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Overview and refinements of the results are given for discrete, integral, functional and operator
variants of inequalities for quasiarithmetic means. The general results are applied to further
refinements of the power means. Jensen’s inequalities have been systematically presented, from
the older variants, to the most recent ones for the operators without operator convexity.

1. Introduction

Quasiarithmetic means are very important because they are general and unavoidable in
applications. This paper begins with the quasiarithmetic means of points, continues with
the quasiarithmetic means of measurable function, through the quasiarithmetic means of
functions with respect to linear functionals, and ends with the quasiarithmetic means of
operators with respect to linear mappings. Conclusion of the paper is dedicated to the
applications of operator quasiarithmetic means on power means with strictly positive
operators. At this point, it should be emphasized that in all four of the next sections the
basic and initial inequality was precisely the Jensen inequality (see Figure 1).

The applications of convexity often used strictly monotone continuous functions ϕ
and ψ such that ψ is convex with respect to ϕ (ψ is ϕ convex); that is, f = ψ ◦ ϕ−1 is convex
by [1, Definition 1.19]. Similar notation is used for concavity. We observe a monotonicity of
quasiarithmetic means with these functions ϕ and ψ. Good results for the monotonicity of
quasiarithmetic means are obtained in [2] for the basic and integral case. The first results for
the operator case without operator convexity are obtained in [3, 4]. Among other things, the
paper gives some generalizations of the mentioned results.
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Figure 1: Graphic concept of Jensen’s inequality.

Through this paper, we suppose that I ⊆ R is a nondegenerate interval, and ϕ, ψ : I →
R are strictly monotone continuous functions. It is assumed that the integer n ≥ 2, wherever
it appears in inequalities.

2. Results for Basic Case

For n-tuple x = (x1, . . . , xn) with numbers xi ∈ R, sometimes we will write x > 0 if all xi > 0,
and x/= c if xi /=xj for some i /= j.

Below is a discrete basic form of Jensen’s inequality for a convex function with respect
to convex combinations points in interval.

Theorem A. Let f : I → R be a function. Let x = (x1, . . . , xn) be n-tuple with points xi ∈ I, and
p = (p1, . . . , pn) be n-tuple with numbers pi ∈ [0, 1] such that

∑n
i=1 pi = 1.

A function f is convex if and only if the following inequality

f

(
n∑

i=1

pixi

)

≤
n∑

i=1

pif(xi), (2.1)

holds for all above n-tuples p and x.
Consequently, if

∑n
i=1 pi = p > 0, not necessarily equals 1, then f is convex if and only if

f

(
1
p

n∑

i=1

pixi

)

≤ 1
p

n∑

i=1

pif(xi). (2.2)

A function f is concave if and only if the reverse inequality is valid in (2.1) and (2.2).

A function f is strictly convex if and only if the inequality in (2.1) and (2.2) is strict for
all p > 0 and x/= c.

Let ϕ : I → R be a strictly monotone continuous function. Let x = (x1, . . . , xn) be n-
tuple with points xi ∈ I, and p = (p1, . . . , pn) be n-tuple with numbers pi ∈ [0, 1] such that
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∑n
i=1 pi = 1. The discrete basic ϕ-quasiarithmetic mean of points (particles) xi with coefficients

(weights) pi is a number

Mϕ(px) = ϕ−1
(

n∑

i=1

piϕ(xi)

)

. (2.3)

We understand that px =
∑n

i=1 pixi. The ϕ-quasiarithmetic mean resulting, first by moving the
convex combination px ∈ I into convex combination pϕ(x) ∈ ϕ(I), then its return using ϕ−1

back in the interval I. So, the numberMϕ(px) is in the interval I, in fact in the closed interval
[min{xi},max{xi}]. If ϕ is an identity function on I, that is, ϕ(x) = id(x) = x for x ∈ I, then
the ϕ-quasiarithmetic mean is just a convex combination as follows:

Mid(px) =
n∑

i=1

pixi. (2.4)

Basic quasiarithmetic means have the property

Maϕ+b(px) = Mϕ(px), (2.5)

for every pair of real numbers a and b with a/= 0.
Suppose that all coefficients pi = 1/n. If we take ϕ1(x) = x, then Mϕ1(px) is the

arithmetic mean of numbers xi. If all xi > 0 and we take ϕ0(x) = lnx, then Mϕ0(px) is the
geometric mean of numbers xi. If all xi > 0 and we take ϕ−1(x) = 1/x, then Mϕ−1(px) is the
harmonic mean of numbers xi.

Corollary 2.1. Let ϕ, ψ : I → R be strictly monotone continuous functions.
A function ψ is either ϕ-convex and increasing or ϕ-concave and decreasing if and only if

following the inequality:

Mϕ(px) ≤ Mψ(px), (2.6)

holds for all n-tuples p and x as in (2.3).
A function ψ is either ϕ-concave and increasing or ϕ-convex and decreasing if and only if the

reverse inequality is valid in (2.6).

A function ψ is strictly ϕ-convex if and only if the inequality in (2.6) is strict for all
p > 0 and x/= c (see Figure 2).

Suppose that all xi > 0. If we apply Corollary 2.1 on three strictly monotone functions
ϕ−1(x) = 1/x, ϕ0(x) = lnx and ϕ1(x) = x (two by two in pairs), then we get the weighted
harmonic-geometric-arithmetic inequality

1
(
p1/x1

)
+ · · · + (pn/xn

) ≤ xp11 · . . . · xpnn ≤ p1x1 + · · · + pnxn. (2.7)
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ψ(x)

ψ(xi)

ψ(Mψ)

ψ(Mϕ)

ϕ(Mϕ)

Figure 2: The ψ-order among quasiarithmetic means Mϕ and Mψ for ϕ-convex and increasing ψ.

Recall that a function f : I → R is convex if and only if the following inequality:

f
(
y
) − f(x)
y − x ≤ f(z) − f(y)

z − y , (2.8)

holds for all triples x, y, z ∈ I such that x < y < z. A function f is strictly convex if and only
if the above inequality is strict. So, the function ψ is ϕ-convex if and only if

ψ
(
y
) − ψ(x)

ϕ
(
y
) − ϕ(x) ≤ ψ(z) − ψ(y)

ϕ(z) − ϕ(y) . (2.9)

Let u, v : [a0, a1] → R, where a0 < a1, be nonnegative continuous functions so
that v/u is a strictly monotone increasing positive function on an open interval 〈a0, a1〉,
with boundary conditions u(a0) = v(a1) = 1 and u(a1) = v(a0) = 0. Let both ϕ and ψ be
strictly monotone increasing or decreasing. For any t ∈ [a0, a1], we define a strictly monotone
continuous function

φt(x) = u(t)ϕ(x) + v(t)ψ(x) with x ∈ I. (2.10)

For example, we can take u(t) = 1 − t and v(t) = t for t ∈ [0, 1], u(t) = 1 − √
t and v(t) = t2 for

t ∈ [0, 1], u(t) = cos t and v(t) = sin t for t ∈ [0, π/2].

Lemma 2.2. Let a, b, α, β be real numbers.
If a ≤ b and α ≤ β, then

1 + βa
1 + αa

≤ 1 + βb
1 + αb

, (2.11)

provided that denominators are the same sign. The inequality in (2.11) is strict if a < b and α < β.
If either a ≥ b and α ≤ β or a ≤ b and α ≥ β, then the reverse inequality is valid in (2.11).
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Proposition 2.3. Let φt = u(t)ϕ + v(t)ψ : I → R for t ∈ [a0, a1] be functions as in (2.10). Let
t0, t1 ∈ [a0, a1] such that t0 ≤ t1.

If ψ is ϕ-convex (resp. ϕ-concave), then φt1 is φt0 -convex (resp. φt0 -concave).

Proof. Suppose that ψ is ϕ-convex. Show that the function φt1 is φt0 -convex. If t0 = a1, then
t0 = t1, so we can suppose that t0 < a1. Let x, y, z ∈ I such that x < y < z. Let, with respect to
(2.9) and definition of functions u and v,

a =
ψ
(
y
) − ψ(x)

ϕ
(
y
) − ϕ(x) ≤ ψ(z) − ψ(y)

ϕ(z) − ϕ(y) = b, α =
v(t0)
u(t0)

≤ v(t1)
u(t1)

= β. (2.12)

Note that numbers a and b are positive because both ϕ and ψ are strictly monotone increasing
or decreasing. Applying Lemma 2.2 with a, b, α, and β, we obtain that

φt1
(
y
) − φt1(x)

φt0
(
y
) − φt0(x)

=
u(t1)

[
ϕ
(
y
) − ϕ(x)] + v(t1)

[
ψ
(
y
) − ψ(x)]

u(t0)
[
ϕ
(
y
) − ϕ(x)] + v(t0)

[
ψ
(
y
) − ψ(x)]

=
u(t1)
u(t0)

1 + βa
1 + αa

≤ u(t1)
u(t0)

1 + βb
1 + αb

=
u(t1)

[
ϕ(z) − ϕ(y)] + v(t1)

[
ψ(z) − ψ(y)]

u(t0)
[
ϕ(z) − ϕ(y)] + v(t0)

[
ψ(z) − ψ(y)]

=
φt1(z) − φt1

(
y
)

φt0(z) − φt0
(
y
) ,

(2.13)

which shows the required convexity by (2.9). Case of the concavity can be proved in a similar
way.

If ψ is strictly ϕ-convex (resp. ϕ-concave), then φt1 is strictly φt0 -convex (resp. φt0 -
concave).

According to Proposition 2.3, we can express refinements of the basic quasiarithmetic
means.

Theorem 2.4. Let φt = u(t)ϕ + v(t)ψ : I → R for t ∈ [a0, a1] be functions as in (2.10). Let
t0, t1 ∈ [a0, a1] such that t0 ≤ t1.

If either ψ is ϕ-convex with both ϕ and ψ increasing or ϕ-concave with both ϕ and ψ decreasing,
then the following inequality:

Mϕ(px) ≤ Mφt0
(px) ≤ Mφt1

(px) ≤ Mψ(px), (2.14)

holds for all n-tuples p and x as in (2.3).
If either ψ is ϕ-concave with both ϕ and ψ increasing or ϕ-convex with both ϕ and ψ decreasing,

then the reverse inequality is valid in (2.14).

Proof. If ψ is ϕ-convex with both ϕ and ψ increasing, then the function φt1 is increasing, and
φt0 -convex by Proposition 2.3, and according to Corollary 2.1 the inequality in (2.14) is valid.
In the same way, we prove the concavity case.
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In other words, the above theorem says that a function

t �→ Mφt(px) with t ∈ [a0, a1], (2.15)

is monotone increasing for any fixed p and x as in (2.3). In the case n = 2 it is proved in [2,
Lemma 4] for functions u(t) = 1 − t and v(t) = t with t ∈ [0, 1].

We emphasize that the inequality in (2.14) is strict for a0 < t0 < t1 < a1 if ψ is strictly
ϕ-convex or ϕ-concave, p > 0 and x/= c.

Let us take strictly monotone decreasing functions ϕ(x) = 1/x and ψ(x) = − lnx with
x > 0. Then (ψ ◦ ϕ−1)(x) = lnx, so ψ is strictly ϕ-concave. Let

φ
hg
t (x) = u(t)

1
x
− v(t) lnx = ln

eu(t)/x

xv(t)
. (2.16)

If we apply the inequality in (2.14)with t = t0 = t1 on φ
hg
t , we get

1
∑n

i=1
(
pi/xi

) ≤
(
φ
hg
t

)−1
(

n∑

i=1

pi ln
eu(t)/xi

x
v(t)
i

)

≤
n∏

i=1

x
pi
i . (2.17)

Let us take strictly monotone increasing functions ϕ(x) = lnx and ψ(x) = xwith x > 0.
Then (ψ ◦ ϕ−1)(x) = ex, so ψ is strictly ϕ-convex. Let

φ
ga
t (x) = u(t) lnx + v(t)x = ln

(
xu(t)ev(t)x

)
. (2.18)

If we apply the inequality in (2.14)with t = t0 = t1 on φ
ga
t , we get

n∏

i=1

x
pi
i ≤
(
φ
ga
t

)−1
(

n∑

i=1

pi ln
(
x
u(t)
i ev(t)xi

)
)

≤
n∑

i=1

pixi. (2.19)

Connecting two above inequalities results in

1
∑n

i=1
(
pi/xi

) ≤
(
φ
hg
t

)−1
(

n∑

i=1

pi ln
eu(t)/xi

x
v(t)
i

)

≤
n∏

i=1

x
pi
i

≤
(
φ
ga
t

)−1
(

n∑

i=1

pi ln
(
x
u(t)
i ev(t)xi

)
)

≤
n∑

i=1

pixi.

(2.20)

The inequality in (2.20) is strict for a0 < t < a1 if all pi > 0 and xi /=xj for some i /= j, so
in this case, we have refinements of the weighted harmonic-geometric-arithmetic inequality.

The weighted harmonic-geometric-arithmetic inequality is only the special case of a
whole collection of inequalities which can be derived by applying of Corollary 2.1 on power
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means. As a special case of the basic quasiarithmetic mean in (2.3) with I = 〈0,+∞〉, ϕr(x) =
xr for r /= 0 and ϕ0(x) = lnx, we can observe the discrete basic power mean

M[r]
n (px) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
n∑

i=1

pix
r
i

)1/r

for r /= 0

exp

(
n∑

i=1

pi lnxi

)

for r = 0.

(2.21)

Very useful consequence of Corollary 2.1 is a well-known property of monotonicity of
basic power means.

Corollary 2.5. If r and s are real numbers such that r ≤ s, then the following inequality:

M[r]
n (px) ≤ M[s]

n (px), (2.22)

holds for all n-tuples p and x as in (2.3) with I = 〈0,+∞〉.

The inequality in (2.22) is strict for r < s if p > 0 and x/= c.
Let functions φ[r,s]

t : 〈0,+∞〉 → R for t ∈ [a0, a1] be specially defined by

φ
[r,s]
t (x) =

⎧
⎪⎪⎨

⎪⎪⎩

u(t)xr + v(t)xs for r /= 0, s /= 0
u(t)xr − v(t) lnx for r /= 0, s = 0
u(t) lnx + v(t)xs for r = 0, s /= 0.

(2.23)

Then the functions t �→ M
φ
[r,s]
t

(px) with x > 0 are monotone increasing in the next four cases.

Case r < s < 0.

Functions ϕ(x) = xr and ψ(x) = xs are strictly monotone decreasing with strictly concave
(ψ ◦ ϕ−1)(x) = xs/r because 0 < (s/r) < 1.

Case r < 0 = s.

Functions ϕ(x) = xr and ψ(x) = − lnx are strictly monotone decreasing with strictly concave
(ψ ◦ ϕ−1)(x) = −(1/r) lnx because −(1/r) > 0.

Case r = 0 < s.

Functions ϕ(x) = lnx and ψ(x) = xs are strictly monotone increasing with strictly convex
(ψ ◦ ϕ−1)(x) = esx.

Case 0 < r < s.

Functions ϕ(x) = xr and ψ(x) = xs are strictly monotone increasing with strictly convex
(ψ ◦ ϕ−1)(x) = xs/r because (s/r) > 1.
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Given traditional signs of power means, we will markM
φ
[r,s]
t

(px) with Mφ
[r,s]
t
n (px). The

inequality in (2.22) can be refined using Theorem 2.4 with functions φ[r,s]
t . The following are

refinements of power means.

Corollary 2.6. Let r, s ∈ R such that r < s. Let φ[r,s]
t : 〈0,+∞〉 → R for t ∈ [a0, a1] be functions as

in (2.23). Let t0, t1 ∈ [a0, a1] such that t0 ≤ t1.
If r < s < 0 or r < 0 = s or r = 0 < s or 0 < r < s, then the inequality

M[r]
n (px) ≤ Mφ

[r,s]
t0
n (px) ≤ Mφ

[r,s]
t1
n (px) ≤ M[s]

n (px), (2.24)

holds for all n-tuples p and x as in (2.3) with I = 〈0,+∞〉.
If r < 0 < s, then we can take the series of inequalities

M[r]
n (px) ≤ Mφ

[r,0]
t0
n (px) ≤ Mφ

[r,0]
t1
n (px) ≤ M[0]

n (px)

≤ Mφ
[0,s]
t0
n (px) ≤ Mφ

[0,s]
t1
n (px) ≤ M[s]

n (px).

(2.25)

The inequalities in (2.24)-(2.25) are strict for a0 < t0 < t1 < a1 if p > 0 and x/= c.
The inequality in (2.20) is a special case of the collection of inequalities in (2.24).

3. Applications on Integral Case

In this section, (Ω, μ) is a probability measure space. It is assumed that every weighted
function w : Ω → R is nonnegative almost everywhere on Ω, that is, w(ω) ≥ 0 for almost all
ω ∈ Ω.

For n-tuple g = (g1, . . . , gn) with functions gi : Ω → R, sometimes we will write g > 0
if all gi > 0 almost everywhere onΩ, and g/= c if gi /= gj almost everywhere onΩ for some i /= j.

Here is an integral form of Jensen’s inequality for a convex function with respect to
measurable functions with weighted functions on the probability measure space.

Theorem B. Let f : I → R be a function. Let (Ω, μ) be a probability measure space, g : Ω → I
be a measurable function, and w ∈ L1(Ω, μ) be a weighted function with

∫
Ωwdμ = 1 such that

w · g,w · (f ◦ g) ∈ L1(Ω, μ).
If a function f is convex, then the inequality

f

(∫

Ω
w · g dμ

)

≤
∫

Ω
w · (f ◦ g)dμ, (3.1)

holds for all above w, g and μ.
Consequently, if

∫
Ωwdμ = p > 0, not necessarily equals 1, then

f

(
1
p

∫

Ω
w · g dμ

)

≤ 1
p

∫

Ω
w · (f ◦ g)dμ. (3.2)

If a function f is concave, then the reverse inequality is valid in (3.1) and (3.2).
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The assumption
∫
Ωwdμ = 1 with nonnegative w almost everywhere on Ω, for the

inequality in (3.1), assures that

∫

Ω
w · g dμ ∈ I,

∫

Ω
w · (f ◦ g)dμ ∈ f(I).

(3.3)

Remark 3.1. The reverse of Theorem B is valid if for any p ∈ [0, 1] a measurable set Ωp ⊆ Ω
exists so that μ(Ωp) = p. In this case, we can determine a simple measurable function

g = xχΩp + yχΩ\Ωp , (3.4)

where χ is a characteristic set function, for every x, y ∈ I and p ∈ [0, 1]. If we take w = 1 at
the same, then

∫

Ω
w · g dμ = px +

(
1 − p)y,

∫

Ω
w · (f ◦ g)dμ =

∫

Ωp

f(x)dμ +
∫

Ω\Ωp

f
(
y
)
dμ = pf(x) +

(
1 − p)f(y).

(3.5)

If we include these integrals in the inequality in (3.1), we have the convexity of the function
f .

Theorem B can be generalized to n probability measures μi and nmeasurable functions
gi with weighted functionswi. The following is a discrete integral form of Jensen’s inequality.

Theorem 3.2. Let f : I → R be a function. Let µ = (μ1, . . . , μn) be n-tuple with probability
measures μi on Ω, g = (g1, . . . , gn) be n-tuple with measurable functions gi : Ω → I, and w =
(w1, . . . , wn) be n-tuple with weighted functions wi ∈ L1(Ω, μi) with

∑n
i=1

∫
Ωwi dμi = 1 such that

wi · gi,wi · (f ◦ gi) ∈ L1(Ω, μi).
A function f is convex if and only if the inequality

f

(
n∑

i=1

∫

Ω
wi · gi dμi

)

≤
n∑

i=1

∫

Ω
wi ·
(
f ◦ gi

)
dμi, (3.6)

holds for all above n-tuplesw, g and µ.
Consequently, if

∑n
i=1

∫
Ωwi dμi = p > 0, not necessarily equals 1, then f is convex if and only

if

f

(
1
p

n∑

i=1

∫

Ω
wi · gi dμi

)

≤ 1
p

n∑

i=1

∫

Ω
wi ·
(
f ◦ gi

)
dμi. (3.7)

A function f is concave if and only if the reverse inequality is valid in (3.6) and (3.7).
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In the proof of sufficiency theorem, we simply take wi = pi and gi = xi in which case
the inequality in (3.6) and (3.7) becomes the basic inequality of convexity. The fact that n ≥ 2
is coming to the fore.

A function f is strictly convex if and only if the inequality in (3.6) and (3.7) is strict for
all w > 0 and g/= c.

Let ϕ : I → R be a strictly monotone continuous function. Let µ = (μ1, . . . , μn)
be n-tuple with probability measures μi on Ω, g = (g1, . . . , gn) be n-tuple with measurable
functions gi : Ω → I, andw = (w1, . . . , wn) be n-tuple with weighted functionswi ∈ L1(Ω, μi)
with

∑n
i=1

∫
Ωwi dμi = 1 such thatwi·(ϕ◦gi) ∈ L1(Ω, μi). The discrete integral ϕ-quasiarithmetic

mean of measurable functions gi with weighted functions wi with respect to measures μi
(namely, with respect to integrals

∫
Ω ·dμi) is a number

Mϕ(wg,µ) = ϕ−1
(

n∑

i=1

∫

Ω
wi ·
(
ϕ ◦ gi

)
dμi

)

. (3.8)

This number belongs to I because the integral convex combination
∑n

i=1

∫
Ωwi · (ϕ ◦ gi)dμi ∈

ϕ(I). Integral quasiarithmetic means also satisfy the property

Maϕ+b(wg,µ) = Mϕ(wg,µ), (3.9)

for every pair of real numbers a and b with a/= 0.
Bearing in mind Theorem 3.2, the following corollary is valid.

Corollary 3.3. Let ϕ, ψ : I → R be strictly monotone continuous functions.
A function ψ is either ϕ-convex and increasing or ϕ-concave and decreasing if and only if the

inequality

Mϕ(wg,µ) ≤ Mψ(wg,µ), (3.10)

holds for all n-tuplesw, g, and µ as in (3.8).
A function ψ is either ϕ-concave and increasing or ϕ-convex and decreasing if and only if the

reverse inequality is valid in (3.10).

Combining basic and integral case by Corollaries 2.1 and 3.3, we get the following.

Proposition 3.4. Let ϕ, ψ : I → R be strictly monotone continuous functions. Then the inequality

Mϕ(px) ≤ Mψ(px), (3.11)

holds for all n-tuples p and x as in (2.3) if and only if the inequality

Mϕ(wg,µ) ≤ Mψ(wg,µ), (3.12)

holds for all n-tuplesw, g, and µ as in (3.8).
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The one direction of Proposition 3.4 is proved in [2, Theorem 1]. It is proved that the
inequality for basic case implies the inequality for integral case with one function g.

The following integral analogy of Theorem 2.4.

Theorem 3.5. Let φt = u(t)ϕ + v(t)ψ : I → R for t ∈ [a0, a1] be functions as in (2.10). Let
t0, t1 ∈ [a0, a1] such that t0 ≤ t1.

If either ψ is ϕ-convex with both ϕ and ψ increasing or ϕ-concave with both ϕ and ψ decreasing,
then the inequality

Mϕ(wg,µ) ≤ Mφt0
(wg,µ) ≤ Mφt1

(wg,µ) ≤ Mψ(wg,µ), (3.13)

holds for all n-tuplesw, g, and µ as in (3.8).
If either ψ is ϕ-concave with both ϕ and ψ increasing or ϕ-convex with both ϕ and ψ decreasing,

then the reverse inequality is valid in (3.13).

The inequality in (3.13) is strict for a0 < t0 < t1 < a1 if ψ is strictly ϕ-convex, w > 0 and
g/= c.

An integral version of refinements of the harmonic-geometric-arithmetic inequality is
also valid. So, the inequality

1
∑n

i=1

∫
Ω

(
wi/gi

)
dμi

≤
(
φ
hg
t

)−1
(

n∑

i=1

∫

Ω
wi · ln e

u(t)/gi

g
v(t)
i

dμi

)

≤
n∏

i=1

∫

Ω
gwi

i dμi

≤
(
φ
ga
t

)−1
(

n∑

i=1

∫

Ω
wi · ln

(
g
u(t)
i ev(t)gi

)
dμi

)

≤
n∑

i=1

∫

Ω
wi · gi dμi,

(3.14)

holds for all n-tuples w = (w1, . . . , wn), g = (g1, . . . , gn) and µ = (μ1, . . . , μn) as in (3.8) with
I = 〈0,+∞〉. The above inequality is strict for a0 < t < a1 if allwi > 0 almost everywhere onΩ
and gi /= gj almost everywhere on Ω for some i /= j.

As a special case of the integral quasiarithmetic mean in (3.8)with I = 〈0,+∞〉, ϕr(x) =
xr for r /= 0, and ϕ0(x) = lnx, we can observe the integral power mean

M[r]
n (wg,µ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
n∑

i=1

∫

Ω
wi · gri dμi

)1/r

for r /= 0

exp

(
n∑

i=1

∫

Ω
wi · ln gi dμi

)

for r = 0.

(3.15)

We quote the integral analogy of Corollary 2.6. The following is the property of
monotonicity, with refinements, of integral power means.

Corollary 3.6. Let r, s ∈ R such that r < s. Let φ[r,s]
t : 〈0,+∞〉 → R for t ∈ [a0, a1] be functions as

in (2.23). Let t0, t1 ∈ [a0, a1] such that t0 ≤ t1.
If r < s < 0 or r < 0 = s or r = 0 < s or 0 < r < s, then the inequality

M[r]
n (wg,µ) ≤ Mφ

[r,s]
t0
n (wg,µ) ≤ Mφ

[r,s]
t1
n (wg,µ) ≤ M[s]

n (wg,µ), (3.16)

holds for all n-tuplesw, g, and µ as in (3.8) with I = 〈0,+∞〉.
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If r < 0 < s, then we can take the series of inequalities

M[r]
n (wg,µ) ≤ Mφ

[r,0]
t0
n (wg,µ) ≤ Mφ

[r,0]
t1
n (wg,µ) ≤ M[0]

n (wg)

≤ Mφ
[0,s]
t0
n (wg,µ) ≤ Mφ

[0,s]
t1
n (wg,µ) ≤ M[s]

n (wg,µ).

(3.17)

The inequalities in (3.16)-(3.17) are strict for a0 < t0 < t1 < a1 if w > 0 and g/= c.
All the observed integral cases are reduced to the corresponding basic cases when we

take constants gi = xi and wi = pi.

4. Applications on Functional Case

Let S be a nonempty set and S be a vector space of real-valued functions g : S → R. Linear
functional P : S → R is positive (nonnegative) ormonotone if P(g) ≥ 0 for every nonnegative
function g ∈ S. If a space S contains a unit function 1, by definition 1(s) = 1 for every s ∈ S,
and P(1) = 1, we say that functional P is unital or normalized.

In this section, it is assumed that every weighted function w : S → R is nonnegative,
that is, w(s) ≥ 0 for every s ∈ S.

Bellow is a functional form of Jensen’s inequality for a convex function with respect to
real-valued functions with weighted functions on the vector space of real-valued functions.

Theorem C. Let f : I → R be a continuous function where I is the closed interval. Let P : S → R

be a positive linear functional, g : S → I be a function, and w ∈ S be a weighted function with
P(w) = 1 such that w · g,w · (f ◦ g) ∈ S.

If a function f is convex, then the inequality

f
(
P
(
w · g)) ≤ P

(
w · (f ◦ g)), (4.1)

holds for all above w, g, and P.
Consequently, if P(w) = p > 0, not necessarily equals 1, then

f

(
1
p
P
(
w · g)

)

≤ 1
p
P
(
w · (f ◦ g)). (4.2)

If a function f is concave, then the reverse inequality is valid in (4.1) and (4.2).

The inequality in (4.1) with w = 1 (assuming 1 ∈ S and P(1) = 1) is usually called the
Jessen functional form of Jensen’s inequality.

The interval I must be closed; otherwise, it could happen that P(w ·g) /∈ I or P(w · (f ◦
g)) /∈ f(I). The following example shows such an undesirable situation.

Example 4.1. Let S = I = 〈0, 1] and

S =
{

g : I −→ R | lim
x→ 0+

g(x) finite
}

. (4.3)
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If P : S → R is defined by

P
(
g
)
= lim

x→ 0+
g(x), (4.4)

then P is positive linear functional. In that way, functional P is also unital because 1 ∈ S and
P(1) = 1. If we take g(x) = x for x ∈ I, then g ∈ S and its image in I, but P(g) = 0 /∈ I.

Remark 4.2. Suppose that 1 ∈ S and functional P is unital, that is, P(1) = 1. Then the reverse
of Theorem C is valid if for any p ∈ [0, 1] a subset Sp ⊆ S exists so that χSp ∈ S and P(χSp) = p.
If we take g = xχSp + yχS\Sp and w = 1, then it follows that

P
(
w · g) = px +

(
1 − p)y,

P
(
w · (f ◦ g)) = P

(
f(x)χSp + f

(
y
)
χS\Sp

)
= pf(x) +

(
1 − p)f(y),

(4.5)

for every x, y ∈ I and p ∈ [0, 1]. If we include these expressions in the inequality in (4.1), we
get the convexity of f .

Theorem C can be generalized to n linear functionals Pi and n functions gi with
weighted functions wi. The following is a discrete functional form of Jensen’s inequality.

Theorem 4.3. Let f : I → R be a continuous function where I is the closed interval. Let P =
(P1, . . . ,Pn) be n-tuple with positive linear functionals Pi : S → R, g = (g1, . . . , gn) be n-tuple
with functions gi : S → I, and w = (w1, . . . , wn) be n-tuple with weighted functions wi ∈ S with
∑n

i=1 Pi(wi) = 1 such that wi · gi, wi · (f ◦ gi) ∈ S.
If a function f is convex, then the inequality

f

(
n∑

i=1

Pi
(
wi · gi

)
)

≤
n∑

i=1

Pi
(
wi ·
(
f ◦ gi

))
, (4.6)

holds for all above n-tuplesw, g, and P.
Consequently, if

∑n
i=1 Pi(wi) = p > 0, not necessarily equals 1, then

(
1
p

n∑

i=1

Pi
(
wi · gi

)
)

≤ 1
p

n∑

i=1

Pi
(
wi ·
(
f ◦ gi

))
. (4.7)

If a function f is concave, then the reverse inequality is valid in (4.6) and (4.7).

Proof. Let us prove the inequality in (4.6). If Pi(wi) = 0 for some i, then Pi(wi ·gi) = 0. Without
loss of generality, suppose that all pi = Pi(wi) > 0. Let xi = (1/pi)Pi(wi · gi). All numbers
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xi belong to I. Then from the basic inequality in (2.1) and functional inequality in (4.2), it
follows that

f

(
n∑

i=1

Pi
(
wi · gi

)
)

= f

(
n∑

i=1

pixi

)

≤
n∑

i=1

pif(xi)

=
n∑

i=1

Pi(wi)f
(

1
Pi(wi)

Pi
(
wi · gi

)
)

≤
n∑

i=1

Pi
(
wi ·
(
f ◦ gi

))
.

(4.8)

If f is strictly convex, then the inequality in (4.6) and (4.7) is strict for all w > 0 and
g/= c.

Remark 4.4. Suppose that 1 ∈ S and all functionals Pi are unital; that is, Pi(1) = 1 holds for
all Pi. Then it is c · 1 ∈ S and Pi(c · 1) = cPi(1) = c for every constant c ∈ R. With the above
assumptions, the reverse of Theorem 4.3 follows trivially if we take wi = pi and gi = xi.

Let ϕ : I → R be a strictly monotone continuous function where I is the closed
interval. Let P = (P1, . . . ,Pn) be n-tuple with positive linear functionals Pi : S → R,
g = (g1, . . . , gn) be n-tuple with functions gi : S → I, and w = (w1, . . . , wn) be n-tuple
with weighted functions wi ∈ S with

∑n
i=1 Pi(wi) = 1 such that wi · (ϕ ◦ gi) ∈ S. The discrete

functional ϕ-quasiarithmetic mean of functions gi with weighted functionswi with respect to
functionals Pi is a number

Mϕ(wg,P) = ϕ−1
(

n∑

i=1

Pi
(
wi ·
(
ϕ ◦ gi

))
)

. (4.9)

This number belongs to I because the functional convex combination
∑n

i=1 Pi(wi · (ϕ ◦ gi))
belongs to ϕ(I). Functional quasiarithmetic means also satisfy the property

Maϕ+b(wg,P) = Mϕ(wg,P), (4.10)

for every pair of real numbers a and b with a/= 0. Indeed, if φ(x) = aϕ(x) + b, then φ−1(x) =
ϕ−1(x − b/a), and we have

Mφ(wg,P) = φ−1
(

n∑

i=1

Pi
(
wi ·
(
φ ◦ gi

))
)

= ϕ−1
(∑n

i=1 Pi
(
wi ·
(
aϕ ◦ gi + b

)) − b
a

)

= ϕ−1
(

n∑

i=1

Pi
(
wi ·
(
ϕ ◦ gi

))
)

= Mϕ(wg,P).

(4.11)
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Corollary 4.5. Let ϕ, ψ : I → R be strictly monotone continuous functions where I is the closed
interval.

If a function ψ is either ϕ-convex and increasing or ϕ-concave and decreasing, then the
inequality

Mϕ(wg,P) ≤ Mψ(wg,P), (4.12)

holds for all n-tuplesw, g, and P as in (4.9).
If a function ψ is either ϕ-concave and increasing or ϕ-convex and decreasing, then the reverse

inequality is valid in (4.12).

Proof. Suppose that ψ is ϕ-convex and increasing. If we apply the inequality in (4.6) with
f = ψ ◦ ϕ−1 : f(I) → R, and ψ ◦ gi : S → f(I) instead of gi, we get

(
ψ ◦ ψ−1

)
(

n∑

i=1

Pi
(
wi ·
(
ϕ ◦ gi

))
)

≤
n∑

i=1

Pi
(
wi ·
(
ψ ◦ gi

))
. (4.13)

After taking ψ−1 of the both sides, it follows that

Mϕ(wg,P) ≤ Mψ(wg,P). (4.14)

In the same way, we can prove the case when ψ is ϕ-concave and decreasing.

According to Remark 4.2, the reverse of Corollary 4.5 is valid if 1 ∈ S and all
functionals Pi are unital. Then we connect the basic and functional case in the following
proposition.

Proposition 4.6. Let ϕ, ψ : I → R be strictly monotone continuous functions where I is the closed
interval. Then the inequality

Mϕ(px) ≤ Mψ(px), (4.15)

holds for all p and x as in (2.3) if and only if the inequality

Mϕ(wg,P) ≤ Mψ(wg,P), (4.16)

holds for all n-tuplesw, g, and P as in (4.9) with 1 ∈ S and unital functionals Pi.

Next in line is a functional analogy of refinements.

Theorem 4.7. Let φt = u(t)ϕ + v(t)ψ : I → R for t ∈ [a0, a1] be functions as in (2.10) where I is
the closed interval. Let t0, t1 ∈ [a0, a1] such that t0 ≤ t1.

If either ψ is ϕ-convex with both ϕ and ψ increasing or ϕ-concave with both ϕ and ψ decreasing,
then the inequality

Mϕ(wg,P) ≤ Mφt0
(wg,P) ≤ Mφt1

(wg,P) ≤ Mψ(wg,P), (4.17)

holds for all n-tuplesw, g, and P as in (4.9) with 1 ∈ S and unital functionals Pi.
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If either ψ is ϕ-concave with both ϕ and ψ increasing or ϕ-convex with both ϕ and ψ decreasing,
then the reverse inequality is valid in (4.17).

The inequality in (4.17) is strict for a0 < t0 < t1 < a1 if ψ is strictly ϕ-convex, w > 0 and
g/= c.

A functional version of refinements of the harmonic-geometric-arithmetic inequality
is also valid. So, the inequality

1
∑n

i=1 Pi
(
wi/gi

) ≤
(
φ
hg
t

)−1
(

n∑

i=1

Pi

(

wi · ln e
u(t)/gi

g
v(t)
i

))

≤
n∏

i=1

Pi
(
gwi

i

)

≤
(
φ
ga
t

)−1
(

n∑

i=1

Pi
(
wi · ln

(
g
u(t)
i ev(t)gi

))
)

≤
n∑

i=1

Pi
(
wi · gi

)
,

(4.18)

holds for all n-tuples w = (w1, . . . , wn), g = (g1, . . . , gn) and, P = (P1, . . . ,Pn) as in (4.9) with
I = [a,+∞〉 where a > 0. The above inequality is strict for a0 < t < a1 if all wi > 0 and gi /= gj
for some i /= j.

As a special case of the functional quasiarithmetic mean in (4.9) with I = [a,+∞〉
where a > 0, ϕr(x) = xr for r /= 0 and ϕ0(x) = lnx, we can observe the functional power mean

M[r]
n (wg,P) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
n∑

i=1

Pi
(
wi · gri

)
)1/r

for r /= 0

exp

(
n∑

i=1

Pi
(
wi · ln gi

)
)

for r = 0.

(4.19)

The following is the property of monotonicity, with refinements, of functional power
means.

Corollary 4.8. Let r, s ∈ R such that r < s. Let φ[r,s]
t : [a,+∞〉 → R for t ∈ [a0, a1] be functions as

in (2.23) where a > 0. Let t0, t1 ∈ [a0, a1] such that t0 ≤ t1.
If r < s < 0 or r < 0 = s or r = 0 < s or 0 < r < s, then the inequality

M[r]
n (wg,P) ≤ Mφ

[r,s]
t0
n (wg,P) ≤ Mφ

[r,s]
t1
n (wg,P) ≤ M[s]

n (wg,P), (4.20)

holds for all n-tuplesw, g, and P as in (4.9) with I = [a,+∞〉, 1 ∈ S and unital functionals Pi.
If r < 0 < s, then we can take the series of inequalities

M[r]
n (wg,P) ≤ Mφ

[r,0]
t0
n (wg,P) ≤ Mφ

[r,0]
t1
n (wg,P) ≤ M[0]

n (wg,P)

≤ Mφ
[0,s]
t0
n (wg,P) ≤ Mφ

[0,s]
t1
n (wg,P) ≤ M[s]

n (wg,P).

(4.21)

The inequalities in (4.20)-(4.21) are strict for a0 < t0 < t1 < a1 if w > 0 and g/= c.
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All the observed functional cases are reduced to the corresponding integral cases when
we take

Pi
(
gi
)
=
∫

Ω
gi dμi, (4.22)

for all functions gi ∈ L1(Ω, μi) such that gi(ω) ∈ I for almost all ω ∈ Ω.

5. Results for Operator Case

We recall some notations and definitions. Let H be a Hilbert space. We define the bounds of
linear operator A : H → H with

mA = inf
‖x‖=1

〈Ax, x〉, MA = sup
‖x‖=1

〈Ax, x〉. (5.1)

Let B(H) be the C∗-algebra of all bounded linear operators A : H → H. If Sp(A)
denotes the spectrum of a self-adjoint operator A ∈ B(H), then it is well-known that Sp(A)
is a subset of R and Sp(A) ⊆ [mA,MA]. If 1H denotes the identity operator on H, then the
following holds:

mA1H ≤ A ≤MA1H,

‖A‖ = sup
‖x‖=1

|〈Ax, x〉| = max{|mA|, |MA|}. (5.2)

A continuous function f : I → R is said to be operator increasing on I if

A ≤ B implies f(A) ≤ f(B), (5.3)

for every pair of self-adjoint operators A,B on H with spectra in I. A function f is said to
be operator decreasing if—f is operator increasing. A function f is operator monotone if it is
operator increasing or decreasing.

For n-tupleA = (A1, . . . , An)with operatorsAi ∈ B(H) sometimes, we will writeA > 0
if all Ai > 0, and A/=C if Ai /=Aj for some i /= j.

In this section, it is assumed that every weighted operatorW ∈ B(H) is positive.
From the second half of the last century, Jensen’s inequality was formulated for

operator convex functions, self-adjoint operators, and positive linear mappings (see [5–8]).
Very recently, Jensen’s inequality for operators without operator convexity is formulated in
[3], and generalized in [4].

The following theorem essentially coincides with the main theorem in [3]. The only
difference is that now we add the weighted operators. We also give a short proof of the
theorem that relies on the geometric property of convexity and affinity of the chord line or
support line. So, we start with an operator form of Jensen’s inequality for a convex function
with respect to self-adjoint operators with weighted operators on the Hilbert space, and
positive linear mappings.
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Theorem 5.1. Let f : I → R be a continuous function. Let Φ = (Φ1, . . . ,Φn) be n-tuple with
positive linear mappings Φi : B(H) → B(K), A = (A1, . . . , An) be n-tuple with self-adjoint
operators Ai ∈ B(H) with bounds mi ≤ Mi from I, and W = (W1, . . . ,Wn) be n-tuple with
weighted operators Wi ∈ B(H) with

∑n
i=1 Φi(Wi) = 1K. Let mB ≤ MB be bounds of an operator

B =
∑n

i=1 Φi(WiAi).
If a function f is convex, then the inequality

f

(
n∑

i=1

Φi(WiAi)

)

≤
n∑

i=1

Φi

(
Wif(Ai)

)
, (5.4)

holds for all above n-tuplesW, A, and Φ provided spectral conditions

[mB,MB] ∩ [mi,Mi] = ∅ or {endpoint} for i = 1, . . . , n. (5.5)

Consequently, if
∑n

i=1 Φi(Wi) =WΦ is strictly positive, not necessarily equals 1K, then

f

(

W−1
Φ

n∑

i=1

Φi(WiAi)

)

≤W−1
Φ

n∑

i=1

Φ
(
Wif(Ai)

)
. (5.6)

If a function f is concave, then the reverse inequality is valid in (5.4) and (5.6).

Proof. If mB < MB, then we take the chord line f cho
[mB,MB]

(x) = kx + l through the points
T1(mB, f(mB)), and T2(MB, f(MB)). It follows:

f

(
n∑

i=1

Φi(WiAi)

)

≤ f cho
[mB,MB]

(
n∑

i=1

Φi(WiAi)

)

= k
n∑

i=1

Φi(WiAi) + l1K

=
n∑

i=1

Φi(Wi(kAi + l1H))

=
n∑

i=1

Φi

(
Wif

cho
[mB,MB]

(Ai)
)

≤
n∑

i=1

Φi

(
Wif(Ai)

)
.

(5.7)

If mB = MB, then we take any support line f sup
[mB]

(x) = kx + l instead of the chord
line.

If f is strictly convex, then the inequality in (5.4) and (5.6) is strict for all W > 0 and
A/=C.
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Remark 5.2. The reverse of Theorem 5.1 is trivially valid if all Φi are unital. With this
assumption, we can takeWi = pi1H and Ai = xi1H .

Let ϕ : I → R be a strictly monotone continuous function. Let Φ = (Φ1, . . . ,Φn)
be n-tuple with positive linear mappings Φi : B(H) → B(K), A = (A1, . . . , An) be n-
tuple with self-adjoint operators Ai ∈ B(H) with spectra in I, and W = (W1, . . . ,Wn) be
n-tuple with weighted operatorsWi ∈ B(H) with

∑n
i=1 Φi(Wi) = 1K. The discrete operator ϕ-

quasiarithmetic mean of operators Ai with weighted operatorsWi with respect to mappings
Φi is an operator

Mϕ(WA,Φ) = ϕ−1
(

n∑

i=1

Φi

(
Wiϕ(Ai)

)
)

. (5.8)

The spectrum of operator Mϕ(WA,Φ) is contained in I because the spectrum of operator
∑n

i=1 Φi(Wiϕ(Ai)) is contained in ϕ(I). Operator quasiarithmetic means also have the
property

Maϕ+b(WA,Φ) = Mϕ(WA,Φ), (5.9)

for every pair of real numbers a and bwith a/= 0. To verify this equality, let us take φ = aϕ+b,
so φ−1(B) = ϕ−1((B − b1K)/a) if B ∈ B(K), and we get

Mφ(WA,Φ) = φ−1
(

n∑

i=1

Φi

(
Wiφ(Ai)

)
)

= ϕ−1
(∑n

i=1 Φi

(
Wi

(
aϕ(Ai) + b1H

)) − b1K
a

)

= ϕ−1
(

n∑

i=1

Φi

(
Wiϕ(Ai)

)
)

= Mϕ(WA,Φ).

(5.10)

Corollary 5.3. Let ϕ, ψ : I → R be strictly monotone continuous functions with operator monotone
ψ−1.

Let W, A and Φ be as in (5.8). Let mi ≤ Mi and mϕ ≤ Mϕ be bounds of operators Ai and
Mϕ(WA,Φ), respectively.

If a function ψ is either ϕ-convex with operator increasing ψ−1 or ϕ-concave with operator
decreasing ψ−1, then the inequality

Mϕ(WA,Φ) ≤ Mψ(WA,Φ), (5.11)

holds for all above n-tuplesW, A, and Φ provided spectral conditions

[
mϕ,Mϕ

] ∩ [mi,Mi] = ∅ or {endpoint} for i = 1, . . . , n. (5.12)

If a function ψ is either ϕ-concave with operator increasing ψ−1 or ϕ-convex with operator
decreasing ψ−1, then the reverse inequality is valid in (5.11).
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The following is operator analogy of Theorem 2.4.

Theorem 5.4. Let φt = u(t)ϕ+v(t)ψ : I → R for t ∈ [a0, a1] be functions as in (2.10)with operator
monotone ψ−1. Let t0, t1 ∈ [a0, a1] such that t0 ≤ t1.

If either ψ is ϕ-convex with operator increasing φ−1
t0
, φ−1

t1
, and ψ−1 or ϕ-concave with operator

decreasing φ−1
t0
, φ−1

t1
, and ψ−1, then the inequality

Mϕ(WA,Φ) ≤ Mφt0
(WA,Φ) ≤ Mφt1

(WA,Φ) ≤ Mψ(WA,Φ), (5.13)

holds for all n-tuplesW, A, and Φ as in (5.8) that provided the following spectral conditions:

[
mϕ,Mϕ

] ∩ [mi,Mi] = ∅ or {endpoint} for i = 1, . . . , n
[
mφt0

,Mφt0

]
∩ [mi,Mi] = ∅ or {endpoint} for i = 1, . . . , n

[
mφt1

,Mφt1

]
∩ [mi,Mi] = ∅ or {endpoint} for i = 1, . . . , n.

(5.14)

If either ψ is ϕ-concave with operator increasing φ−1
t0
, φ−1

t1
, and ψ−1 or ϕ-convex with operator

decreasing φ−1
t0
, φ−1

t1
, and ψ−1, then the reverse inequality is valid in (5.13).

Proof. Let us prove the middle part of the inequality in (5.13), one that refers to φt0 and φt1 . If
ψ is ϕ-convex with both ϕ and ψ increasing, then φt1 is φt0 -convex by Proposition 2.3. If φ−1

t1
is

operator increasing, then by Corollary 5.3 the inequality

Mφt0
(WA,Φ) ≤ Mφt1

(WA,Φ), (5.15)

is valid with spectral conditions

[
mφt0

,Mφt0

]
∩ [mi,Mi] = ∅ or

{
endpoint

}
for i = 1, . . . , n. (5.16)

Any part of the series of inequalities in (5.13) is proved similarly.

The inequality in (5.13) is strict for a0 < t0 < t1 < a1 if ψ is strictly ϕ-convex, φ−1
t0
, φ−1

t1
,

andψ−1 are strictly operator increasing, W > 0 and A/=C.
We are interested in sufficient conditions under which the functions φt will be operator

increasing.

Lemma 5.5. Let φ = αϕ + βψ be a convex combination (α, β ≥ 0,α + β = 1) of strictly monotone
increasing or decreasing continuous functions ϕ, ψ : I → R such that ϕ(I) = ψ(I) = J . Then

φ−1 = u · ϕ−1 + v · ψ−1, (5.17)

where u, v : J → R are nonnegative continuous functions such that u(y) +v(y) = 1 for every y ∈ J .



Abstract and Applied Analysis 21

xϕ−1(y)xψ−1(y)

y

y = φ(x)

φ

ϕ

ψ

Figure 3: Convex combination of strictly monotone increasing functions ϕ and ψ.

Proof. Take any x ∈ I. If

y = φ(x) = αϕ(x) + βψ(x), (5.18)

then

x = φ−1(y
)
= u
(
y
) · ϕ−1(y

)
+ v
(
y
) · ψ−1(y

)
, (5.19)

for some nonnegative numbers u(y) and v(y) such that u(y) + v(y) = 1 (see Figure 3). Now,
first replace v(y) with 1 − u(y) in expression in (5.19), and then express u(y). Realizing u(y)
as a function of the variable y, we obtain that

u
(
y
)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

φ−1(y
) − ψ−1(y

)

ϕ−1(y
) − ψ−1(y

) for ϕ−1(y
)
/=ψ−1(y

)

lim
y→y0

φ−1(y
) − ψ−1(y

)

ϕ−1(y
) − ψ−1(y

) for ϕ−1(y0
)
= ψ−1(y0

)
.

(5.20)

The above limit is onesided if ϕ−1 = ψ−1 on some subinterval of an interval J . The functions
ϕ−1, ψ−1, and φ−1 are continuous on J , and the same is true for the function u. Thus, the
expression in (5.19) is the required presentation of function φ−1 as the convex combination
of functions ϕ−1 and ψ−1 with coefficient functions u and v.

Theorem 5.4 can be simplified by using Lemma 5.5.

Corollary 5.6. Let φt = u(t)ϕ + v(t)ψ : I → R for t ∈ [a0, a1] be functions as in (2.10) with the
addition of u(t) + v(t) = 1, ϕ(I) = ψ(I) and operator monotone ψ−1. Let t0, t1 ∈ [a0, a1] such that
t0 ≤ t1.

If either ψ is ϕ-convex with operator increasing ψ−1 or ϕ-concave with operator decreasing ψ−1,
then the inequality in (5.13) holds for all n-tuplesW,A, andΦ as in (5.8) with spectral conditions as
in Theorem 5.4.

If either ψ is ϕ-concave with operator increasing ψ−1 or ϕ-convex with operator decreasing ψ−1,
then the reverse inequality is valid in (5.13).



22 Abstract and Applied Analysis

Proof. According to Lemma 5.5 continuous functions ut and vt, with ut+vt = 1, exist for every
t ∈ [a0, a1] so that

φ−1
t = ut · ϕ−1 + vt · ψ−1 = ut ·

(
ϕ−1 − ψ−1

)
+ ψ−1. (5.21)

Let t > a0; otherwise, it is φ−1
a0 = ϕ−1. Then vt /= 0 and φ−1

t is operator increasing (resp.
decreasing) if ψ−1 is operator increasing (resp. decreasing).

A special case of the operator quasiarithmetic mean in (5.8) with I = 〈0,+∞〉, ϕr(x) =
xr for r /= 0 and ϕ0(x) = lnx, we can observe the operator power mean

M[r]
n (WA,Φ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
n∑

i=1

Φi

(
WiA

r
i

)
)1/r

for r /= 0

exp

(
n∑

i=1

Φi(Wi lnAi)

)

for r = 0.

(5.22)

The consequence of Corollary 5.3 for operator power means the following.

Corollary 5.7. Let r and s be real numbers such that r ≤ s.
Let W, A, and Φ be as in (5.8) with strictly positive A. Let mi ≤ Mi, m[r] ≤ M[r], and

m[s] ≤M[s] be bounds of operators Ai, M[r]
n (WA,Φ), and M[s]

n (WA,Φ), respectively.
If s ≤ −1 or s ≥ 1, then the inequality

M[r]
n (WA,Φ) ≤ M[s]

n (WA,Φ), (5.23)

holds for all above n-tuplesW, A, and Φ provided spectral conditions

[
m[r],M[r]

]
∩ [mi,Mi] = ∅ or {endpoint} for i = 1, . . . , n. (5.24)

If r ≤ −1 or r ≥ 1, then the inequality in (5.23) holds provided spectral conditions

[
m[s],M[s]

]
∩ [mi,Mi] = ∅ or {endpoint} for i = 1, . . . , n. (5.25)

The inequality in (5.23) is strict for r < s ifW > 0 and A/=C.
The proof of Corollary 5.7 is the same as the proof of [3, Corollary 7].
An operator version of the harmonic-geometric-arithmetic inequality is the conse-

quence of Corollary 5.7. The inequality M[−1]
n (WA,Φ) ≤ M[0]

n (WA,Φ) ≤ M[1]
n (WA,Φ), that

is,

(
n∑

i=1

Φi

(
WiA

−1
i

)
)−1

≤ exp

(
n∑

i=1

Φi(Wi lnAi)

)

≤
n∑

i=1

Φi(WiAi), (5.26)
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holds for all n-tuples W = (W1, . . . ,Wn), A = (A1, . . . , An) and Φ = (Φ1, . . . ,Φn) as in (5.8)
with strictly positive Ai provided spectral conditions

[
m[0],M[0]

]
∩ [mi,Mi] = ∅ or

{
endpoint

}
for i = 1, . . . , n. (5.27)

There remain only the refinements of the operator power means by using
Corollary 5.6.

Corollary 5.8. Let r, s ∈ R \ {0} such that r < s. Let φ[r,s]
t : 〈0,+∞〉 → R for t ∈ [a0, a1] be

functions as in (2.23) with the addition of u(t) + v(t) = 1. Let t0, t1 ∈ [a0, a1] such that t0 ≤ t1.
Let W, A, and Φ be as in (5.8) with strictly positive A. Let mi ≤ Mi, m[r] ≤ M[r],

m[s] ≤ M[s], m[φ[r,s]
t0

] ≤ M[φ[r,s]
t0

], and m[φ[r,s]
t1

] ≤ M[φ[r,s]
t1

] be bounds of operators Ai, M[r]
n (WA,Φ),

M[s]
n (WA,Φ), Mφ

[r,s]
t0
n (WA,Φ), and Mφ

[r,s]
t1
n (WA,Φ), respectively.

If r > 0, s ≥ 1 or s = −1, then the inequality

M[r]
n (WA,Φ) ≤ Mφ

[r,s]
t0
n (WA,Φ) ≤ Mφ

[r,s]
t1
n (WA,Φ) ≤ M[s]

n (WA,Φ), (5.28)

holds for all above n-tuplesW, A, and Φ provided spectral conditions:

[
m[r],M[r]

]
∩ [mi,Mi] = ∅ or {endpoint} for i = 1, . . . , n,

[

m[φ[r,s]
t0

],M[φ[r,s]
t0

]
]

∩ [mi,Mi] = ∅ or {endpoint} for i = 1, . . . , n,

[

m[φ[r,s]
t1

],M[φ[r,s]
t1

]
]

∩ [mi,Mi] = ∅ or {endpoint} for i = 1, . . . , n.

(5.29)

If r = 1, then the inequality

M[1]
n (WA,Φ) ≤ Mφ

[s,1]
t0
n (WA,Φ) ≤ Mφ

[s,1]
t1
n (WA,Φ) ≤ M[s]

n (WA,Φ), (5.30)

holds for all above n-tuplesW, A, and Φ provided spectral conditions:

[
m[s],M[s]

]
∩ [mi,Mi] = ∅ or {endpoint} for i = 1, . . . , n,

[

m[φ[s,1]
t0

],M[φ[s,1]
t0

]
]

∩ [mi,Mi] = ∅ or {endpoint} for i = 1, . . . , n,

[

m[φ[s,1]
t1

],M[φ[s,1]
t1

]
]

∩ [mi,Mi] = ∅ or {endpoint} for i = 1, . . . , n.

(5.31)

Proof. Recall that φ[r,s]
t (x) = u(t)xr +v(t)xs for r /= 0, s /= 0. The next is ϕ(x) = xr and ψ(x) = xs

with x ∈ I = 〈0,+∞〉, so ϕ(I) = ψ(I) = I.
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Case r > 0, s ≥ 1.

We have (ψ ◦ ϕ−1)(x) = xs/r with (s/r) > 1, and ψ−1(x) = x1/s with 0 < (1/s) ≤ 1. The
function ψ is strictly ϕ-convex with strictly operator increasing ψ−1. Then the inequality in
(5.28) is valid with associated spectral conditions by Corollary 5.6.

Case s = −1.
We have (ψ ◦ ϕ−1)(x) = x−1/r with 0 < −(1/r) < 1, and ψ−1(x) = x−1. The function ψ is strictly
ϕ-concave with strictly operator decreasing ψ−1. In this case, the inequality in (5.28) is also
valid with associated spectral conditions by Corollary 5.6.

Case r = 1.

We use functions φ[s,1]
t (x) = u(t)xs + v(t)x. In this case ϕ(x) = xs and ψ(x) = x, thus (ψ ◦

ϕ−1)(x) = x1/s with 0 < (1/s) < 1, and ψ−1(x) = x. The function ψ is strictly ϕ-concave with
strictly operator increasing ψ−1. Then the inequality in (5.30) is valid with associated spectral
conditions by Corollary 5.6.

The inequalities in (5.28)–(5.30) are strict for a0 < t0 < t1 < a1 ifW > 0 and A/=C.
Unfortunately, we cannot use a logarithmic function because ln(I) = R/= I.

Remark 5.9. Let r, s, φt, t0, t1,W, A, and Φ be as in Corollary 5.8.
If r ≤ −1 and s < 0, then the problem remains the inequality

M[r]
n (WA,Φ) ≤ Mφ

[s,r]
t0
n (WA,Φ) ≤ Mφ

[s,r]
t1
n (WA,Φ) ≤ M[s]

n (WA,Φ), (5.32)

valid for all above n-tuples W, A, and Φ provided spectral conditions:

[
m[s],M[s]

]
∩ [mi,Mi] = ∅ or

{
endpoint

}
for i = 1, . . . , n,

[

m[φ[s,r]
t0

],M[φ[s,r]
t0

]
]

∩ [mi,Mi] = ∅ or
{
endpoint

}
for i = 1, . . . , n,

[

m[φ[s,r]
t1

],M[φ[s,r]
t1

]
]

∩ [mi,Mi] = ∅ or
{
endpoint

}
for i = 1, . . . , n.

(5.33)

The inequality in (5.32) is valid for r = −1 with associated spectral conditions because
(ψ ◦ ϕ−1)(x) = x−1/s with −(1/s) > 1, that is, ψ is ϕ-convex, and ψ−1(x) = x−1, that is, ψ−1 is
operator decreasing.
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