Research Article

Fekete-Szegö Problems for Quasi-Subordination Classes

Maisarah Haji Mohd and Maslina Darus
School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Malaysia
Correspondence should be addressed to Maslina Darus, maslina@ukm.my
Received 7 August 2012; Accepted 15 September 2012
Academic Editor: Juan J. Trujillo

Copyright © 2012 M. Haji Mohd and M. Darus. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

An analytic function \(f \) is quasi-subordinate to an analytic function \(g \), in the open unit disk if there exist analytic functions \(\varphi \) and \(w \), with \(|\varphi/z| \leq 1 \), \(w(0) = 0 \) and \(|w(z)| < 1 \) such that

\[
f(z) = \varphi(z) g(w(z)).
\]

In particular, if the function \(g \) is univalent in \(D \), then \(f(z) < g(z) \) is equivalent to \(f(0) = g(0) \) and \(f(D) \subset g(D) \). For brief survey on the concept of subordination, see [1].

Ma and Minda [2] introduced the following class

\[
S^\ast(\phi) = \left\{ f \in A : \frac{zf'(z)}{f(z)} < \phi(z) \right\},
\]

1. Introduction and Motivation

Let \(A \) be the class of analytic function \(f \) in the open unit disk \(D = \{ z : |z| < 1 \} \) normalized by \(f(0) = 0 \) and \(f'(0) = 1 \) of the form

\[
f(z) = z + \sum_{n=2}^{\infty} a_n z^n.
\]

For two analytic functions \(f \) and \(g \), the function \(f \) is subordinate to \(g \), written as follows:

\[
f(z) \prec g(z),
\]

if there exists an analytic function \(\varphi \), with \(\varphi(0) = 0 \) and \(|\varphi(z)| \leq 1 \) such that \(f(z) = \varphi(z) g(\varphi(z)) \).

In particular, if the function \(g \) is univalent in \(D \), then \(f(z) < g(z) \) is equivalent to \(f(0) = g(0) \) and \(f(D) \subset g(D) \). For brief survey on the concept of subordination, see [1].
where ϕ is an analytic function with positive real part in \mathbb{D}, $\phi(\mathbb{D})$ is symmetric with respect to the real axis and starlike with respect to $\phi(0) = 1$ and $\phi'(0) > 0$. A function $f \in S^*(\phi)$ is called Ma-Minda starlike (with respect to ϕ). The class $C(\phi)$ is the class of functions $f \in A$ for which $1 + zf''(z)/f'(z) < \phi(z)$. The class $S^*(\phi)$ and $C(\phi)$ include several well-known subclasses of starlike and convex functions as special case.

In the year 1970, Robertson [3] introduced the concept of quasi-subordination. For two analytic functions f and g, the function f is quasi-subordinate to g, written as follows:

$$f(z) \ll_q g(z), \quad (1.3)$$

if there exist analytic functions φ and w, with $|\varphi(z)| \leq 1$, $w(0) = 0$ and $|w(z)| < 1$ such that $f(z) = \varphi(z)g(w(z))$. Observe that when $\varphi(z) = 1$, then $f(z) = g(w(z))$, so that $f(z) \ll g(z)$ in \mathbb{D}. Also notice that if $w(z) = z$, then $f(z) = \varphi(z)g(z)$ and it is said that f is majorized by g and written $f(z) \ll g(z)$ in \mathbb{D}. Hence it is obvious that quasi-subordination is a generalization of subordination as well as majorization. See [4–6] for works related to quasi-subordination.

Throughout this paper it is assumed that ϕ is analytic in \mathbb{D} with $\phi(0) = 1$. Motivated by [2, 3], we define the following classes.

Definition 1.1. Let the class $S^*_q(\phi)$ consists of functions $f \in A$ satisfying the quasi-subordination

$$zf''(z) f(z) - 1 \ll_q \phi(z) - 1. \quad (1.4)$$

Example 1.2. Since

$$zf''(z) f(z) - 1 = z(\phi(z) - 1) \ll_q \phi(z) - 1, \quad (1.5)$$

the function $f : \mathbb{D} \to \mathbb{C}$ defined by the following:

$$f(z) = z \exp \left(-z + \int_0^z \phi(\xi) d\xi \right) \quad (1.6)$$

belongs to the class $S^*_q(\phi)$.

Definition 1.3. Let the class $C_q(\phi)$ consists of functions $f \in A$ satisfying the quasi-subordination

$$zf''(z) f(z) - 1 \ll_q \phi(z) - 1. \quad (1.7)$$
Abstract and Applied Analysis

Example 1.4. The function \(f : \mathbb{D} \to \mathbb{C} \) defined by the following:

\[
f(z) = \int_0^z \exp \left(-\zeta + \int_0^\zeta \phi(\xi) d\xi \right) d\zeta
\]

belongs to the class \(C_q(\phi) \).

The classes \(S_q^*(\phi) \) and \(C_q(\phi) \) are analogous to the Ma-Minda starlike and convex classes defined in the form of quasi-subordination.

Definition 1.5. Let the class \(R_q(\phi) \) consist of functions \(f \in \mathcal{A} \) satisfying the quasi-subordination

\[
f'(z) - 1 < q \phi(z) - 1.
\]

Example 1.6. The function \(f : \mathbb{D} \to \mathbb{C} \) defined by the following:

\[
f(z) = z - \frac{z^2}{2} + \exp \left(\int_0^z \phi(\xi) d\xi \right)
\]

belongs to the class \(R_q(\phi) \).

It is known that a function \(f \in \mathcal{A} \) with \(\text{Re} \ f'(z) > 0 \) in \(D \) is univalent. The above class of functions defined in terms of the quasi-subordination is associated with the class of functions with positive real part.

Functions in the following classes, \(M_q(\alpha, \phi) \) and \(L_q(\alpha, \phi) \) are analogous to the \(\alpha \)-convex functions of Miller et al. [7] and \(\alpha \)-logarithmically convex functions introduced by Lewandowski et al. [8] (see also [9]), respectively.

Definition 1.7. Let the class \(M_q(\alpha, \phi) \), \(\alpha \geq 0 \) consist of functions \(f \in \mathcal{A} \) satisfying the quasi-subordination

\[
(1 - \alpha) \frac{zf'(z)}{f(z)} + \alpha \left(1 + \frac{zf''(z)}{f'(z)} \right) - 1 < q \phi(z) - 1.
\]

Example 1.8. The function \(f : \mathbb{D} \to \mathbb{C} \) defined by the following:

\[
(1 - \alpha) \frac{zf'(z)}{f(z)} + \alpha \left(1 + \frac{zf''(z)}{f'(z)} \right) - 1 = z(\phi(z) - 1)
\]

belongs to the class \(M_q(\phi) \).
Definition 1.9. Let the class $\mathcal{L}_q(\alpha, \phi)$, $(\alpha \geq 0)$ consist of functions $f \in \mathcal{A}$ satisfying the quasi-subordination

$$
\left(\frac{zf'(z)}{f(z)} \right)^\alpha \left(1 + \frac{zf''(z)}{f'(z)} \right)^{1-\alpha} - 1 \leq \phi(z) - 1.
$$

Example 1.10. The function $f : \mathbb{D} \to \mathbb{C}$ defined by the following:

$$
\left(\frac{zf'(z)}{f(z)} \right)^\alpha \left(1 + \frac{zf''(z)}{f'(z)} \right)^{1-\alpha} - 1 = \phi(z) - 1
$$

belongs to the class $\mathcal{L}_q(\phi)$.

It is well known (see [10]) that the n-th coefficient of a univalent function $f \in \mathcal{A}$ is bounded by n. The bounds for coefficient give information about various geometric properties of the function. Many authors have also investigated the bounds for the Fekete-Szegő coefficient for various classes [11–25]. In this paper, we obtain coefficient estimates for the functions in the above defined classes.

Let Ω be the class of analytic functions w, normalized by $w(0) = 0$, and satisfying the condition $|w(z)| < 1$. We need the following lemma to prove our results.

Lemma 1.11 (see [26]). If $w \in \Omega$, then for any complex number t

$$
|w_2 - tw_1^2| \leq \max\{1; |t|\}.
$$

The result is sharp for the functions $w(z) = z^2$ or $w(z) = z$.

2. Main Results

Although Theorems 2.1 and 2.4 are contained in the corresponding results for the classes $\mathcal{M}_q(\alpha, \phi)$ and $\mathcal{L}_q(\alpha, \phi)$, they are stated and proved separately here because of the importance of the classes.

Throughout, let $f(z) = z + a_2 z^2 + a_3 z^3 + \cdots$, $\phi(z) = 1 + B_1 z + B_2 z^2 + B_3 z^3 + \cdots$, $\varphi(z) = c_0 + c_1 z + c_2 z^2 + c_3 z^3 + \cdots$, $B_1 \in \mathbb{R}$ and $B_1 > 0$.

Theorem 2.1. If $f \in \mathcal{A}$ belongs to $\mathcal{S}_q(\phi)$, then

$$
|a_2| \leq B_1,
$$

$$
|a_3| \leq \frac{1}{2} \left(B_1 + \max \left\{ B_1, B_1^2 + |B_2| \right\} \right),
$$

and, for any complex number μ,

$$
|a_3 - \mu a_2^2| \leq \frac{1}{2} \left(B_1 + \max \left\{ B_1, |1 - 2\mu| B_1^2 + |B_2| \right\} \right),
$$

(2.2)
Abstract and Applied Analysis

Proof. If \(f \in S^*_1(\phi) \), then there exist analytic functions \(\varphi \) and \(w \), with \(|\varphi(z)| \leq 1 \), \(w(0) = 0 \) and \(|w(z)| < 1 \) such that

\[
\frac{zf'(z)}{f(z)} - 1 = \varphi(z)(\phi(w(z)) - 1). \tag{2.3}
\]

Since

\[
\frac{zf'(z)}{f(z)} - 1 = a_2 z + \left(-a_2^2 + 2a_3 \right) z^2 + \cdots, \tag{2.4}
\]

\[
\phi(w(z)) - 1 = B_1 w_1 z + \left(B_1 w_2 + B_2 w_1^2 \right) z^2 + \cdots,
\]

\[
\varphi(z)(\phi(w(z)) - 1) = B_1 c_0 w_1 z + \left(B_1 c_1 w_1 + c_0 \left(B_1 w_2 + B_2 w_1^2 \right) \right) z^2 + \cdots, \tag{2.5}
\]

it follows from (2.3) that

\[
a_2 = B_1 c_0 w_1
\]

\[
a_3 = \frac{1}{2} \left(B_1 c_1 w_1 + B_1 c_0 w_2 + c_0 \left(B_2 + B_1^2 c_0 \right) w_1^2 \right). \tag{2.6}
\]

Since \(\varphi(z) \) is analytic and bounded in \(\mathbb{D} \), we have [27, page 172]

\[
|c_n| \leq 1 - |c_0|^2 \leq 1 \quad (n > 0). \tag{2.7}
\]

By using this fact and the well-known inequality, \(|w_1| \leq 1 \), we get

\[
|a_2| \leq B_1. \tag{2.8}
\]

Further,

\[
a_3 - \mu a_2^2 = \frac{1}{2} \left(B_1 c_1 w_1 + c_0 \left(B_1 w_2 + \left(B_2 + B_1^2 c_0 - 2 \mu B_1^2 c_0 \right) w_1^2 \right) \right). \tag{2.9}
\]

Then

\[
|a_3 - \mu a_2^2| \leq \frac{1}{2} \left(|B_1 c_1 w_1| + \left| B_1 c_0 \left(w_2 - \left(2 \mu B_1 c_0 - B_1 c_0 - \frac{B_2}{B_1} \right) w_1^2 \right) \right| \right). \tag{2.10}
\]

Again applying \(|c_n| \leq 1 \) and \(|w_1| \leq 1 \), we have

\[
|a_3 - \mu a_2^2| \leq \frac{B_1}{2} \left(1 + \left| w_2 - \left((1 - 2 \mu) B_1 c_0 - \frac{B_2}{B_1} \right) w_1^2 \right| \right). \tag{2.11}
\]
Applying Lemma 1.11 to
\[\left| w_2 - \left((1 - 2\mu)B_1c_0 - \frac{B_2}{B_1} \right) w_1 \right| \] (2.12)
yields
\[\left| a_3 - \mu a_2^2 \right| \leq \frac{B_1}{2} \left(1 + \max \left\{ 1, \left| (1 - 2\mu)B_1c_0 - \frac{B_2}{B_1} \right| \right\} \right). \] (2.13)

Observe that
\[\left| (1 - 2\mu)B_1c_0 - \frac{B_2}{B_1} \right| \leq B_1|c_0||1 - 2\mu| + \left\| \frac{B_2}{B_1} \right\|, \] (2.14)
and hence we can conclude that
\[\left| a_3 - \mu a_2^2 \right| \leq \frac{B_1}{2} \left(1 + \max \left\{ 1, B_1|1 - 2\mu| + \left\| \frac{B_2}{B_1} \right\| \right\} \right). \] (2.15)

For \(\mu = 0 \), the above will reduce to the estimate of \(|a_3| \).

Remark 2.2. For \(\varphi(z) \equiv 1 \), Theorem 2.1 gives a particular case of the estimates in [13, Theorem 1] for \(p = 1 \) and [14, Theorem 2.1] for \(k = 1 \).

Theorem 2.3. If \(f \in A \) satisfies
\[\frac{zf'(z)}{f(z)} - 1 \ll \phi(z) - 1, \] (2.16)
then the following inequalities hold:
\[|a_2| \leq B_1, \] \[|a_3| \leq \frac{1}{2} \left(B_1 + B_1^2 + |B_2| \right), \] (2.17)
and, for any complex number \(\mu \),
\[\left| a_3 - \mu a_2^2 \right| \leq \frac{1}{2} \left(B_1 + |1 - 2\mu|B_1^2 + |B_2| \right). \] (2.18)

Proof. The result follows by taking \(w(z) = z \) in the proof of Theorem 2.1.
Theorem 2.4. If \(f \in \mathcal{A} \) belongs to \(C_q(\phi) \), then

\[
|a_2| \leq \frac{B_1}{2},
\]

and

\[
|a_3| \leq \frac{1}{6} \left(B_1 + \max \left\{ B_1, B_1^2 + |B_2| \right\} \right),
\]

and, for any complex number \(\mu \),

\[
|a_3 - \mu a_2^2| \leq \frac{1}{6} \left(B_1 + \max \left\{ B_1, \left| B_2 \right| \right\} \right).
\]

Proof. Observe that when \(zf' \in S_q^{*} \), equality (2.3) becomes

\[
\frac{z(zf'(z))'}{zf'(z)} - 1 = \phi(z) (\phi(w(z)) - 1),
\]

or equally

\[
\frac{zf''(z)}{f'(z)} \prec \phi(w(z)) - 1,
\]

and the converse can be verified easily. By the Alexander relation, that is \(f \in C_q \) if and only if \(zf' \in S_q^{*} \) we can obtain the required estimates.

Theorem 2.5. If \(f \in \mathcal{A} \) satisfies

\[
\frac{zf''(z)}{f'(z)} \ll \phi(z) - 1,
\]

then the following inequalities hold:

\[
|a_2| \leq \frac{B_1}{2},
\]

\[
|a_3| \leq \frac{1}{6} \left(B_1 + B_1^2 + |B_2| \right),
\]

and, for any complex number \(\mu \),

\[
|a_3 - \mu a_2^2| \leq \frac{1}{6} \left(B_1 + \left| B_2 \right| \right).
\]
Theorem 2.6. If \(f \in \mathcal{A} \) belongs to \(\mathcal{R}_q(\phi) \), then

\[
|a_2| \leq \frac{B_1}{2}, \\
|a_3| \leq \frac{1}{3}(B_1 + \max \{B_1, |B_2|\}),
\]

and, for any complex number \(\mu \),

\[
|a_3 - \mu a_2^2| \leq \frac{1}{3} \left(B_1 + \max \left\{ B_1, \frac{3}{4} |\mu|B_1^2 + |B_2| \right\} \right).
\]

Proof. For \(f \in \mathcal{R}_q(\phi) \), we know that by Definition 1.5 there exist analytic functions \(\varphi \) and \(w \), with \(|\varphi(z)| \leq 1 \), \(w(0) = 0 \) and \(|w(z)| < 1 \) such that

\[
f'(z) - 1 = \varphi(z) (\phi(w(z)) - 1).
\]

Since

\[
f'(z) - 1 = 2a_2 z + 3a_3 z^2 + \cdots,
\]

it follows from (2.28) and (2.5) that

\[
a_2 = \frac{1}{2} B_1 c_0 w_1,
\]

\[
a_3 = \frac{1}{3} \left(B_1 c_1 w_1 + c_0 \left(B_1 w_2 + B_2 w_2^2 \right) \right).
\]

Following the same argument as in Theorem 2.1, where \(|c_0| \leq 1 \) and \(|c_1| \leq 1 \), we can deduce that

\[
|a_2| \leq \frac{B_1}{2},
\]

\[
|a_3 - \mu a_2^2| \leq \frac{B_1}{3} \left(1 + \left| w_2 - \left(\frac{3B_1 c_0}{4} \mu - \frac{B_2}{B_1} \right) w_1^2 \right| \right).
\]

Applying Lemma 1.11, we get

\[
|a_3 - \mu a_2^2| \leq \frac{B_1}{3} \left(1 + \max \left\{ 1, \left| \frac{3B_1 c_0}{4} \mu - \frac{B_2}{B_1} \right| \right\} \right).
\]
Since
\[
\left| \frac{3B_1c_0}{4} - \frac{B_2}{B_1} \right| \leq \frac{3B_1}{4} |\mu| |c_0| + \left| \frac{B_2}{B_1} \right|,
\]
(2.33)
and $|c_0| \leq 1$ we can conclude the hypothesis.

\[\Box\]

Theorem 2.7. If $f \in \mathcal{A}$ satisfies
\[
f'(z) - 1 \ll \phi(z) - 1,
\]
then the following inequalities hold:
\[
|a_2| \leq \frac{B_1}{2},
\]
(2.35)
\[
|a_3| \leq \frac{1}{3}(B_1 + |B_2|),
\]
and, for any complex number μ,
\[
|a_3 - \mu a_2^2| \leq \frac{1}{3} \left(B_1 + \frac{3}{4} |\mu| B_1^2 + |B_2| \right).
\]
(2.36)

Let the class $\mathcal{R}_\rho^\phi(\phi)$ consist of functions $f \in \mathcal{A}$ satisfying the quasi-subordination
\[
\frac{1}{\rho} (f'(z) - 1) \ll \phi(z) - 1,
\]
(2.37)
where $\rho \in \mathbb{C} \setminus \{0\}$. The following corollary gives the results for $f \in \mathcal{R}_\rho^\phi(\phi)$.

Corollary 2.8. Let $\rho \in \mathbb{C} \setminus \{0\}$. If $f \in \mathcal{A}$ belongs to $\mathcal{R}_\rho^\phi(\phi)$, then
\[
|a_2| \leq \frac{\rho}{2} B_1,
\]
(2.38)
\[
|a_3| \leq \frac{\rho}{3} \left(B_1 + \max\{|B_1|, |B_2|\} \right),
\]
and, for any complex number μ,
\[
|a_3 - \mu a_2^2| \leq \frac{\rho}{3} \left(B_1 + \max\left\{ B_1, \frac{3}{4} |\mu| B_1^2 + |B_2| \right\} \right).
\]
(2.39)
Remark 2.9. (1) For \(\varphi(z) \equiv 1 \), Corollary 2.8 gives a particular case of the estimates in [13, Theorem 3] for \(p = 1 \) and [14, Theorem 2.3] for \(k = 1 \).

(2) For \(\varphi(z) \equiv 1 \) and \(\phi(z) = (1 + Az)/(1 + Bz) \), \((-1 \leq B < A \leq 1) \), Corollary 2.8 reduces to the results in [19, Theorem 4].

Theorem 2.10. Let \(\alpha \geq 0 \). If \(f \in \mathcal{A} \) belongs to \(\mathcal{M}_\psi(\alpha, \phi) \), then

\[
|a_2| \leq \frac{B_1}{1 + \alpha},
\]

\[
|a_3| \leq \frac{1}{2(1 + 2\alpha)} \left(B_1 + \max \left\{ B_1, \frac{1 + 3\alpha}{(1 + \alpha)^2} B_1^2 + |B_2| \right\}\right), \tag{2.40}
\]

and, for any complex number \(\mu \),

\[
|a_3 - \mu a_2^2| \leq \frac{1}{2(1 + 2\alpha)} \left(B_1 + \max \left\{ B_1, \frac{|2\mu(1 + 2\alpha) - (1 + 3\alpha)|}{(1 + \alpha)^2} B_1^2 + |B_2| \right\}\right). \tag{2.41}
\]

Proof. If \(f \in \mathcal{M}_\psi(\alpha, \phi) \), for \(\alpha \geq 0 \) then there are analytic functions \(\varphi \) and \(w \), with \(|\varphi(z)| \leq 1 \), \(w(0) = 0 \) and \(|w(z)| < 1 \) such that

\[
(1 - \alpha) \frac{z^f(z)}{f(z)} + \alpha \left(1 + \frac{zf''(z)}{f'(z)} \right) - 1 = \varphi(z)(\phi(w(z)) - 1). \tag{2.42}
\]

A computation shows that

\[
(1 - \alpha) \frac{z^f(z)}{f(z)} = (1 - \alpha) + (1 - \alpha)a_2z + (1 - \alpha)\left(-a_2^2 + 2a_3\right)z^2 + \cdots, \tag{2.43}
\]

\[
\alpha \left(1 + \frac{zf''(z)}{f'(z)} \right) = \alpha + 2\alpha a_2z + 2\alpha \left(-2a_2^2 + 3a_3\right)z^2 + \cdots.
\]

Hence from (2.43), we have

\[
(1 - \alpha) \frac{z^f(z)}{f(z)} + \alpha \left(1 + \frac{zf''(z)}{f'(z)} \right) - 1 = (1 + \alpha)a_2z + \left(-(1 + 3\alpha)a_2^2 + 2(1 + 2\alpha)a_3\right)z^2 + \cdots, \tag{2.44}
\]

It then follows from relation (2.42) and (2.5) that

\[
a_2 = \frac{B_1c_0w_1}{1 + \alpha},
\]

\[
a_3 = \frac{1}{2(1 + 2\alpha)} \left(B_1c_1w_1 + B_1c_0w_2 + \left(B_2c_0 + \frac{1 + 3\alpha}{(1 + \alpha)^2} B_1^2c_0^2 \right) w_1^2 \right). \tag{2.45}
\]

We can then conclude the proof by proceeding similarly as previous theorems. \(\square \)
Remark 2.11. (1) When \(\alpha = 0 \), Theorem 2.10 reduces to Theorem 2.1.
(2) When \(\alpha = 1 \), Theorem 2.10 reduces to Theorem 2.4.
(3) For \(\varphi(z) = 1 \), Theorem 2.10 gives a particular case of the estimates in [14, Theorem 2.9] for \(k = 1 \).

Theorem 2.12. Let \(\alpha \geq 0 \). If \(f \in \mathcal{A} \) satisfies

\[
(1 - \alpha) \frac{zf'(z)}{f(z)} + \alpha \left(1 + \frac{zf''(z)}{f'(z)} \right) - 1 \ll \varphi(z) - 1,
\]

then the following inequalities hold:

\[
|a_2| \leq \frac{B_1}{1 + \alpha},
\]

\[
|a_3| \leq \frac{1}{2(1 + 2\alpha)} \left(B_1 + \frac{1 + 3\alpha}{(1 + \alpha)^2} B_1^2 + |B_2| \right),
\]

and, for any complex number \(\mu \),

\[
|a_3 - \mu a_2^2| \leq \frac{1}{2(1 + 2\alpha)} \left(B_1 + \frac{2\mu(1 + 2\alpha) - (1 + 3\alpha)|\beta|}{(1 + \alpha)^2} B_1^2 + |B_2| \right).
\]

Theorem 2.13. Let \(\alpha \geq 0 \) and \(\beta = 1 - \alpha \). If \(f \in \mathcal{A} \) belongs to \(\mathcal{L}_4(\alpha, \varphi) \), then

\[
|a_2| \leq \frac{B_1}{|\alpha + 2\beta|},
\]

\[
|a_3| \leq \frac{1}{2|\alpha + 3\beta|} \left(B_1 + \max \left\{ B_1, \frac{|(\alpha + 2\beta)^2 - 3(\alpha + 4\beta)|}{2(\alpha + 2\beta)^2} B_1^2 + |B_2| \right\} \right),
\]

and, for any complex number \(\mu \),

\[
|a_3 - \mu a_2^2| \leq \frac{1}{2|\alpha + 3\beta|} \left(B_1 + \max \left\{ B_1, \frac{|(\alpha + 2\beta)^2 - 3(\alpha + 4\beta) - 4\mu(\alpha + 3\beta)|}{2(\alpha + 2\beta)^2} B_1^2 + |B_2| \right\} \right).
\]

Proof. If \(f \in \mathcal{L}_4(\alpha, \varphi) \), for \(\alpha \geq 0 \) and \(\beta = 1 - \alpha \) then there are analytic functions \(\varphi \) and \(\omega \), with \(|\varphi(z)| \leq 1 \), \(\varphi(0) = 0 \) and \(|\omega(z)| < 1 \) such that

\[
\left(\frac{zf'(z)}{f(z)} \right)^\alpha \left(1 + \frac{zf''(z)}{f'(z)} \right)^\beta - 1 = \varphi(z)(\varphi(\omega(z)) - 1).
\]
A computation shows that
\[
\left(\frac{zf'(z)}{f(z)} \right)^{\alpha} = 1 + \alpha a_2 z + \frac{1}{2} \left(\left(\alpha^2 - 3\alpha \right) a_2^2 + 4\alpha a_3 \right) z^2 + \cdots ,
\]
\[
\left(1 + \frac{zf''(z)}{f'(z)} \right)^{\beta} = 1 + 2\beta a_2 z + \left(2\left(\beta^2 - 3\beta \right) a_2^2 + 6\beta a_3 \right) z^2 + \cdots .
\]
(2.52)

Thus (2.52) give
\[
\left(\frac{zf'(z)}{f(z)} \right)^{\alpha} \left(1 + \frac{zf''(z)}{f'(z)} \right)^{\beta} - 1
\]
\[
= (\alpha + 2\beta) a_2 z + \frac{1}{2} \left(\left(\alpha + 2\beta \right)^2 - 3(\alpha + 4\beta) \right) a_2^2 + 4(\alpha + 3\beta) a_3 \right) z^2 + \cdots ,
\]
By using the above equation and (2.5) in (2.51) we have
\[
a_2 = \frac{B_1 c_0 w_1}{\alpha + 2\beta}
\]
\[
a_3 = \frac{B_1}{2(\alpha + 3\beta)} \left(B_1 - \frac{(\alpha + 2\beta)^2 - 3(\alpha + 4\beta)}{2(\alpha + 2\beta)^2} B_1^2 c_0^2 \right) w_1^2 .
\]
(2.54)

We can proceed similarly as previous theorems and proof the hypothesis. \(\square \)

Remark 2.14. (1) When \(\alpha = 0 \), Theorem 2.13 reduces to Theorem 2.4.
(2) When \(\alpha = 1 \), Theorem 2.13 reduces to Theorem 2.1.
(3) For \(\varphi(z) = 1 \), Theorem 2.13 gives a particular case of the estimates in [14, Theorem 2.7] for \(k = 1 \).

Theorem 2.15. Let \(\alpha \geq 0 \) and \(\beta = 1 - \alpha \). If \(f \in \mathcal{A} \) satisfies
\[
\frac{zf'(z)}{f(z)} \left(1 + \frac{zf''(z)}{f'(z)} \right)^{1-\alpha} - 1 \ll \varphi(z) - 1,
\]
then the following inequalities hold:
\[
|a_2| \leq \frac{B_1}{|\alpha + 2\beta|},
\]
\[
|a_3| \leq \frac{1}{2|\alpha + 3\beta|} \left(B_1 + \frac{|(\alpha + 2\beta)^2 - 3(\alpha + 4\beta)|}{2(\alpha + 2\beta)^2} B_1^2 + |B_2| \right),
\]
(2.56)
Abstract and Applied Analysis

and, for any complex number μ,

$$|a_3 - \mu a_2^2| \leq \frac{1}{2|a + 3\beta|} \left(B_1 + \frac{[(\alpha + 2\beta)^2 - 3(\alpha + 4\beta) - 4\mu(\alpha + 3\beta)]}{2(\alpha + 2\beta)^2} B_1^2 + |B_2| \right).$$ \hspace{1cm} (2.57)

Acknowledgment

The work presented here was supported in part by research Grant LRGS/TD/2011/UKM/ICT/03/02. The authors are thankful to the referees for their useful comments.

References

