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In this paper, two classes of first-order neutral functional differential equations with periodic
delays are considered. Some results on the existence of positive periodic solutions for the equations
are obtained by using the Krasnoselskii fixed point theorem. Four examples are included to
illustrate our results.

1. Introduction and Preliminaries

In recent years, there have been a few papers written on the existence of periodic solutions,
nontrivial periodic solutions, maximal and minimal periodic solutions and positive periodic
solutions for several classes of functional differential equations with periodic delays, which
arise from a number of mathematical ecological models, economical and control models,
physiological and population models, and other models, see, for example, [1–5] and the
references therein.

In 2004, Wan et al. [5] studied the first-order functional differential equation with
periodic delays

x′(t) = −a(t)x(t) + f(t, x(t − τ(t))), ∀t ∈ R, (1.1)

where a ∈ C(R,R+ \ {0}), τ ∈ C(R,R) are ω-periodic, and f ∈ C(R × R
+,R+) is ω-periodic

with respect to the first variable. By using a fixed point theorem in cones, they proved the
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existence of a periodic solution and a positive periodic solution of (1.1), respectively, under
certain conditions. In 2005, Kang and Zhang [2] used the partial ordering and topological
degree theory to establish the existence of a nontrivial periodic solution of (1.1). In 2010,
Kang et al. [1] gave the existence of maximal and minimal periodic solutions of (1.1) by
utilizing the method of lower and upper solutions. By means of the continuation theorem of
coincidence degree principle, Serra [4] discussed the existence of periodic solutions for the
following neutral functional differential equation

[x(t) + cx(t − τ)]′ = f(t, x(t)), ∀t ∈ R, (1.2)

where |c| ≤ 1 and τ > 0 are constants. In 2008, Luo et al. [3] employed the Krasnoselskii fixed
point theorem to prove the existence of positive periodic solutions for two kinds of neutral
functional differential equations with periodic delays

[x(t) − cx(t − τ(t))]′ = −a(t)x(t) + f(t, x(t − τ(t))), ∀t ∈ R,

[
x(t) − c

∫0

−∞
Q(r)x(t + r)dr

]′
= −a(t)x(t) + b(t)

∫0

−∞
Q(r)f(t, x(t + r))dr, ∀t ∈ R,

(1.3)

where ω ∈ R
+ \ {0} and |c| < 1 are constants, τ ∈ C(R,R), a, b ∈ C(R,R+ \ {0}), f ∈ C(R2,R),

τ, a, and b areω-periodic and f isω-periodic with respect to the first variable,Q ∈ C(R−,R+),
and

∫0
−∞ Q(r)dr = 1.
Motivated by the papers [1–5] and the references therein, we consider two new kinds

of first-order neutral functional differential equations with periodic delays:

[
g(t)(x(t) + c(t)x(t − τ(t)))

]′ = −a(t)x(t) + f(t, x(t − τ(t))), ∀t ∈ R, (1.4)
[
g(t)

(
x(t) + c(t)

∫0

−∞
Q(r)x(t + h(r))dr

)]′

= −a(t)x(t) + b(t)
∫0

−∞
Q(r)f(t, x(t + h(r)))dr, ∀t ∈ R,

(1.5)

where ω ∈ R
+ \ {0} is a constant, τ, a, b, c ∈ C(R,R), f ∈ C(R2,R), h ∈ C(R−,R),

g ∈ C1(R,R+ \ {0}), τ , a, b, c, and g are ω-periodic functions and f is ω-periodic with respect
to the first variable, Q ∈ C(R−,R+), and

∫0
−∞ Q(r)dr = 1. It is evident that (1.4) and (1.5)

include, respectively, (1.1)–(1.3) as special cases. To the best of our knowledge, the existence
of periodic solutions for (1.4) and (1.5) have not been investigated till now. The aim of this
paper is, by applying the Krasnoselskii fixed point theorem and some new techniques, to
establish a set of sufficient conditions which guarantee the existence of positive periodic
solutions of (1.4) and (1.5). Four examples are given to show the efficiency and applications
of our results.
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Throughout this paper, we assume that R = (−∞,+∞), R
+ = [0,+∞), R− = (−∞, 0], N

denotes the set of all positive integers, P = mint∈[0,ω]g(t),

G(t, s) =
exp

(∫s
t

((
g ′(r) + a(r)

)
/g(r)

)
dr

)
g(s)

[
exp

(∫ω
0

((
g ′(r) + a(r)

)
/g(r)

)
dr

) − 1
] , ∀(t, s) ∈ R

2,

X = {x ∈ C(R,R) : x(t) = x(t +ω), ∀t ∈ R}.
(1.6)

It is well known that X is a Banach space with the norm

‖x‖ = sup
t∈[0,ω]

|x(t)|, for each x ∈ X. (1.7)

Let

A(N,M) = {x ∈ X : N ≤ x(t) ≤ M, ∀t ∈ [0, ω]}, for any M > N ≥ 0. (1.8)

It is easy to see that A(N,M) is a bounded closed and convex subset of the Banach space X.

Lemma 1.1 (the Krasnoselskii fixed point theorem). Let Y be a nonempty bounded closed convex
subset of a Banach space Z and f, g mappings from Y into Z such that fx + gy ∈ Y for every pair
x, y ∈ Y . If f is a contraction mapping and g is completely continuous, then the equation fx+gx = x
has at least one solution in Y .

2. Main Results

Nowwe use the Krasnoselskii fixed point theorem to show the existence of positive solutions
for (1.4) and (1.5).

Theorem 2.1. Assume that there exist constantsN,M, G1, G2, c1, and c2 satisfying

0 < N < M, c1 ≥ 0, c2 ≥ 0, c1 + c2 < 1, −c1 ≤ c(t) ≤ c2, ∀t ∈ [0, ω], (2.1)

0 < G1 ≤ g ′(t) + a(t) ≤ G2, ∀t ∈ [0, ω], (2.2)

(N + c2M)G2 ≤ f(t, s) + a(t)c(t)s ≤ (1 − c1)MG1, ∀(t, s) ∈ [0, ω] × [N,M]. (2.3)

Then (1.5) has at least one positive ω-periodic solution in A(N,M).

Proof. It is obvious that (1.4) has a solution x(t) if and only if the integral equation

x(t) =
∫ t+ω

t

G(t, s)
[
f(s, x(s − τ(s))) + a(s)c(s)x(s − τ(s))

]
ds − c(t)x(t − τ(t)), ∀t ∈ R,

(2.4)
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has a solution x(t). Define two mappings T and S : A(N,M) → X by

(Tx)(t) =
∫ t+ω

t

G(t, s)
[
f(s, x(s − τ(s))) + a(s)c(s)x(s − τ(s))

]
ds, ∀t ∈ R,

(Sx)(t) = −c(t)x(t − τ(t)), ∀t ∈ R,

(2.5)

for each x ∈ A(N,M). It follows from (2.5) that for any x ∈ A(N,M) and t ∈ R

(Tx)(t +ω) =
∫ t+2ω

t+ω
G(t +ω, s)

[
f(s, x(s − τ(s))) + a(s)c(s)x(s − τ(s))

]
ds

=
∫ t+ω

t

G(t +ω, u +ω)
[
f(u +ω, x(u +ω − τ(u +ω)))

+a(u +ω)c(u +ω)x(u +ω − τ(u +ω))]du

=
∫ t+ω

t

G(t, u)
[
f(u, x(u − τ(u))) + a(u)c(u)x(u − τ(u))

]
du = (Tx)(t),

(Sx)(t +ω) = −c(t +ω)x(t +ω − τ(t +ω)) = −c(t)x(t − τ(t)) = (Sx)(t),

(2.6)

which mean that

T(A(N,M)) ⊆ X, S(A(N,M)) ⊆ X. (2.7)

Using (2.1)–(2.3) and (2.5), we infer that for all x, y ∈ A(N,M) and t ∈ R

(Tx)(t) +
(
Sy

)
(t) =

∫ t+ω

t

G(t, s)
[
f(s, x(s − τ(s))) + a(s)c(s)x(s − τ(s))

]
ds − c(t)y(t − τ(t))

≤ (1 − c1)MG1

∫ t+ω

t

G(t, s)ds + c1M

≤ (1 − c1)M
∫ t+ω

t

G(t, s)
[
g ′(s) + a(s)

]
ds + c1M

=
(1 − c1)M[

exp
(∫ω

0

((
g ′(r) + a(r)

)
/g(r)

)
dr

) − 1
]

×
∫ t+ω

t

exp
(∫s

t

(
g ′(r) + a(r)

g(r)

)
dr

)(
g ′(s) + a(s)

g(s)

)
ds + c1M

=
(1 − c1)M[

exp
(∫ω

0

((
g ′(r) + a(r)

)
/g(r)

)
dr

) − 1
]

×
[
exp

(∫ t+ω

t

(
g ′(r) + a(r)

g(r)

)
dr

)
− 1

]
+ c1M

= (1 − c1)M + c1M = M,

(2.8)
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(Tx)(t) +
(
Sy

)
(t) ≥ (N + c2M)G2

∫ t+ω

t

G(t, s)ds − c2M ≥ N + c2M − c2M = N, (2.9)

∣∣(Sx)(t) − (
Sy

)
(t)

∣∣ = |c(t)|∣∣x(t − τ(t)) − y(t − τ(t))
∣∣ ≤ (c1 + c2)

∥∥x − y
∥∥, (2.10)

which imply that

Tx + Sy ∈ A(N,M),
∥∥Sx − Sy

∥∥ ≤ (c1 + c2)
∥∥x − y

∥∥, ∀x, y ∈ A(N,M). (2.11)

Nowwe show that T is a completely continuous mapping inA(N,M). First, we claim
that T is continuous inA(N,M). Let {yk}k∈N ⊂ A(N,M) and y ∈ A(N,M)with limk→∞yk =
y. Note that f ∈ C(R2,R). It follows from the uniform continuity of f in [0, ω] × [N,M] that
for given ε > 0, there exists δ > 0 satisfying

∣∣f(t1, s1) − f(t2, s2)
∣∣ < G1ε

2
,

∀(t1, t2, s1, s2) ∈ [0, ω]2 × [N,M]2,

with max{|t1 − t2|, |s1 − s2|} < δ.
(2.12)

Since limk→∞yk = y, it follows that there exists N1 ∈ N satisfying

∥∥yk − y
∥∥ <

G1 min{ε, δ}
2(1 +G2)(1 + ‖a‖) , ∀k ≥ N1. (2.13)

In view of (2.1), (2.2), (2.5), (2.12), and (2.13), we get that

∥∥Tyk − Ty
∥∥ = sup

t∈[0, ω]

∣∣∣∣∣
∫ t+ω

t

G(t, s)
[
f
(
s, yk(s − τ(s))

)
+ a(s)c(s)yk(s − τ(s))

]
ds

−
∫ t+ω

t

G(t, s)
[
f
(
s, y(s − τ(s))

)
+ a(s)c(s)y(s − τ(s))

]
ds

∣∣∣∣∣
≤ sup

t∈[0, ω]

∫ t+ω

t

G(t, s)
[∣∣f(s, yk(s − τ(s))

) − f
(
s, y(s − τ(s))

)∣∣
+|a(s)c(s)|∣∣yk(s − τ(s)) − y(s − τ(s))

∣∣]ds
< G1

[
ε

2
+
‖a‖(c1 + c2)min{ε, δ}
2(1 +G2)(1 + ‖a‖)

]
sup
t∈[0,ω]

∫ t+ω

t

G(t, s)ds < ε, ∀k ≥ N1,

(2.14)

which yields that limk→∞Tyk = Ty, that is, T is continuous in A(N,M).
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Second, we claim that T(A(N,M)) is relatively compact. It is sufficient to show that
T(A(N,M)) is uniformly bounded and equicontinuous in [0, ω]. Notice that (2.1)–(2.3) and
(2.5) ensure that

‖Tx‖ = sup
t∈[0, ω]

∣∣∣∣∣
∫ t+ω

t

G(t, s)
[
f(s, x(s − τ(s))) + a(s)c(s)x(s − τ(s))

]
ds

∣∣∣∣∣
≤ (1 − c1)MG1 sup

t∈[0,ω]

∫ t+ω

t

G(t, s)ds ≤ (1 − c1)M, ∀x ∈ A(N,M),

∣∣(Tx)′(t)∣∣ = ∣∣∣∣−g ′(t) + a(t)
g(t)

(Tx)(t) +G(t, t +ω)

× [
f(t +ω, x(t +ω − τ(t +ω))) + a(t +ω)c(t +ω)x(t +ω − τ(t +ω))

]
−G(t, t)

[
f(t, x(t − τ(t))) + a(t)c(t)x(t − τ(t))

]∣∣∣∣
≤ g ′(t) + a(t)

g(t)
|(Tx)(t)| + |G(t, t +ω) −G(t, t)|∣∣f(t, x(t − τ(t))) + a(t)c(t)x(t − τ(t))

∣∣

≤ G2

P
(1 − c1)M +

exp
(∫ω

0

((
g ′(r) + a(r)

)
/g(r)

)
dr

) − 1

g(t)
[
exp

(∫ω
0

((
g ′(r) + a(r)

)
/g(r)

)
dr

) − 1
](1 − c1)MG1

≤ (1 − c1)M(G1 +G2)
P

, ∀(x, t) ∈ A(N,M) × [0, ω],

(2.15)

which give that T(A(N,M)) is uniformly bounded and equicontinuou sin [0, ω], which
together with (2.7), (2.11), and Lemma 1.1 yields that there is x0 ∈ A(N,M)with Tx0 +Sx0 =
x0. It follows from (2.4) and (2.5) that x0 is a positive ω-periodic solution of (1.4). This
completes the proof.

Theorem 2.2. Assume that there exist constants N, M, G1, G2, c1, c2, and t0 ∈ [0, ω] satisfying
(2.2), (2.3):

0 ≤ N < M, c1 ≥ 0, c2 ≥ 0, c1 + c2 < 1, −c1 ≤ c(t) ≤ c2, ∀t ∈ [0, ω], (2.16)

and either

f(t0, s) + a(t0)c(t0)s > (N + c2M)G2, ∀s ∈ [N,M], (2.17)

or

g ′(t0) + a(t0) < G2. (2.18)

Then (1.4) has at least one positive ω-periodic solution x ∈ A(N,M) with N < x(t) ≤ M for each
t ∈ [0, ω].
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Proof. As in the proof of Theorem 2.1, we conclude similarly that (1.4) has an ω-periodic
solution x ∈ A(N,M). Now we assert that x(t) > N for all t ∈ [0, ω]. Otherwise, there exists
t∗ ∈ [0, ω] satisfying x(t∗) = N. In view of (2.4), (2.5), and (2.16), we have

N =
∫ t∗+ω

t∗
G(t∗, s)

[
f(s, x(s − τ(s))) + a(s)c(s)x(s − τ(s))

]
ds − c(t∗)x(t∗ − τ(t∗))

≥
∫ t∗+ω

t∗
G(t∗, s)

[
f(s, x(s − τ(s))) + a(s)c(s)x(s − τ(s))

]
ds − c2M,

(2.19)

which implies that

0 ≥
∫ t∗+ω

t∗
G(t∗, s)

[
f(s, x(s − τ(s))) + a(s)c(s)x(s − τ(s))

]
ds − (N + c2M)

=
∫ t∗+ω

t∗
G(t∗, s)

[
f(s, x(s − τ(s))) + a(s)c(s)x(s − τ(s)) − (N + c2M)

(
g ′(s) + a(s)

)]
ds.

(2.20)

Assume that (2.17) holds. By means of (2.2), (2.3), (2.17), and the continuity of G, f , a,
c, g, g ′, τ , and x, we get that

∫ t∗+ω

t∗
G(t∗, s)

[
f(s, x(s − τ(s))) + a(s)c(s)x(s − τ(s)) − (N + c2M)

(
g ′(s) + a(s)

)]
ds

≥
∫ t∗+ω

t∗
G(t∗, s)

[
f(s, x(s − τ(s))) + a(s)c(s)x(s − τ(s)) − (N + c2M)G2

]
ds > 0,

(2.21)

which contradicts (2.20).
Assume that (2.18) holds. In light of (2.2), (2.3), (2.18), and the continuity of G, f , a, c,

g, g ′,τ , and x, we infer that

∫ t∗+ω

t∗
G(t∗, s)

[
f(s, x(s − τ(s))) + a(s)c(s)x(s − τ(s)) − (N + c2M)

(
g ′(s) + a(s)

)]
ds

>

∫ t∗+ω

t∗
G(t∗, s)

[
f(s, x(s − τ(s))) + a(s)c(s)x(s − τ(s)) − (N + c2M)G2

]
ds ≥ 0,

(2.22)

which contradicts (2.20). This completes the proof.

Theorem 2.3. Assume that there exist constants N, M, G1, G2, c1, and c2 satisfying (2.1), (2.2),
and

(N + c2M)G2 ≤ b(t)f(t, s) + a(t)c(t)s ≤ (1 − c1)MG1, ∀(t, s) ∈ [0, ω] × [N,M]. (2.23)

Then (1.5) has at least one positive ω-periodic solution in A(N,M).
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Proof. It is obvious that (1.5) has a solution x(t) if and only if the integral equation

x(t) =
∫ t+ω

t

G(t, s)

[
b(s)

∫0

−∞
Q(r)f(s, x(s + h(r)))dr + a(s)c(s)

∫0

−∞
Q(r)x(s + h(r))dr

]
ds

− c(t)
∫0

−∞
Q(r)x(t + h(r))dr, ∀t ∈ R,

(2.24)

has a solution x(t). Define two mappings T and S : A(N,M) → X by

(Tx)(t) =
∫ t+ω

t

G(t, s)

[
b(s)

∫0

−∞
Q(r)f(s, x(s + h(r)))dr + a(s)c(s)

∫0

−∞
Q(r)x(s + h(r))dr

]
ds,

(Sx)(t) = −c(t)
∫0

−∞
Q(r)x(t + h(r))dr,

(2.25)

for each (x, t) ∈ A(N,M) × R. The rest of the proof is similar to that of Theorem 2.1, and is
omitted. This completes the proof.

Theorem 2.4. Assume that there exist constants N, M, G1, G2, c1, c2, and t0 ∈ [0, ω] satisfying
(2.2), (2.16), (2.23), and either (2.18) or

b(t0)f(t0, s) + a(t0)c(t0)s > (N + c2M)G2, ∀s ∈ [N,M]. (2.26)

Then (1.5) has at least one positive ω-periodic solution x ∈ A(N,M) with N < x(t) ≤ M for each
t ∈ [0, ω].

The proof of Theorem 2.4 is similar to that of Theorems 2.2 and 2.3 and is omitted.

Remark 2.5. Even if g(t) ≡ 1, c(t) ≡ c and h(r) = r for all r ∈ R−, the conditions of
Theorems 2.2 and 2.4 in this paper are different from these conditions of Theorems 2.1–2.4
in [3], respectively.

3. Examples

Now we construct four examples which illustrate the results obtained in Section 2. Note that
none of the known results can be applied to the examples.

Example 3.1. Consider the first-order neutral functional differential equation with periodic
delays

[(
1 +

cos t
100

)(
x(t) +

1 + 2 sin t
100

x(t − 3 sin t − 2 cos t)
)]′

= −
(
1 +

sin t
50

)
x(t) + 20 + cos2t + sin2

(
x5(t − 3 sin t − 2 cos t) cos t

)
, ∀t ∈ R.

(3.1)
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Let ω = 2π , M = 100, N = 1, c1 = 1/100, c2 = 3/100, G1 = 99/100, G2 = 101/100, and

g(t) = 1 +
cos t
100

, c(t) =
1 + 2 sin t

100
, a(t) = 1 +

sin t
50

, τ(t) = 3 sin t + 2 cos t,

f(t, s) = 20 + cos2t + sin2
(
s5 cos t

)
, ∀(t, s) ∈ R

2.

(3.2)

It is easy to see that (2.1) and (2.2) hold. Notice that

(N + c2M)G2 = 4.04 < 20 +
(
1 +

1
50

)
1 − 2
100

· 100 ≤ f(t, s) + a(t)c(t)s

≤ 22 +
(
1 +

1
50

)
1 + 2
100

· 100 < 98.01 = (1 − c1)MG1, ∀(t, s) ∈ [0, ω] × [N,M],

(3.3)

that is, (2.3) is satisfied. Thus Theorem 2.1 yields that (3.1) has a positive ω-periodic solution
in A(N,M).

Example 3.2. Consider the first-order neutral functional differential equation with periodic
delays

[
3 + 2 cos t + sin t

100

(
x(t) +

2 + 2 sin t + cos t
20

x
(
t − sin3t

))]′

= −
(
100 + 2 sin t + 3 cos t

100

)
x(t) + 60 +

x
(
t − sin3t

)
sin

√∣∣∣t + x8
(
t − sin3t

)∣∣∣ + 1

50 + 10 cos
(
t − x5

(
t − sin3t

)) , ∀t ∈ R.

(3.4)

Let ω = 2π , M = 100, N = 0, c1 = 1/20, c2 = 1/4, G1 = 24/25, G2 = 26/25, t0 = π/2, and

g(t) =
3 + 2 cos t + sin t

100
, c(t) =

2 + 2 sin t + cos t
20

, τ(t) = sin3t,

a(t) =
100 + 2 sin t + 3 cos t

100
, f(t, s) = 60 +

s sin
√
|t + s8| + 1

50 + 10 cos(t − s5)
, ∀(t, s) ∈ R

2.

(3.5)

It is clear that (2.2), (2.16), and (2.18) hold. It follows that

(N + c2M)G2 = 26 < 60 +
100(−1)
50 − 10

+
105
100

· −1
20

· 100 ≤ f(t, s) + a(t)c(t)s

≤ 60 +
100

50 − 10
+ 26.25 < 91.2 = (1 − c1)MG1, ∀(t, s) ∈ [0, ω] × [N,M],

(3.6)



10 Abstract and Applied Analysis

that is, (2.3) holds. Obviously (2.17) follows from the above inequalities. Hence, Theorem 2.2
ensures that (3.4) has a positive ω-periodic solution x ∈ A(N,M) with N < x(t) ≤ M for all
t ∈ [0, ω].

Example 3.3. Consider the first-order neutral functional differential equation with periodic
delays

[
5 + cos t + 3 sin t

50 + sin t

(
x(t) +

2 + 3 sin t

6(50 − sin t)2

∫0

−∞
exp(r)x(t − r cos r)dr

)]′

= −151 + 50 sin t

(50 + sin t)2
x(t) +

1
3 + 2 sin t

×
∫0

−∞
exp(r)

[
4.53+3 sin t+

3 + 2 sin t
10000 + cos t

[
x(t − r cos r)cos2t + cos

(
t + x100(t − r cos r)

)]]
dr,

∀t ∈ R.

(3.7)

Let ω = 2π ,M = 1440.6,N = 1, c1 = 1/14406, c2 = 5/14406, G1 = 5/2601, G2 = 295/2401, and

g(t) =
5 + cos t + 3 sin t

50 + sin t
, c(t) =

2 + 3 sin t

6(50 − sin t)2
, a(t) =

151 + 50 sin t

(50 + sin t)2
, b(t) =

1
3 + 2 sin t

,

f(t, s) = 4.53 + 3 sin t +
(3 + 2 sin t)

[
s cos2t + cos

(
t + s100

)]
10000 + cos t

, ∀(t, s) ∈ R
2,

Q(r) = exp(r), h(r) = −r cos r, ∀r ∈ R−.
(3.8)

Clearly, (2.1) and (2.2) hold. Note that

(N + c2M)G2 =
885
4802

<
4.53 + 3
3 + 2

+
−1

10000 − 1
+
302 − 553
37470006

· 1440.6 ≤ b(t)f(t, s) + a(t)c(t)s

≤ 4.53 − 3
3 − 2

+
1441.6

10000 − 1
+

1005
37470006

· 1440.6 <
14404
5282

= (1 − c1)MG1, ∀(t, s) ∈ [0, ω] × [N,M],
(3.9)

that is, (2.23) is fulfilled. Thus Theorem 2.3 yields that (3.7) has a positiveω-periodic solution
in A(N,M).
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Example 3.4. Consider the first-order neutral functional differential equation with periodic
delays

[
ln(100 + 2 sin t)

(
x(t) +

2 + 3 cos t
100 − 2 sin t

∫0

−∞
exp(r)x(t + r)dr

)]′

= −
(

3
100 + 2 sin t

)
x(t)

+
(
1 +

cos t + sin t
100

)∫0

−∞
exp(r)

[
4 +

2x(t + r) sin t + cos2t

5000 + 5sin2[t − ln(1 + x2(t + r))]

]
dr, ∀t ∈ R.

(3.10)

Let ω = 2π , M = 1000, N = 1, c1 = 1/98, c2 = 5/98, G1 = 1/102, G2 = 5/98, t0 = π/2, and

g(t) = ln(100 + 2 sin t), c(t) =
2 + 3 cos t
100 − 2 sin t

, a(t) =
3

100 + 2 sin t
, b(t) = 1 +

cos t + sin t
100

,

f(t, s) = 4+
2s sin t + cos2t

5000 + 5sin2[t − ln(1 + s2)]
, ∀(t, s) ∈ R

2, Q(r) = exp(r), h(r) = r, ∀r ∈ R−.

(3.11)

Obviously, (2.2), (2.16), and (2.18) hold. A simple calculation yields that

(N + c2M)G2 =
12745
4802

<
336103
104125

=
(
1 +

−1 − 1
100

)(
4 +

−2000 + 0
5000

)
+

6 − 9
10000 − 4

· 1000

≤ b(t)f(t, s) + a(t)c(t)s ≤
(
1 +

1 + 1
100

)(
4 +

2000 + 1
5000

)
+

6 + 9
10000 − 4

· 1000

=
623563
104125

<
24250
2499

= (1 − c1)MG1, ∀(t, s) ∈ [0, ω] × [N,M];

(3.12)

that is, (2.23) holds. Clearly (2.26) follows from the above inequalities. Thus Theorem 2.4
ensures that (3.10) has a positive ω-periodic solution x ∈ A(N,M)withN < x(t) ≤ M for all
t ∈ [0, ω].
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