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The problems of mean-square exponential stability and robust H∞ control of switched stochastic
systems with time-varying delay are investigated in this paper. Based on the average dwell time
method and Gronwall-Bellman inequality, a new mean-square exponential stability criterion of
such system is derived in terms of linear matrix inequalities (LMIs). Then, H∞ performance is
studied and robust H∞ controller is designed. Finally, a numerical example is given to illustrate
the effectiveness of the proposed approach.

1. Introduction

Switched systems, a special hybrid system, are composed of a set of continuous-time or
discrete-time subsystems and a rule orchestrating the switching between the subsystems. In
the last two decades, there has been increasing interest in the stability analysis and control
design for such switched systems since many real-world systems such as chemical systems
[1], robot control systems [2], traffic systems [3], and networked control systems [4, 5] can
be modeled as such systems. The past decades have witnessed an enormous interest in the
stability analysis and control synthesis of switched systems [6–11].

It is well known that time delay phenomenon exists in many engineering systems such
as networked systems and long-distance transportation systems. Such phenomenon may
cause the system unstable if it cannot be handled properly, which motivates many scientists
to involve themselves in researching switched systems with time delay. Many results have
been reported for stability analysis of switched systems with time delay [12, 13], where
the asymptotical stability criteria are given by using common Lyapunov function approach
in [12], and the exponential stability criteria under average dwell time switching signals
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are proposed in [13]. Moreover, the problem of delay-dependent global robust asymptotic
stability of switched uncertain Hopfield neural networks with time delay in the leakage term
is discussed in [14]. H∞ control of continuous-time switched systems with time delay and
discrete-time switched systems with time delay are investigated in [15, 16], respectively.

On the other hand, stochastic systems have attracted considerable attention during the
past decades because stochastic disturbance exists in many actual operations. Many useful
results on the stability analysis of stochastic systems are reported in [17–21]. The problem
of robust H∞ control for nonlinear stochastic systems with Markovian jump parameters and
interval time-varying delays is considered [22]. Based on the results of stochastic systems
and switched systems, the stability analysis and stabilization of switched stochastic systems
are investigated in [23, 24]. Furthermore, the problems of reliable control and reliable H∞
control for switched stochastic systems under asynchronous switching are studied in [25, 26],
respectively. Recently, these results are extended to stochastic switched systems with time
delay, and the exponential stability criteria are addressed [27, 28]. However, these results are
very complex, which make it more difficult for us to solve many issues such as controller
design under asynchronous switching and actuator failures. Therefore, there is a lot of work
to do in such field. This motivates the present study.

In this paper, we focus on the mean-square exponential stability analysis and robust
H∞ control of switched stochastic systems with time-varying delay. Based on the average
dwell time method and Gronwall-Bellman inequality, a new mean-square exponential
stability criterion is derived. Moreover, H∞ performance is studied and H∞ state feedback
controller is proposed. The remainder of the paper is organized as follows. In Section 2,
problem statement and some useful lemmas are given. In Section 3, based on the average
dwell time method and Gronwall-Bellman inequality, the mean-square exponential stability
and H∞ performance of the switched stochastic systems with time delay are investigated.
Then, robustH∞ controller is designed. In Section 4, a numerical example is given to illustrate
the effectiveness of the proposed approach. Finally, concluding remarks are provided in
Section 5.

Notation. Throughout this paper, the superscript “T” denotes the transpose, and the
symmetric terms in a matrices are denoted by ∗. The notation X > Y (X ≥ Y) means
that matrix X − Y is positive definite (positive semidefinite, resp.). Rn denotes the n
dimensional Euclidean space. ‖x(t)‖ denotes the Euclidean norm. L2[t0,∞) is the space
of square integrable functions on [t0,∞). λmax(P) and λmin(P) denote the maximum and
minimum eigenvalues of matrix P , respectively. I is an identity matrix with appropriate
dimension. diag{ai} denotes diagonal matrix with the diagonal elements ai, i = 1, 2, . . . , n.

2. Problem Formulation and Preliminaries

Consider the following stochastic switched systems with time-delay:

dx(t) =
[
Âσ(t)x(t) + B̂σ(t)x(t − h(t)) + Cσ(t)u(t) +Gσ(t)v(t)

]
dt + D̂σ(t)x(t)dw(t),

x(t) = ϕ(t), t ∈ [t0 − h, t0],

z(t) = Mσ(t)x(t),

(2.1)
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where x(t) ∈ Rn is the state vector, ϕ(t) ∈ Rn is the initial state function, u(t) ∈ Rl is the control
input, v(t) ∈ Rp is the disturbance input which is assumed belong to L2[t0,∞], z(t) ∈ Rq is
the signal to be estimated, w(t) ∈ R is a zero-mean Wiener process on a probability space
(Ω F P) satisfying

E{dw(t)} = 0, E
{
dw2(t) = dt

}
, (2.2)

where Ω is the sample space, F is σ-algebras of subsets of the sample space, P is the
probability measure on F, and E{·} is the expectation operator. h(t) is the system state delay
satisfying

0 ≤ h(t) ≤ h, ḣ(t) ≤ hd < 1, (2.3)

where hd is a known constant. The function σ(t) : [t0,∞] → N = {1, 2, . . . ,N} is a switching
signal which is deterministic, piecewise constant, and right continuous. The switching
sequence can be described as σ : {(t0, σ(t0)), (t1, σ(t1)), . . . , (tk, σ(tk))}, σ(tk) ∈ N, k ∈ Z,
where t0 is the initial time and tk denotes the kth switching instant. Moreover σ(t) = i means
that the ith subsystem is activated.

For each for all i ∈ N, Ci, Gi, and Mi are known real-value matrices with appropriate
dimensions, and Âi, B̂i, and D̂i are uncertain real matrix with appropriate dimensions, which
can be written as

[
Âi B̂i D̂i

]
= [Ai Bi Di] +HiFi(t)[E1i E2i E3i], (2.4)

where Ai, Bi, and Di are known real-value matrices with appropriate dimensions, and Fi(t)
is unknown time-varying matrix that satisfies

FT
i (t)Fi(t) ≤ I. (2.5)

Definition 2.1. System (2.1) is said to be mean-square exponentially stable with under
switching signal σ(t), if there exist scalars κ > 0 and α > 0, such that the solution x(t) of
system (2.1) satisfies E{‖x(t)‖2} ≤ κe−α(t−t0) supt0−h≤θ≤t0E{‖ϕ(θ)‖

2}, for all t > t0. Moreover, α
is called the decay rate.

Definition 2.2. For any T2 > T1 ≥ t0, let Nσ(T1, T2) denote the switching number of σ(t) on an
interval (T1, T2). If

Nσ(T1, T2) ≤ N0 +
T2 − T1
Tα

(2.6)

holds for given N0 ≥ 0, Tα > 0, then the constant Tα is called the average dwell time. As
commonly used in the literature, we choose N0 = 0.
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Definition 2.3. Let γ > 0 be a positive constant, for system (2.1), if there exists a controller u(t)
and a switching signal σ(t), such that

(1) when v(t) = 0, system (2.1) is mean-square exponentially stable;

(2) under zero initial condition x(t) = 0, t ∈ [t0 − h, t0], the output z(t) satisfies

E

{∫∞

t0

e−λ(s−t0)zT (s)z(s)ds

}
≤ γ2

∫∞

t0

vT (s)v(s)ds, ∀v(t) ∈ L2[t0,∞). (2.7)

Then system (2.1) is said to be robustly exponentially stabilizable with a prescribed weighted
H∞ performance, where λ > 0.

The following lemmas play an important role in the later development.

Lemma 2.4 (see [29] (Gronwall-Bellman Inequality)). Let x(t) and y(t) be real-valued
nonnegative continuous functions with domain {t | t ≥ t0}; a is a nonnegative scalar; if the following
inequality

x(t) ≤ a +
∫ t

t0

x(s)y(s)ds (2.8)

holds, for t ≥ t0, then x(t) ≤ a exp(
∫ t
t0
y(s)ds).

Lemma 2.5 (see [30]). Let U, V , W , and X be constant matrices of appropriate dimensions with X
satisfying X = XT , then for all V TV ≤ I, X + UVW + WTV TUT < 0, if and only if there exists a
scalar ε > 0 such that X + εUUT + ε−1WTW < 0.

3. Main Results

3.1. Stability Analysis

In this subsection, we will focus on the exponential stability analysis of switched stochastic
systems with time-varying delay.

Consider the following switched stochastic system:

dx(t) =
[
Aσ(t)x(t) + Bσ(t)x(t − h(t))

]
dt +Dσ(t)x(t)dw(t),

x(t) = ϕ(t), t ∈ [t0 − h, t0].
(3.1)

Theorem 3.1. Considering system (3.1), for a given scalar α > 0, if there exist symmetric positive
definite matrices Pi, Qi > 0 satisfying

⎡
⎢⎢⎣
AT

i Pi + PiAi + αPi +Qi PiBi DT
i Pi

∗ −(1 − hd)Qi 0

∗ ∗ −Pi

⎤
⎥⎥⎦ < 0, (3.2)
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for all i ∈ N, then system (3.1) is mean-square exponentially stable under arbitrary switching signal
with the average dwell time:

Tα ≥ T ∗
α =

lnμ
α

, (3.3)

where μ ≥ 1 satisfies

Pi ≤ μPj, Qi ≤ μQj, ∀i, j ∈ N. (3.4)

Proof. Consider the following Lyapunov functional for the ith subsystem:

Vi(t, x(t)) = V1,i(t, x(t)) + V2,i(t, x(t)), (3.5)

where

V1,i(t, x(t)) = xT (t)Pix(t), V2,i(t, x(t)) =
∫ t

t−h(t)
xT (s)Qix(s)ds. (3.6)

For the sake of simplicity, Vi(t, x(t)) is written as Vi(t) in this paper.
According to Itô formula, along the trajectory of system (3.1), we have

dVi(t) = LVi(t)dt + 2xT (t)PiDix(t)dw(t), (3.7)

where

LVi(t) = 2xT (t)Pi(Aix(t) + Bix(t − h(t))) + xT (t)Qix(t) + xT (t)DT
i PiDix(t)

− (
1 − ḣ(t)

)
xT (t − h(t))Qix(t − h(t)).

(3.8)

According to (2.3), we can obtain that

LVi(t) ≤ 2xT (t)Pi(Aix(t) + Bix(t − h(t))) + xT (t)Qix(t) + xT (t)DT
i PiDix(t)

− (1 − hd)xT (t − h(t))Qix(t − h(t))

= ξT (t)Θiξ(t),

(3.9)

where

ξ(t) =

[
x(t)

x(t − h(t))

]
, Θi =

[
AT

i Pi + PiAi +Qi +DT
i PiDi PiBi

∗ −(1 − hd)Qi

]
. (3.10)
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Using Schur complement, it is not difficult to get that if inequality (3.2) is satisfied, the
following inequality can be obtained:

LVi(t) < −αV1,i(t) < 0. (3.11)

Combining (3.7) with (3.11) leads to

dVi(t) = LVi(t)dt + 2xT (t)PiDix(t)dw(t) < −αV1,i(t)dt + 2xT (t)PiDix(t)dw(t). (3.12)

Noticing (2.2) and taking the expectation to (3.12), we have

E

{
dVi(t)
dt

}
= E{LVi(t)} < −αE{V1,i(t)} < 0. (3.13)

According to (3.4)–(3.6), we have

E
{
Vp(t)

} ≤ μE
{
Vq(t)

}
= μE

{
Vq

(
t−
)}

, (3.14)

E
{
V1,p(t)

} ≤ μE
{
V1,q(t)

}
, ∀p, q ∈ N. (3.15)

Assume that the ith subsystem is activated during [tk, tk+1) and jth subsystem is activated
during [tk−1, tk), respectively. Using Itô formula and according to (3.13)–(3.15), we have, for
any t ∈ [tk, tk+1),

E{V1,i(t)} ≤ E{Vi(t)} = E{Vi(tk)} + E

{∫ t

tk

LVi(s)ds

}

< μE
{
Vj

(
t−k
)} − αE

{∫ t

tk

V1,i(s)ds

}

= μE
{
Vj(tk−1)

}
+ μE

{∫ tk

tk−1
LV1,j(s)ds

}
− αE

{∫ t

tk

V1,i(s)ds

}

< μE
{
Vj(tk−1)

} − αμE

{∫ tk

tk−1
V1,j(s)ds

}
− αE

{∫ t

tk

V1,i(s)ds

}

≤ μE
{
Vj(tk−1)

} − αE

{∫ t

tk−1
V1,i(s)ds

}

≤ · · ·

≤ μNσ(t0,t)E{V (t0)} − αE

{∫ t

t0

V1,i(s)ds

}
.

(3.16)
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According to Lemma 2.4 and when (3.3) holds, we have

E{V1,i(t)} ≤ μNσ(t0,t)e−α(t−t0)E{V (t0)} ≤ κe−(α−(lnμ/Tα))(t−t0)E{V (t0)}. (3.17)

Moreover, we can obtain

E
{
‖x(t)‖2

}
≤ κe−λ(t−t0) sup

−h≤θ≤0
E
{
‖x(θ)‖2

}
, (3.18)

where κ =
√
maxi∈N(λmax(Pi) + hλmax(Qi))/mini∈Nλmin(Pi), and λ = (1/2)(α − (lnμ/Tα)) is

the decay rate.
The proof is completed.

Remark 3.2. The exponential stability criterion of stochastic switched systems with time-
varying delay is given in Theorem 3.1. When w(t) = 0, system (3.1) is degenerated to the
switched system with time-varying delay, which can be described as

ẋ(t) = Aσ(t)x(t) + Bσ(t)x(t − h(t)),

x(t) = ϕ(t), t ∈ [t0 − h, t0].
(3.19)

Using the same method, we can obtain the following exponential stability criterion of
switched system (3.19).

Corollary 3.3. Considering system (3.19), for a given scalar α > 0, if there exist symmetric positive
definite matrices Pi, Qi > 0 satisfying

[
AT

i Pi + PiAi + αPi +Qi PiBi

∗ −(1 − hd)Qi

]
< 0, (3.20)

for all i ∈ N, system (3.19) is exponentially stable under arbitrary switching signal with average
dwell time satisfying (3.3).

3.2. H∞ Performance Analysis

In this subsection, we will investigate the H∞ performance of switched stochastic systems
with time-varying delay.

Consider the following switched stochastic system:

dx(t) =
[
Aσ(t)x(t) + Bσ(t)x(t − h(t)) +Gσ(t)v(t)

]
dt +Dσ(t)x(t)dw(t),

x(t) = ϕ(t), t ∈ [t0 − h, t0],

z(t) = Mσ(t)x(t).

(3.21)
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Theorem 3.4. Considering system (3.21), for a given scalar α > 0, if there exist symmetric positive
definite matrices Pi, Qi > 0 such that

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

AT
i Pi + PiAi + αPi +Qi PiBi PiGi DT

i Pi MT
i

∗ −(1 − hd)Qi 0 0 0

∗ ∗ −γ2I 0 0

∗ ∗ ∗ −Pi 0

∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (3.22)

hold for all i ∈ N, system (3.21) is said to have weightedH∞ performance γ under arbitrary switching
signal with the average dwell time:

Tα ≥ T ∗
α =

lnμ
α

, (3.23)

where μ ≥ 1 satisfies

Pi ≤ μPj, Qi ≤ μQj, ∀i, j ∈ N. (3.24)

Proof. By Theorem 3.1, we can readily obtain that system (3.21) is mean-square exponential
stable when v(t) = 0.

Assume that the ith subsystem is activated during [tk, tk+1). Choose the following
Lyapunov functional candidate for the ith subsystem:

Vi(t) = V1,i(t) + V2,i(t), (3.25)

where

V1,i(t) = xT (t)Pix(t), V2,i(t) =
∫ t

t−h(t)
xT (s)Qix(s)ds. (3.26)

Using Itô formula, along the trajectory of system (3.21); we have

dVi(t) = LVi(t)dt + 2xT (t)PiDix(t)dw(t), (3.27)

where

LVi(t) = 2xT (t)Pi(Aix(t) + Bix(t − h(t)) +Giv(t)) + xT (t)Qix(t) + xT (t)DT
i PiDix(t)

− (
1 − ḣ(t)

)
xT (t − h(t))Qix(t − h(t))

(3.28)

Let Γ(t) = zT (t)z(t) − γ2vT (t)v(t); we have

LVi(t) + Γ(t) = ςT (t)Φiς(t), (3.29)
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where ς(t) = [xT (t) xT (t − h(t)) vT (t)]T , and

Φi =

⎡
⎢⎢⎣
AT

i Pi + PiAi +Qi +MT
i Mi +DT

i PiDi PiBi PiGi

∗ −(1 − hd)Qi 0

∗ ∗ −γ2I

⎤
⎥⎥⎦. (3.30)

Combining (3.22) with (3.29)–(3.30), and using Schur complement, we have

LVi(t) + Γ(t) < −αV1,i(t) < 0. (3.31)

Noticing (2.2) and taking the expectation to (3.27), we have

E

{
dVi(t)
dt

}
= E{LVi(t)}. (3.32)

According to (3.25)–(3.27), we have

E
{
Vp(t)

} ≤ μE
{
Vq

(
t−
)}

, ∀p, q ∈ N. (3.33)

Using Itô formula, we have, for any t ∈ [tk, tk+1),

E{Vi(t)} = E{Vi(tk)} +
∫ t

tk

E{LVi(s) + Γ(s)}ds − E

{∫ t

tk

Γ(s)ds

}

< μE
{
Vi−1

(
t−k
)} − E

{∫ t

tk

Γ(s)ds

}

= μE{Vi−1(tk−1)} + μE

{∫ tk

tk−1
(LVi−1(s) + Γ(s))ds

}
− μE

{∫ tk

tk−1
Γ(s)ds

}

− E

{∫ t

tk

Γ(s)ds

}

< μE{Vi−1(tk−1)} − μE

{∫ tk

tk−1
Γ(s)ds

}
− E

{∫ t

tk

Γ(s)ds

}

< · · ·

< μNσ(t0,t)E{V (t0)} − μNσ(t0,t)E

{∫ t1

t0

Γ(s)ds

}
− · · · − E

{∫ t

tk

Γ(s)ds

}

= μNσ(t0,t)E{V (t0)} − E

{∫ t

t0

eNσ(s,t) lnμΓ(s)ds

}
.

(3.34)
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Under zero initial condition, we can obtain

E

{∫ t

t0

eNσ(s,t) lnμΓ(s)ds

}
< 0. (3.35)

Moreover, we have

E

{∫ t

t0

eNσ(s,t) lnμzT (s)z(s)ds

}
< γ2

∫ t

t0

eNσ(s,t) lnμvT (s)v(s)ds. (3.36)

Multiplying both sides of (3.36) by e−Nσ(t0,t) lnμ leads to

E

{∫ t

t0

e−Nσ(t0,s) lnμzT (s)z(s)ds

}
< γ2

∫ t

t0

e−Nσ(t0,s) lnμvT (s)v(s)ds. (3.37)

Noticing Nσ(t0, s) ≤ ((s − t0)/Tα) and Tα ≥ T ∗
α = lnμ/α, we have

E

{∫ t

t0

e−α(s−t0)zT (s)z(s)ds

}
< γ2

∫ t

t0

vT (s)v(s)ds. (3.38)

When t → ∞, it leads to

E

{∫∞

t0

e−α(s−t0)zT (s)z(s)ds

}
< γ2

∫∞

t0

vT (s)v(s)ds. (3.39)

The proof is completed.

Remark 3.5. When dw(t) = 0, system (3.21) is reduced to a switched delay system, which can
be described as

ẋ(t) = Aσ(t)x(t) + Bσ(t)x(t − h(t)) +Gσ(t)v(t),

x(t) = ϕ(t), t ∈ [t0 − h, t0].
(3.40)

Using the method proposed in Theorem 3.4, we can obtain the following conclusion.

Corollary 3.6. Considering system (3.40), for a given scalar α > 0, if there exist symmetric positive
definite matrices Pi, Qi > 0 such that

⎡
⎢⎢⎢⎢⎢⎣

AT
i Pi + PiAi + αPi +Qi PiBi PiGi MT

i

∗ −(1 − hd)Qi 0 0

∗ ∗ −γ2I 0

∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎦

< 0 (3.41)
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hold for all i ∈ N, system (3.40) is said to have weightedH∞ performance γ under arbitrary switching
signal with the average dwell time scheme (3.23).

3.3. Design of Robust H∞ Controller

In this subsection, the following robust H∞ controller

u(t) = Kσ(t)x(t) (3.42)

will be designed for system (2.1). Then the corresponding closed-loop system can be
described as

dx(t) =
[(

Âσ(t) + Cσ(t)Kσ(t)

)
x(t) + B̂σ(t)x(t − h(t)) +Gσ(t)v(t)

]
dt + D̂σ(t)x(t)dw(t),

x(t) = ϕ(t), t ∈ [t0 − h, t0],

z(t) = Mσ(t)x(t).

(3.43)

Theorem 3.7. Considering system (2.1), for given scalars α, εi > 0, hd < 1, if there exist matrix Zi,
symmetric positive definite matrices Xi, Yi > 0 such that

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Σi
11 BiXi Gi XiD

T
i XiM

T
i XiE

T
1i XiE

T
3i

∗ Σi
22 0 0 0 XiE

T
2i 0

∗ ∗ −γ2I 0 0 0 0

∗ ∗ ∗ Σi
44 0 0 0

∗ ∗ ∗ ∗ −I 0 0

∗ ∗ ∗ ∗ ∗ −εiI 0

∗ ∗ ∗ ∗ ∗ ∗ −εiI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (3.44)

holds for all i ∈ N, with the average dwell time:

Tα ≥ T ∗
α =

lnμ
α

, (3.45)

where μ ≥ 1 satisfies

Xj ≤ μXi, X−1
i YiX

−1
i ≤ μX−1

j YjX
−1
j , ∀i, j ∈ N, (3.46)

then, there exists a robustH∞ controller:

u(t) = Kσ(t)x(t), Ki = ZiX
−1
i , (3.47)
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which can render the corresponding closed-loop system (3.43) mean-square exponentially stable with
weightedH∞ performance γ , where

i∑
11

= XiA
T
i + ZT

i C
T
i +AiXi + CiZi + αXi + Yi + εiHiH

T
i ,

i∑
22

= −(1 − hd)Yi,

i∑
44

= εiHiH
T
i −Xi.

(3.48)

Proof. By Theorem 3.4, system (3.43) is mean-square exponentially stable with weighted H∞
performance γ if the following inequalities are satisfied:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Λi
11 PiB̂i PiGi D̂T

i Pi MT
i

∗ −(1 − hd)Qi 0 0 0

∗ ∗ −γ2I 0 0

∗ ∗ ∗ −Pi 0

∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (3.49)

where Λi
11 = (Âi + CiKi)

TPi + Pi(Âi + CiKi) + αPi +Qi.
Then using ΛPi = diag{P−1

i , P−1
i , I, P−1

i , I} to pre- and postmultiply Λi, we have

T̂ i = ΛPiΛiΛPi < 0. (3.50)

Furthermore,

T̂ i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

T̂ i
11 B̂iXi Gi XiD̂

T
i XiM

T
i

∗ T̂ i
22 0 0 0

∗ ∗ −γ2I 0 0

∗ ∗ ∗ −Xi 0

∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (3.51)

where T̂ i
11 = Xi(Âi + CiKi)

T + (Âi + CiKi)Xi + αXi + Yi, T̂ i
22 = −(1 − hd)Yi, Xi = P−1

i , and
Yi = P−1

i QiP
−1
i .

Combining (3.51) with (2.4), we have

T̂ i = Ti + ΔTi, (3.52)
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where

T̂ i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ti
11 BiXi Gi XiD

T
i XiM

T
i

∗ Ti
22 0 0 0

∗ ∗ −γ2I 0 0

∗ ∗ ∗ −Xi 0

∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

ΔTi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

XiE
T
1iF

T
i H

T
i +HiFiE1iXi HiFiE2iXi 0 XiE

T
3iF

T
i H

T
i 0

XiE
T
2iF

T
i H

T
i 0 0 0 0

0 0 0 0 0

HiFiE3iXi 0 0 0 0

0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Ti
11 = Xi(Ai + CiKi)T + (Ai + CiKi)Xi + αXi + Yi, and Ti

22 = −(1 − hd)Yi.

(3.53)

Moreover,

ΔTi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Hi 0

0 0

0 0

0 Hi

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
Fi 0

0 Fi

]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

XiE
T
1i XiE

T
3i

XiE
T
2i 0

0 0

0 0

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

XiE
T
1i XiE

T
3i

XiE
T
2i 0

0 0

0 0

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
Fi 0

0 Fi

]T

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Hi 0

0 0

0 0

0 Hi

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

. (3.54)

According to Lemma 2.5, we have

ΔTi ≤ εi

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Hi 0

0 0

0 0

0 Hi

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Hi 0

0 0

0 0

0 Hi

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

+ ε−1i

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

XiE
T
1i XiE

T
3i

XiE
T
2i 0

0 0

0 0

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

XiE
T
1i XiE

T
3i

XiE
T
2i 0

0 0

0 0

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

. (3.55)

Substituting (3.55) to (3.52), and using Schur complement, we can obtain that (3.52) is
equivalent to (3.44). Denoting Xi = P−1

i , and Yi = P−1
i QiP

−1
i , it is easy to get that (3.46) is

equivalent to (3.24).
The proof is completed.

Remark 3.8. Theorem 3.4 presents the sufficient conditions which could guarantee that the
switched stochastic delay system is stable withH∞ performance; when the robustH∞ control
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problem is considered, we can solve the problem by substituting the closed-loop uncertain
parameters Âi + CiKi, B̂i, D̂i to Theorem 3.4.

4. Numerical Example

In this section, a numerical example is given to illustrate the effectiveness of the proposed
approach. Consider system (2.1)with the following parameters:

A1 =

[
2 0.9

1.4 −2

]
, B1 =

[−0.3 0

0.1 −0.5

]
, C1 =

[
2 1

3 2

]
, D1 =

[−0.3 0

0.1 0.2

]
,

G1 =

[−0.8 0

0 −0.1

]
, M1 =

[
2 1

−1 3

]
, E11 =

[
0.7 0

0.9 0

]
, E21 =

[
0.2 0

0 0.8

]
,

E31 =

[
0.6 0

0 0

]
, H1 =

[
0.4 0

0 0.8

]
, A2 =

[−2 1

0 −3

]
, B2 =

[−0.4 0.1

0 −0.8

]
,

C2 =

[
1 2

1 3

]
, D2 =

[−0.2 0.05

0 −0.4

]
, G2 =

[−0.1 0

0 −0.9

]
, M2 =

[
1 −2
3 1

]
,

E12 =

[
0.2 0

0 0

]
, E22 =

[
0.3 0

0.1 0

]
, E32 =

[
0 0.4

0 0.5

]
, H2 =

[
0.5 0

0 0.3

]
,

F1 =

[
sin t 0

0 sin t

]
, F2 =

[
cos t 0

0 cos t

]
,

(4.1)

the disturbance input v(t) = [ 50e−0.5t 10e−0.5t ]T .
Let α = 0.6, h(t) = 1 + 0.5 sin t, ε1 = ε2 = 1, γ = 1; then solving the LMIs in Theorem 3.7,

we have

X1 =

[
1.0527 0.0392

0.0392 1.0410

]
, Y1 =

[
6.0116 0.0659

0.0659 6.5879

]
, Z1 =

[−17.0837 30.0731

13.0224 −37.1398

]
,

K1 =

[−17.3295 29.5401

13.7192 −36.1921

]
, X2 =

[
0.9153 −0.0358
−0.0358 1.0266

]
, Y2 =

[
6.0651 0.0640

0.0640 5.4975

]
,

Z2 =

[−26.1526 4.0064

13.4430 −5.1025

]
, K2 =

[−28.4582 2.9099

14.5120 −4.4641

]
, μ = 8.3261.

(4.2)

Then we obtain that T ∗
α = lnμ/α = 3.5323. Thus, under the average dwell time Tα > T ∗

α , the
designed controller can guarantee that the corresponding closed-loop system is mean-square
exponentially stable with weighted H∞ performance.

Simulation results are shown in Figures 1–3, where the initial state x(t) = [0, 0]T , t ∈
[−h, 0), and x(0) = [2,−2]T . The switching signal with the average dwell time Tα = 4 is shown
in Figure 1, and Figures 2 and 3 show state x 1 and x 2 of the closed-loop system, respectively.
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5. Conclusions

In this paper, the exponential stability analysis and robustH∞ control for switched stochastic
time delay systems have been investigated. Based on the average dwell time method
and Gronwall-Bellman inequality, a new mean-square exponential stability criteria and
H∞ performance analysis are presented. Furthermore, robust H∞ controller is designed to
guarantee that the corresponding closed-loop system is mean-square exponentially stable.
Finally, a numerical example is given to illustrate the effectiveness of the proposed approach.
The proposed method provides a powerful tool to solve many other problems such as
controller design under asynchronous switching and actuator failures. These problems are
the topics of the future research.
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