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We employ the Heat Balance Integral Method (HBIM) to solve a number of thermal and phase
change problems which occur in a multitude of industrial contexts. As part of our analysis, we
propose a new error measure for the HBIM that combines the least-squares error with a boundary
immobilisation method. We describe how to determine this error for three basic thermal problems
and show how it can be used to determine an optimal heat balance formulation.We then show how
the HBIM, with the new error measure, may be used to approximate the solution of an aircraft
deicing problem. Finally we apply the new method to two industrially important phase change
problems.

1. Introduction

Stefan problems arise in numerous industrial applications, such as the manufacture of steel,
ablation of heat shields, contact melting in thermal storage systems, ice accretion on aircraft,
and evaporation of water [1–5]. However, despite the plethora of applications, there remain
very few analytical solutions to Stefan problems and in fact only one of these, the Neumann
solution, is of practical use [1]. Consequently, solution methods tend to be numerical or ap-
proximate. In this paper we will focus on a particular form of approximate solution, namely,
the heat balance integral method (HBIM), and apply it to a problem related to aircraft deicing
and then to two generic Stefan problems.

The heat balance integral method (HBIM) is a simple approximate technique original-
ly developed for analysing thermal problems. Goodman [6–8] was the first to introduce the
method, which was adapted from the Karman-Pohlhausen integral method [9] for analysing
boundary layers, see [10] for a translated account of this work. However, since exact solutions
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exist for most standard fixed domain thermal problems, the HBIM has found its greatest use
in Stefan problems, see [11, 12] for example. It has also been applied to problems such as
thermal explosions, the Korteweg-de-Vries equation, microwave heating of grain, rewetting
of surfaces, and boundary layer flows [13–17].

The standard heat balance integral method approximates solutions to the heat equa-
tion by first introducing a heat penetration depth, δ(t), where for x ≥ δ the temperature
change above the initial temperature is assumed to be negligible. An approximating function
is then defined for the temperature, typically a polynomial, and by applying sufficient bound-
ary conditions, all the unknown coefficients can be determined in terms of the unknown func-
tion δ. Finally, the governing heat equation is integrated for x ∈ [0, δ] to produce a heat balance
integral, leading to an ordinary differential equation for δ. The problem is therefore reduced
to solving a first-order differential equation in time. An alternative approach to the HBIM
is the refined integral method (RIM), where the heat equation is integrated twice (this was
termed the RIM in [18], although it had at least two previous titles, see [1] e.g.). A comparison
of the two approaches, along with variations involving alternative approximating functions,
is described in detail in Mitchell and Myers [12].

The HBIM has a number of well-known drawbacks. For example, it can only be ap-
plied to one-dimensional problems and the choice of approximating function is arbitrary,
which is key to the method’s accuracy. It is standard to use a polynomial function but even
then there is debate over the power of the highest order term [12]. Recently, Mitchell and
Myers [19, 20] have developed a method where the exponent is determined during the solu-
tion process, producing significantly better results than standard models. It involves a com-
bination of the conventional heat balance and refined integral methods, and is called the
combined integral method (CIM). The method has been applied to both thermal and Stefan
problems [19, 20].

Another drawback is that without knowledge of an exact or numerical solution, there
is no agreed method for measuring the accuracy. This question was addressed some time ago
by Langford [21]who proposed using the least squares error when the approximate solution
is substituted into the heat equation. This criterion was subsequently used to improve the
accuracy of heat balance methods for thermal and Stefan problems in [22, 23]. Unfortunately,
Langford’s criterion is not a good measure of the error. For the most basic thermal problem,
with a fixed temperature boundary condition, the error depends on time, EL ∝ t−3/2. Despite
the fact that the HBIM approximation may appear reasonable at small times, this measure
shows that EL → ∞ as t → 0.

Indeed, Myers [22, 23]minimised Langford’s error function to determine the exponent
in the approximating function. In [22] the HBIM and RIM formulations were applied to the
three standard fixed domain problems and in [23] the same formulations were applied to
the classic Stefan problem. This method has the advantage that it is as easy to apply as
Goodman’s original method, since it simply involves using one of the exponents provided
in [22, 23], it can significantly improve accuracy and in general it is even more accurate than
the CIM. However, there are situations where the exponent depends on time, for example
with a Newton cooling boundary condition or a time dependent boundary temperature. In
these cases, taking the initial value of the exponent will improve on Goodman’s result but in
general the CIM will provide a better approximation over large times. The relative accuracy
of the various methods can be judged through the results provided in the following sections.

In this paper we will analyse various practical problems and along the way propose
a new error measure. In the following section we set out the basic thermal problem and use
it to illustrate Langford’s error before going on to describe our new technique to determine
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a criteria which does not blow up as t → 0. In Section 3 different formulations that arise in the
HBIM and the merits and weaknesses of each are discussed. We then examine constant flux
and Newton cooling boundary conditions in Section 4. We show that for thermal problems,
with either a fixed temperature or constant flux boundary condition, the new error definition
is constant, whilst for a Newton cooling condition, the error is zero at t = 0. In Section 5 we
demonstrate how to apply the technique to a model for aircraft deicing systems. In Section 6
we consider two classic one-phase Stefan problems: the first involves a solid (at the solidus)
melting due to a prescribed temperature at the boundary x = 0, the second involves a semi-
infinite subcooled solid acting to freeze the adjoining liquid layer. These two generic problems
have been applied to diverse situations such as melting or production of ice, water filtration,
freezing and thawing of foods, ice formation on pipe surfaces, solidification of metals and
magma solidification [2, 5, 24–27]. In both cases the new error is shown to be constant, where-
as Langford’s definition is again singular at t = 0.

2. Thermal Problem with Fixed Boundary Temperature

We begin by illustrating the HBIM on a simple nondimensional thermal problem described
by

∂u

∂t
=

∂2u

∂x2
, (2.1a)

u(0, t) = 1, (2.1b)

u(x, 0) = 0, (2.1c)

u −→ 0 as x −→ ∞, (2.1d)

which has the exact solution

u = erfc
(

x

2
√
t

)
. (2.2)

To calculate the HBIM solution, we replace the boundary condition at infinity with

u(δ(t), t) =
∂u

∂x
(δ(t), t) = 0, (2.3)

where δ is sufficiently far from the boundary that the boundary temperature has a negligible
effect. Two boundary conditions are required to replace the single condition at infinity due
to the introduction of a new unknown, the position δ(t), where δ(0) = 0. The appropriate
approximating polynomial for u(x, t) is

u(x, t) =
(
1 − x

δ

)n

. (2.4)
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The HBIM then proceeds by integrating the heat equation over x ∈ [0, δ],

∫δ

0

∂u

∂t
dx =

∫δ

0

∂2u

∂x2
dx. (2.5)

Substituting for u(x, t), via (2.4), and integrating lead to

δ =
√
2n(n + 1)t. (2.6)

With traditional heat balance methods, the value of n is specified at the outset, typically n = 2
or 3, and so the solution is given by (2.4) and (2.6) and the analysis is complete.

Now, consider the function f(x, t) defined by

f(x, t) =
∂u

∂t
− ∂2u

∂x2
. (2.7)

The HBIM formulation and the least-squares error of Langford may then be written as

∫δ

0
f(x, t)dx = 0, EL =

∫δ

0
f(x, t)2dx. (2.8)

If u(x, t) is an exact solution of the heat equation then both f and EL will be identically zero.
However, with the HBIM the heat equation is only satisfied in an integral sense and f(x, t)/= 0
for all x. That is, the heat equation is not satisfied by the polynomial approximation u(x, t) and
the error EL > 0. This may be seen more clearly by considering the form of these functions.
Noting the derivatives from (2.4)

∂u

∂t
=

nxδt
δ2

(
1 − x

δ

)n−1
,

∂2u

∂x2
=

n(n − 1)
δ2

(
1 − x

δ

)n−2
, (2.9)

we find

f(x, t) =
n

δ2

(
1 − x

δ

)n−2[
xδt

(
1 − x

δ

)
− (n − 1)

]
, (2.10)

and

EL =

(
2n4 − 7n3 + 6n2 + 2n − 1

)√
2n(n + 1)

4(n + 1)2(2n − 3)(2n − 1)(2n + 1)
t−3/2 = eLt

−3/2. (2.11)

The above expressions highlight some of the problems inherent in applying heat balance
methods. For example, at x = 0,

f(0, t) = −n(n − 1)
δ2

. (2.12)
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Figure 1: Plot of eL(n) for n ∈ (1.5, 5]. The solid line denotes the HBIM formulation and the dashed line
denotes the RIM formulation.

For u to satisfy the second boundary condition in (2.3)we require n > 1 and so (2.12) indicates
solutions of the form (2.4) will never satisfy the heat equation at x = 0. At x = δ, we find

f(δ, t) = lim
x−→δ

f(x, t) = −n(n − 1)
δ2

lim
x−→δ

(
1 − x

δ

)n−2
. (2.13)

With the restriction n > 1, this shows that the heat equation is only satisfied at x = δ when
n > 2. For n < 2 (and n/= 0, 1), and (2.13) shows f(δ, t) → ∞, with n = 2 we find f(δ, t) →
−2/δ2.

The expressions for EL and eL were first derived by Langford [21]. In Figure 1 we
plot eL(n) as specified by (2.11) and also the equivalent curve for the RIM formulation. The
expression in (2.11) is only valid for n > 3/2, below this the expression can predict unrealistic
negative and zero values indicating that the integral should be evaluated more carefully in
this region. However, provided we specify n > 3/2, the expression (2.11) is positive and there
is no value of n that can make EL = 0. Of course it should be expected that an approximate
solution has some error, so perhaps the most worrying aspect of the expression for EL is
that it is time-dependent and more specifically, as t → 0, the error EL → ∞ even though
the approximate solution may appear accurate. Hence, while EL may be useful to represent
relative errors, that is, for a given time, we can generate EL for different values of n to
determine which leads to the most accurate approximation; it does not provide a meaningful
measure of the error and is therefore not an appropriate parameter to quantify the error.

2.1. A New Error Measure

To define a new error measure that avoids the unrealistic behaviour of EL, we use a boundary
immobilisation technique. For thermal problems this simply means that we introduce a new
coordinate

ξ =
x

δ(t)
, (2.14)
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which transforms the moving domain 0 < x < δ(t) to a fixed one 0 < ξ < 1. If we denote
u(x, t) = U(ξ, t) the heat equation (2.1a) becomes

∂U

∂t
− δtξ

δ

∂U

∂ξ
=

1
δ2

∂2U

∂ξ2
, (2.15)

and the boundary conditions are

U(0, t) = 1, U(1, t) =
∂U

∂ξ
(1, t) = 0. (2.16)

The polynomial approximation, (2.4), is nowU = (1 − ξ)n. A significant feature of this profile
is that it is independent of δ, that is, the solution has a form that is constant in time. This is
a consequence of the fact that the boundary transformation ξ = x/δ(t) corresponds to the
similarity solution transformation ξ = x/

√
t.

Equivalent to deriving equation (2.7), we rearrange the heat equation, (2.15), to define
the function

F(ξ, t) = δ2 ∂U

∂t
− δδtξ

∂U

∂ξ
− ∂2U

∂ξ2
(2.17)

= −δδtξ ∂U
∂ξ

− ∂2U

∂ξ2
, (2.18)

after noting Ut = 0. The HBIM formulation may then be written
∫1
0 F(ξ, t)dξ, which leads to

δ =
√
2n(n + 1)t, (2.19)

and (2.6) is retrieved.
We now propose that a new, better behaved error estimate may be obtained from the

least-squares error of the boundary immobilised equation:

EM =
∫1

0
F(ξ, t)2dξ =

∫1

0

[
∂2U

∂ξ2
+ δδtξ

∂U

∂ξ

]2

dξ. (2.20)

Since δδt = n(n + 1) is independent of time this function clearly only varies with the value of
n. Evaluating the integral then leads to

EM =
n2(2n4 − 7n3 + 6n2 + 2n − 1

)
(2n − 3)(2n − 1)(2n + 1)

. (2.21)

That is, for this problem, we have now defined an error that is independent of time and, in
particular, is not singular at t = 0. It is related to the expression of Langford by EM = δ3EL.
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The RIM simply involves integrating the heat equation twice

∫1

0

∫η

0
F(ξ, t)dξ dη = 0, (2.22)

where η is a dummy variable. After changing the order of integration this becomes
∫1
0 (1 −

ξ)F(ξ, t)dξ = 0 and then the HBIM formulation
∫1
0 F(ξ, t)dξ = 0 is substituted to give∫1

0 ξF(ξ, t)dξ = 0. This leads to

δ =
√
(n + 1)(n + 2)t. (2.23)

It should be noted that if the formulation of (2.22) is usedwithout applying the HBIM integral
then the method is referred to as the Alternative Refined Integral Method (ARIM).

If we follow this approach to determine the error, we find

EM =
n(n − 1)

(
10n4 − 29n3 + 5n2 + 32n + 12

)
4(2n − 3)(2n − 1)(2n + 1)

(2.24)

which is once again independent of time.
Now that we have a new error definition we will briefly outline some of the different

ways to tackle heat balance problems and then compare the errors predicted by EM.

3. Defining the Exponent n

The classical HBIM involves specifying n at the start of a calculation. However, there exist a
number of refinements which lead to different values of n. These can be categorised loosely
as global or local matching methods and obviously they lead to various levels of accuracy.

3.1. Local Matching

For this method n is determined through an additional boundary condition, usually taken
from the exact solution. For example, in the current problem the boundary condition specifies
u(0, t) and so, from the exact solution, one can also specify ux(0, t) to determine n. If we equate
the derivatives of the exact and HBIM expressions for u(x, t) and set x = 0, we find

ux(0, t) = − 1√
πt

= −n
δ
. (3.1)

Substituting for δ through (2.6) then shows n = 2/(π − 2) ≈ 1.752. This is the approach
suggested by Braga et al. [28]. The entropy minimisation method of Hristov [11] involves
matching exact and approximate expressions for u2

x/u
2 at x = 0. For a fixed boundary

temperature, this is equivalent to matching ux and so Hristov obtains the same n value.
There are two obvious drawbacks to this type of approach. Firstly, they require an

exact solution to determine the extra condition or the series expansion, in which case the
HBIM is redundant. Secondly, however the matching is carried out, matching a value of
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Figure 2: EM(n) for the fixed temperature boundary condition, for HBIM (solid line) and RIM (dashed
line): errors for n = 1.752, 2, 3 are shown as diamonds and the minimum errors are shown as asterisks.

the temperature or gradient at a single point is no guarantee that the approximate solution will
provide a good approximation throughout the domain. It is not even certain that it will provide a
good solution to the heat equation even at the point of matching. For example, the discussion of
the value of f(x, t), given after (2.12), (2.13), shows that n ≈ 1.752 does not satisfy the heat
equation at x = 0 and leads to an infinite value of f at x = δ.

3.2. Global Matching

The method described in [22] involves leaving n unknown throughout the calculation. It is
then determined by minimising EL over n. This forces the solution to be close to the true
solution over the whole domain, rather than at a single point. If we consider the example
given above, then in the original error definition n is simply chosen by minimising eL(n) in
(2.11). Clearly this method may be easily modified to the present situation by choosing n to
minimise EM(n).

Mitchell and Myers [19] take a similar approach to that of [22] in that they leave
the exponent unknown and determine it as part of the solution process. In this case their
additional equation comes from applying the RIM in addition to the HBIM, hence their
method is termed the Combined Integral Method (CIM).

In general themethod of [22]will provide themost accurate solutions (as measured by
EL). This is perhaps clearest in Section 4.2, where theminimisation technique has an error half
that of the CIM. However, in cases where n = n(t), due to the difficulty of implementation,
the minimisation technique is used with n = n(0). The combined method deals more easily
with n(t) and gives more accurate solutions in this situation.

3.3. Comparison of Results

In Figure 2 we present the variation of EM for the HBIM and RIM formulations for n ∈
[1.7, 2.5]. For larger n values both functions increase monotonically, so the only physically
realistic minimum is shown on the graph.With theminimisation technique of [22], this would
then indicate that the most accurate approximation comes from using the RIM formulation
with n = 2.074, with an error EM = 0.784. The most accurate HBIM approximation requires
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n = 2.008 and has EM = 0.7998. The best RIM and HBIM solutions are marked on the graph
with an asterisk. The CIM method of [19, 20] requires the HBIM and RIM solutions to match
and so can be viewed as the crossing point of the two curves in Figure 2. In this case the
crossing occurs when n = 2 and so the CIM matches the classical method of Goodman,
with an error EM = 0.8. The other common value chosen for the exponent, n = 3, leads to
EM = 2.74, 2.57 for HBIM and RIM, respectively. The solution obtained by matching at x = 0
has errors EM = 1.145, 1.256 for the HBIM and RIM formulations respectively, that is, 60%
higher than lowest possible error. As stated earlier, matching may give good local agreement
but global agreement is not ensured. The local matching solutions are shown as diamonds
on the graph. As noted in [22] the value of n that minimises the error is close to 2 and so
the improvements (in this case by taking n = 2.008 or 2.074) from the classical approach of
Goodman are small. Since the gradient of EM is small near n = 2, any value close to 2 will lead
to a reasonable approximation. Based on this observation, it may appear pointless to use any
technique other than the classical HBIM with n = 2. However, in subsequent sections we will
consider different boundary conditions and then find that in general n = 2 is a poor choice.

4. Constant Flux and Newton Cooling Boundary Conditions

4.1. Constant Flux Boundary Condition

We now consider the same problem as in (2.1a)–(2.1d) but with u(0, t) = 1 replaced by the
constant flux condition ux(0, t) = −1. This problem has the exact solution

u(x, t) = 2
√

t

π
e−x

2/(4t) − x erfc
x

2
√
t
. (4.1)

The boundary immobilisation coordinate is again ξ = x/δ, but we now set u(x, t) = δU(ξ, t),
chosen so that the polynomial approximation

U(ξ, t) =
1
n
(1 − ξ)n (4.2)

is independent of δ. Note, for the fixed temperature boundary condition we set u = U

whereas here we set u = δU. The difference is that now as t → 0, u → 0 and this scaling
permitsU = O(1). In the previous case u = 1 at the boundary and no rescaling was necessary.
The heat equation is given by

∂

∂t
(δU) − δtξ

∂U

∂ξ
=

1
δ

∂2U

∂ξ2
, (4.3)

and since Ut = 0, this reduces to

δδtU − δδtξ
∂U

∂ξ
=

∂2U

∂ξ2
. (4.4)

The function F(ξ, t) is therefore given by rearranging (4.4)

F(ξ, t) = δδtU − δδtξ
∂U

∂ξ
− ∂2U

∂ξ2
. (4.5)
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Figure 3: EM(n) for the constant flux problem, for HBIM (solid line) and RIM (dashed line): errors for
n = 3, 3.65, 4 are shown as diamonds and the minimum errors are shown as asterisks.

Again the HBIM is the integral of F over ξ ∈ [0, 1], the RIM involves the double integral and
the error EM is the integral of F2.

The HBIM formulation gives δ =
√
n(n + 1)t and

EM =
(n − 1)

(
2n3 − 13n2 + 19n + 10

)
4(2n − 1)(2n + 1)(2n − 3)

. (4.6)

Similarly the RIM gives δ =
√
2(n + 1)(n + 2)t/3 and

EM =
10n6 − 79n5 + 160n4 + 38n3 − 167n2 − 40n + 24

9n2(2n − 1)(2n + 1)(2n − 3)
. (4.7)

In both cases the error is independent of time and EM = δEL. The corresponding expression
using Langford’s method has an error EL ∝ t−1/2 and so, as in the constant temperature
problem, it blows up as t → 0.

Results are shown in Figure 3 for n ∈ [3, 4.5]. The minimum value of the errors occurs
at n = 3.535, 3.798 for the HBIM and RIM, respectively, and then EM = 0.0097, 0.0124. For this
situation matching the approximate and exact solutions at u(0, t) = 0 works well, leading to
n = 3.65, see [28], with errors only slightly above the minimum values, EM = 0.01, 0.014. We
do not show the error for n = 2 since this is significantly higher and its inclusion makes the
other results less clear (for the RIM the error increases by a factor 50 from the minimum). The
other standard choice, n = 3, gives an HBIM error twice that of the minimum value while the
RIM error is quadrupled. The two curves cross at n = 4, which is the CIM prediction, with a
50% increase over the minimum error.

4.2. Newton Cooling

Langford wisely avoided this problem, which does not lead to an analytical expression for the
error. The boundary condition u(0, t) = 1 is now replaced by the cooling condition ux = u − 1.
Again this problem has an exact solution

u(x, t) = erfc
x

2
√
t
− ex+t erfc

x + 2t

2
√
t
. (4.8)
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Setting ξ = x/δ and u(x, t) = δU(ξ, t) leads to the polynomial profile

U =
1

n + δ
(1 − ξ)n. (4.9)

Note, if we assume a constant n/= 0, then for small times δ → 0, and so n 	 δ, which means
that U tends to the constant flux solution, (4.2). For large t, n 
 δ and U behaves like the
fixed boundary temperature solution. The two limits show a different dependence δ(n) and
we must conclude n is also a function of time.

In this case, after integrating (4.3), it follows that the HBIM and RIM formulations are
given by

δδt

∫1

0
Udξ + δ

d
dt

∫1

0
δUdξ = −∂U

∂ξ

∣∣∣∣
ξ=0

2δδt

∫1

0
ξUdξ + δ

d
dt

∫1

0
δξUdξ = U|ξ=0.

(4.10)

We define F(ξ, t) by (4.5) and then the error EM (=
∫1
0 F(ξ, t)

2dξ) is

EM =
∫1

0

[
nδ2δt

(n + δ)2
(1 − ξ)n +

δ3nt

n + δ
(1 − ξ)n ln(1 − ξ) − δ3nt

(n + δ)2
(1 − ξ)n

+
nδ2δt
n + δ

ξ(1 − ξ)n−1 − n(n − 1)δ
n + δ

(1 − ξ)n−2
]2

dξ.

(4.11)

Although this appears rather daunting, all terms can be integrated analytically. For the
CIM it is relatively simple to calculate δ(t) and n(t) from the two first-order ODEs that result
from (4.10) (the initial conditions are δ(0) = 0, n(0) = 4, where the n(0) value comes from the
constant flux solution). In this case since n = n(t), we find EM is time dependent, but there is
no initial singularity (EM(0) = 0).

To avoid the difficulties of analysing a time-dependent n, in [22] the solution was
calculated with n = n(0). This value was chosen since, due to the singular nature of EL, the
highest error occurred at t = 0. In Figure 4 we compare the errors over time for the CIM
solution and the HBIM and RIM solutions that use a constant n = n(0), for t ∈ [0, 0.05].
For small times the HBIM and RIM solutions, with n = 3.535, 3.798, respectively, show the
smallest error, but as the optimal value of n changes, the accuracy is lost. The CIM, which has
a time-dependent n, quickly becomes more accurate than the RIM approximation and around
t ≈ 0.09 it becomes more accurate than the HBIM.

5. Application to Deicing Systems

We now consider an industrial application where an ice layer in a cold environment is heated
from below. This example is motivated by deicing systems, see for example [26, 29]. Initially
we will assume that the ice is in a steady state, determined by the ambient conditions. Energy
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Figure 4: EM against t for the cooling condition at small times.

is then applied to the lower surface; this represents switching on a de-icing device. The im-
portant issue here is the time taken for the ice to reach the melting temperature. After this,
the thermal model is less important, since ice may then be free to slide off. Consequently we
now study the process until the lower surface starts to melt.

The initial temperature of the ice is governed by a steady-state heat equation, uxx = 0,
subject to a fixed temperature at the base and a cooling condition where the ice is exposed to
the ambient air flow. This leads to a temperature profile of the form

u = −1 + αx, (5.1)

and this provides the initial condition for the subsequent state.
When the de-icing system is turned on, we require a heat flux at x = 0 and the problem

is governed by

∂u

∂t
=

∂2u

∂x2
, 0 < x < H,

∂u

∂x

∣∣∣∣
x=0

= −1, u(H, t) = −1 + αH, u(x, 0) = −1 + αx,

(5.2)

where we have taken our length-scale from the heat flux condition, rather than the ice thick-
ness, hence H /= 1. In fact this system is approximate in the sense that there is an assumption
(in line with the heat balance method) that the temperature at x = H is unaffected by the
temperature at x = 0. However, with this assumption we may find an exact solution using
separation of variables

u(x, t) = −1 + (1 + α)H − x −
∞∑
n=0

8H(1 + α)

π2(2n + 1)2
cos

[
(2n + 1)πx

2H

]

× exp

(
− (2n + 1)2π2t

4H2

)
,

(5.3)
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and this can be used to test our HBIM solution. Without the assumption we may still use a
heat balance approach but lose the exact solution.

The HBIM system is the same as above, but the heat equation is defined for z ∈ [0, δ]
and the boundary condition at x = H is replaced by two conditions u(δ, t) = −1 + αδ,
ux(δ, t) = α, where the second matches the gradient to the steady-state solution. We assume a
temperature profile of the form

u(x, t) = a + b

(
1 − x

δ

)
+ c

(
1 − x

δ

)n

, (5.4)

which, after satisfying the boundary conditions, becomes

u = −1 + αδ − αδ

(
1 − x

δ

)
+
1
n
(1 + α)δ

(
1 − x

δ

)n

. (5.5)

The heat balance integral is

d
dt

∫δ

0
udx − u|x=δδt = ux|x=δ −ux|x=0, (5.6)

and this reduces to

δδt =
n(n + 1)

2
, (5.7)

which is independent of α. Applying δ(0) = 0 gives δ =
√
n(n + 1)t.

To carry through the new error analysis, we would again set ξ = x/δ, but to allow a
temperature close to −1 in the vicinity of x = 0 at t = 0, we choose u(x, t) = δU(ξ, t) − 1. This
gives a polynomial approximation independent of δ

U(ξ, t) = α − α(1 − ξ) +
1
n
(1 + α)(1 − ξ)n. (5.8)

The new relation between u and U only differs from that of Section 4.1 by a constant. It
then follows that the transformed heat equation is the same as that of Section 4.1, given by
(4.4) and the function F(ξ, t) is defined by (4.5). The obvious conclusion is that since this
problem has a constant flux boundary condition, the values of n that minimises EM are those
calculated previously, namely, n = 3.535 for the HBIM and n = 3.799 for the RIM.

For the current problem the real quantity of interest is the time until melting begins.
For the heat balance approach this may be found from (5.5) by setting u(0, t1) = 0. Thus,

t1 =
n

(n + 1)(1 + α)2
, δ(t1) =

n

1 + α
. (5.9)

The exact solution requires solving the nonlinear equation

1 = (1 + α)H −
∞∑
n=0

8H(1 + α)

π2(2n + 1)2
exp

(
− (2n + 1)2π2t1

4H2

)
. (5.10)
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Figure 5: Solution profiles of the aircraft icing example before melting begins, at nondimensional times
t = 0 (dotted line) and t = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7. The solid line denotes the exact solution and the
dashed line denotes the HBIM solution (with n = 3.535).

Using parameter values from aircraft icing models [3, 30, 31], we find H = 4.28, α = 0.054
which then gives t1 = 0.7073 (eight terms in the sum is enough to obtain a value which does
not change up to 10−16). The HBIM and RIM predictions of t1, found from (5.9), are t1 = 0.7020
and t1 = 0.7129, respectively, giving errors of 0.76% and 0.79%. The CIM is slightly worse than
both of these methods, with t1 = 0.7204 and an error of 1.89%.

Finally, to demonstrate the accuracy of the heat balance solutions in Figure 5 we
show temperature profiles before melting begins at times t = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7. The
position of δ at each of these times is denoted by a circle. We only show the HBIM solution
with n = 3.535 because the RIM solution is very similar. It is quite clear from this figure that
the approximate and exact solutions are extremely close giving further proof of the accuracy
of this method.

6. One Phase Melting

We now extend the method to deal with one-phase Stefan problems. Well-known applica-
tions for this type of model include melting or production of ice, certain foods or metals. In
Section 6.2 we study a model relevant to ablation of heat shields and laser drilling.

6.1. The Classic Stefan Problem

The basic nondimensional one-phase Stefan problem with a fixed temperature boundary
condition is specified by

∂u

∂t
=

∂2u

∂x2
, 0 < x < s(t), (6.1)

u(0, t) = 1, u(s, t) = 0, β
ds
dt

=
∂u

∂x

∣∣∣∣
x=s

, (6.2)
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and this has exact solution

u(x, t) = 1 −
erf

[
x/

(
2
√
t
)]

erf(α)
, s(t) = 2α

√
t, (6.3)

where α satisfies the transcendental equation
√
πβα erf(α)eα

2
= 1. The standard HBIM

approximating function is

u = a

(
1 − x

s

)
+ (1 − a)

(
1 − x

s

)m

, (6.4)

where we assume a and m are constant [12, 20]. Then the Stefan condition in (6.2) may be
integrated immediately to give s =

√
2at/β. The function f(x, t), defined in (2.7), is given

here as

f(x, t) =
xst
s2

[
a +m(1 − a)

(
1 − x

s

)m−1]
− m(m − 1)(1 − a)

s2

(
1 − x

s

)m−2
. (6.5)

From (6.5) we see that f(0, t) can only be zero if a = 1 (since we require m > 1): this specifies
a linear temperature and in general provides a poor approximation. At x = s we find that
f(s, t) → ∞ if m < 2 (and m/= 0, 1). For m ≥ 2, f(s, t) is finite but never zero. The error
defined by Langford is as usual singular at t = 0, EL ∝ t−3/2.

For the one-phase Stefan problem we propose a new error measure analogous to that
discussed in Section 2.1. The only difference is that the boundary fixing coordinate is ξ =
x/s(t), rather than x/δ(t). This transforms the governing equations (6.1), (6.2) into

∂U

∂t
− st

s
ξ
∂U

∂ξ
=

1
s2

∂2U

∂ξ2
, 0 < ξ < 1, (6.6)

U(0, t) = 1, (6.7)

U(1, t) = 0, (6.8a)

βsst = −∂U
∂ξ

∣∣∣∣
ξ=1

, (6.8b)

and (6.6) is equivalent to (2.15)with δ replaced by s. The approximating profile is

U = a(1 − ξ) + (1 − a)(1 − ξ)m. (6.9)

Since a is constant, it follows that Ut = 0 and so (equivalent to (2.18))

F = −sstξ ∂U
∂ξ

− ∂2U

∂ξ2
. (6.10)
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The error is defined as EM =
∫1
0 F

2dξ or

EM =
∫1

0

[
m(m − 1)(1 − a)(1 − ξ)m−2 − a2

β
ξ − m(1 − a)a

β
ξ(1 − ξ)m−1

]2

dξ. (6.11)

Note, to derive this equation, we have used the fact that (from (6.8b)) sst = a/β and so it is
clear that EM is independent of time (whereas EL is once again singular at t = 0). However, it
is clear that the error is dependent on the value of β and in fact we find the optimal m varies
with β.

The HBIM and RIM formulations are given by

sst

∫1

0
Udξ =

∂U

∂ξ

∣∣∣∣
ξ=1

−∂U
∂ξ

∣∣∣∣
ξ=0

, 2sst

∫1

0
ξUdξ = 1 +

∂U

∂ξ

∣∣∣∣
ξ=1

. (6.12)

The CIM is then determined from combining these equations with the Stefan condition (6.8b),
which reduces to βsst = a. Substituting for U it is easy to show that a and m will satisfy the
same expressions as for the nontransformed system, that is,m solves the nonlinear equation

β(2m − 3)(2 +m)(1 +m)
(
2m2 + 5m − 6

)
+ 12(m − 2) = 0, (6.13)

and a satisfies

a =
6(2 −m)

(m − 1)(2m2 + 5m − 6)
, (6.14)

further details are given in [20].
In Figure 6 we present the variation of EM for the HBIM and RIM formulations for

m ∈ [1.5, 2.1] and two values of β. With β = 1 we see that the most accurate approximation
comes from using the RIM formulation with m = 1.793, which has an error of 0.021. The
most accurate HBIM approximation requires m = 1.786 and has a slightly smaller error of
EM = 0.020. The CIM predicts m = 1.546, with a much higher error of EM = 0.113. Similarly,
when β = 10, we find that m = 1.761, 1.765, 1.506 and EM = 3.8 × 10−4, 4.3 × 10−4, 3.0 × 10−3 for
the HBIM, RIM, and CIM formulations, respectively. Also shown are solutions for the HBIM
and RIMwithm = 2 and the solution found by matching ux at x = 0 to the exact value (found
from (6.3)).

For Stefan problems, with a known exact solution, there is an obvious error measure
other than the accuracy of the temperature profile, namely, the value of the constant α in
the expression s = 2α

√
t. It is interesting to note that when we consider the error in α, for

β = 1, the HBIM is less accurate than the RIM and CIM, whilst in Figure 6 the HBIM appears
most accurate. Clearly satisfying the heat equation globally is no guarantee of accuracy in
predicting the position of the melt front. For smaller values of β (e.g., β < 0.1), the HBIM is
the most accurate according to both criteria.
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Figure 6: EM(m) for HBIM (solid line) and RIM (dashed line), minimum errors shown as asterisks. (a)
β = 1, diamonds show errors for m = 1.5531, m = 1.5514 (obtained by matching ux at x = 0), m = 1.5463
(CIM) and m = 2. (b) β = 10, diamonds show errors for m = 1.5061, m = 1.5060 (matching ux at x = 0),
m = 1.5056 (CIM) and m = 2.

6.2. One Phase, Subcooled Stefan Problem

We now discuss a Stefan problem which involves a one-phase semi-infinite, subcooled ma-
terial. An application occurs when considering whether ice melts or water freezes when hot
water is thrown over cold ice [32, 33]. This can be formulated as a Stefan problem involving
a constant heat source term in the condition at the moving boundary. A similar industrial
process is that of ablation, where a mass is removed from an object by vapourisation or other
similar erosive processes [2, 34].

The dimensionless model is defined as

∂u

∂t
=

∂2u

∂x2
, s(t) < x < ∞, (6.15)

u(x, 0) = −1, s(0) = 0, (6.16)

u(s, t) = 0, (6.17a)

β
ds
dt

= 1 +
∂u

∂x

∣∣∣∣
x=s

, (6.17b)

u −→ −1 as x −→ ∞. (6.18)

If the constraint ṡ(t) ≥ 0 holds then for early times instead of the conditions in (6.17a) and
(6.17b)we have

∂u

∂x
= −1, at x = 0. (6.19)
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The process then involves two stages, and Mitchell [34] has successfully applied the CIM to
this problem.

In this paper we consider the single stage process described by (6.15)–(6.18). The intro-
duction of a subcooled region requires an analysis of the temperature there, and consequently
we introduce the heat penetration depth δ. For the system above, δ is defined by replacing
(6.18)with

u(δ(t), t) = −1, (6.20a)

(δ(t), t) = 0, (6.20b)

δ(0) = 0. (6.20c)

To apply a heat balance integral method, we would use an approximating polynomial of the
form

u = −1 +
(
δ − x

δ − s

)m

, s < x < δ, (6.21)

which then automatically satisfies the boundary conditions (6.20a) and (6.17a). However, to
calculate EM we first need to define the boundary immobilisation coordinate

ξ =
x − s

δ − s
, (6.22)

which transforms the moving domain s(t) < x < δ(t) into a fixed one 0 < ξ < 1. If we denote
u(x, t) = U(ξ, t) then the system (6.15)–(6.18) becomes

∂2U

∂ξ2
= (δ − s)2

∂U

∂t
− (δ − s)[st + (δt − st)ξ]

∂U

∂ξ
, (6.23)

with

U(0, t) = 0, U(1, t) = −1, ∂U

∂ξ
(1, t) = 0, βst = 1 +

1
δ − s

∂U

∂ξ

∣∣∣∣
ξ=0

. (6.24)

The polynomial approximation, (6.21), is now

U = −1 + (1 − ξ)m. (6.25)

Although the profile is independent of s and δ we cannot conclude that Ut = 0 in (6.23). As
discussed in [33], the conditions (6.16) and (6.17a) imply that the gradient ux is infinite as
t → 0+. Thus at small times the gradient term in (6.17b) must be balanced with the left hand
side, and this implies that s, δ ∼ √

t. However, as time increases, the constant term in (6.17b)
becomes important indicating a shift in solution form and so the possibility that m is time
dependent.
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The error measure here is defined as

EM =
∫1

0
F(ξ, t)2dξ, F(ξ, t) =

∂2U

∂ξ2
− (δ − s)2

∂U

∂t
+ (δ − s)[st + (δt − st)ξ]

∂U

∂ξ
. (6.26)

TheHBIM formulation can be found from integrating (6.23) oncewith respect to ξ in the usual
way. This gives

(δ − s)(δt − st)
∫1

0
Udξ + (δ − s)2

d
dt

∫1

0
Udξ + (δ − s)δt = −∂U

∂ξ

∣∣∣∣
ξ=0

. (6.27)

For the RIM, since Uξ(1, t) = 0, we choose to first integrate over [ξ, 1]. Then, on integrating
again between [0, 1] and changing the order of integration, we find

2(δ − s)(δt − st)
∫1

0
ξUdξ + (δ − s)2

d
dt

∫1

0
ξUdξ + (δ − s)st

∫1

0
Udξ + (δ − s)δt = 1. (6.28)

After substituting the profile (6.25) into the integral equations (6.27) and (6.28) we have the
pair of ODEs

δt +mst − δ − s

m + 1
mt =

m(m + 1)
δ − s

,

2δt +mst − (2m + 3)(δ − s)
(m + 1)(m + 2)

mt =
(m + 1)(m + 2)

δ − s
.

(6.29)

These are coupled with the Stefan condition in (64) and this allows us to determine s, δ, and
m. We know that s(0) = δ(0) = 0 and the initial condition for m is found by considering the
limit as t → 0+. Setting s = −2μ√t, δ = 2λ

√
t, with μ, λ > 0, and substituting into (64), (6.29)

leads to three algebraic equations to solve for μ, λ,m(0) = m0. This leads to

βμ =
m0

2
(
λ + μ

) , m0(m0 + 1)
2
(
λ + μ

) = −m0μ + λ,
(m0 + 1)(m0 + 2)

2
(
λ + μ

) = −m0μ + 2λ. (6.30)

We can eliminate μ and λ to give an explicit expression form0 in terms of β:

m0 =
β +

√
9β2 + 8β

2
(
1 + β

) . (6.31)

Note, only the positive root of the quadratic equation ensuresm0 > 0. In fact, to ensurem0 > 1
requires β > 0.5: for β < 0.5, the CIM breaks down (note, most applications of this model
involve values of β > 1 [32–34]).

In Figure 7 we have plotted s and m against t for β = 1. Comparisons are shown
between a numerical solution, using the Keller box scheme [35], the HBIM and RIM (withm
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Figure 7: Plots of s against t (a) and m against t (b) when β = 1.

chosen to minimise EM at t = 0) and the CIM. The CIM is far more accurate here becausem is
allowed to vary with time. In the right plot we compare the constant value of m used in the
HBIM and RIM (which are superimposed on this plot) with the time-dependent m from the
CIM. We see that m varies significantly with time and thus using the time dependent value
is much more accurate. As β increases, the variation inm with time is less pronounced in the
CIM and then the HBIM and RIM solutions improve.

7. Conclusions

In this paper we have shown how the heat balance method, in various guises, may be applied
to thermal and Stefan problems. We illustrated the method on a range of industrially impor-
tant problems. The application of the method to further problems, we believe, is obvious.

The HBIM has been criticised for a lack of accuracy, hence we developed an error
measure, which does not require knowledge of an exact solution and verified the accuracy
of our solutions. We noted that if the exponent of the approximating polynomial is not
specified at the outset, then methods for determining the exponent fall into two categories,
namely, local and global matching methods. By defining the function f = ut − uxx, it was
also shown that the standard polynomial approximation will never satisfy the heat equation
at x = 0 and it is only satisfied at x = δ when n > 2. This indicates that a more general
approximation should be used. However, our goal in this paper was to analyse a number of
physically important problems rather than develop new forms of HBIM, and hence we have
not investigated alternative forms for the temperature.
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