δρ
) +

1
γ − δρ

〈

δϑ
(

x†
)

−Ax†, j
(

xn+1 − x†
)〉

}

.

(3.17)

It can be checked easily that
∑

n(2(γ − δρ)αn/(1 − αnδρ)) = ∞ and lim supn→∞(αnγ
2‖xn −

x†‖2/2(γ − δρ)) + (1/(γ − δρ))〈δϑ(x†) −Ax†, j(xn+1 − x†)〉 ≤ 0. From Lemma 2.5, we deduce
xn → x†. This completes the proof.

Algorithm 3.3. For the initial point x0 ∈ C, we generate a sequence {xn} via the following
manner:

xn+1 = αnδϑ(xn) +
(

1 − η − αn

)

xn + η[(1 − k)QCxn + kTQCxn], n ≥ 0, (3.18)

where {αn} is a sequence in (0, 1) and δ > 0, 0 < η < 1, δρ < 1, 0 < k < λ/K2.

Corollary 3.4. If the sequence {αn} satisfies limn→∞an = 0 and
∑∞

n=0 αn = ∞, then the sequence
{xn} generated by (3.18) converges strongly to the unique solution x† of VI: finding x† ∈ Fix(T) such
that

〈

(I − δϑ)x†, j
(

x̃ − x†
)〉

≥ 0, x̃ ∈ Fix(T). (3.19)

Algorithm 3.5. For the initial point x0 ∈ C and u ∈ E, we generate a sequence {xn} via the
following manner:

xn+1 = αnu +
(

1 − η − αn

)

xn + η[(1 − k)QCxn + kTQCxn], n ≥ 0, (3.20)

where {αn} is a sequence in (0, 1) and 0 < η < 1, 0 < k < λ/K2.
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Corollary 3.6. If the sequence {αn} satisfies limn→∞αn = 0 and
∑∞

n=0 αn = ∞, then the sequence
{xn} generated by (3.20) converges strongly to the unique solution x† of VI: finding x† ∈ Fix(T) such
that

〈

(I − u)x†, j
(

x̃ − x†
)〉

≥ 0, x̃ ∈ Fix(T). (3.21)

Algorithm 3.7. For the initial point x0 ∈ C, we generate a sequence {xn} via the following
manner:

xn+1 =
(

1 − η − αn

)

xn + η[(1 − k)QCxn + kTQCxn], n ≥ 0, (3.22)

where {αn} is a sequence in (0, 1) and 0 < η < 1, 0 < k < λ/K2.

Corollary 3.8. If the sequence {αn} satisfies limn→∞αn = 0 and
∑∞

n=0 αn = ∞, then the sequence
{xn} generated by (3.22) converges strongly to QFix(T)(0).
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