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Received 6 December 2011; Accepted 13 January 2012

Academic Editor: Paul Eloe
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We consider the fourth-order differential equation with middle-term and deviating argument
x(4)(t) + q(t)x(2)(t) + r(t)f(x(ϕ(t))) = 0, in case when the corresponding second-order equation
h

′′
+ q(t)h = 0 is oscillatory. Necessary and sufficient conditions for the existence of bounded and

unbounded asymptotically linear solutions are given. The roles of the deviating argument and the
nonlinearity are explained, too.

1. Introduction

The aim of this paper is to investigate the fourth-order nonlinear differential equation with
middle-term and deviating argument

x(4)(t) + q(t)x(2)(t) + r(t)f
(
x
(
ϕ(t)
))

= 0. (1.1)

The following assumptions will be made.

(i) q is a continuously differentiable bounded away from zero function, that is, q(t) ≥
q0 > 0 for large t such that

∫∞

0

∣∣q′(t)
∣∣dt < ∞. (1.2)

(ii) r, ϕ are continuous functions for t ≥ 0, r is not identically zero for large t, ϕ(t) ≥
0, and ϕ(0) = 0, limt→∞ϕ(t) = ∞.
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(iii) f is a continuous function such that f(u)u > 0 for u/= 0.

Observe that (i) implies that there exists a positive constant Q such that q(t) ≤ Q and
the linear second-order equation

h′′(t) + q(t)h(t) = 0 (1.3)

is oscillatory. Moreover, solutions of (1.3) are bounded together with their derivatives, see for
example, [1, Theorem 2].

By a solution of (1.1) we mean a function x defined on [Tx,∞), Tx ≥ 0, which is
differentiable up to the fourth order and satisfies (1.1) on [Tx,∞) and sup{|x(t)| : t ≥ T} > 0
for T ≥ Tx.

A solution x of (1.1) is said to be asymptotically linear (AL-solution) if either

lim
t→∞

x(t) = cx /= 0, lim
t→∞

x′(t) = 0, (1.4)

or

lim
t→∞

|x(t)| = ∞, lim
t→∞

x′(t) = dx /= 0, (1.5)

for some constants cx, dx.
Fourth-order nonlinear differential equations naturally appear in models concerning

physical, biological, and chemical phenomena, such as, for instance, problems of elasticity,
deformation of structures, or soil settlement, see, for example, [2, 3].

When (1.3) is nonoscillatory and h is its eventually positive solution, it is known that
(1.1) can be written as the two-term equation

(

h2(t)
(
x′′(t)
h(t)

)′)′

+ h(t)r(t)f(x(t)) = 0. (1.6)

In this case, the question of oscillation and asymptotics of such class of equations has
been investigated with sufficient thoroughness, see, for example, the papers [3–10] or the
monographs [11, 12] and references therein.

Nevertheless, as far we known, there are only few results concerning (1.1) when (1.3)
is oscillatory. For instance, the equation without deviating argument

x(n)(t) + q(t)x(n−2)(t) + r(t)f(x(t)) = 0 (1.7)

has been investigated by Kiguradze in [13] in case q(t) ≡ 1 and by the authors in [14, 15]
when q satisfies (i). In particular, in [14] the oscillation of (1.1) in the case n = 3 is studied.
In [15], the existence of positive bounded and unbounded solutions as well as of oscillatory
solutions for (1.7) has been considered and the case n = 4 has been analyzed in detail. Other
results can be found in [16] and references therein, in which the existence and uniqueness of
almost periodic solutions for equations of type (1.1) with almost periodic coefficients q, r are
studied.
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Motivated by [14, 15], here we study the existence of AL-solutions for (1.1). The
approach is completely different from the one used in [15], in which an iteration process,
jointly with a comparison with the linear equation y(4) + q(t)y(2) = 0, is employed. Our
tools are based on a topological method, certain integral inequalities, and some auxiliary
functions. In particular, for proving the continuity in the Fréchet space C[t0,∞) of the fixed
point operators here considered, we use a similar argument to that in the Vitali convergence
theorem.

Our results extend to the case with deviating argument analogues ones stated in [15]
for (1.7) when n = 4. We obtain sharper conditions for the existence of unbounded AL-
solutions of (1.1), and, in addition, we show that under additional assumptions on q, r, these
conditions become also necessary for the existence of AL-solutions, in both the bounded and
unbounded cases. In the final part, we consider the particular case

f(u) = |u|λ sgn u (λ > 0) (1.8)

and we study the possible coexistence of bounded and unbounded AL-solutions. The role
of deviating argument and the one of the growth of the nonlinearity are also discussed and
illustrated by some examples.

2. Unbounded Solutions

Here we study the existence of unbounded AL-solutions of (1.1). Our first main result is the
following.

Theorem 2.1. For any c, 0 < c < ∞, there exists an unbounded solution x of (1.1) such that

lim
t→∞

x′(t) = c, lim
t→∞

x(i)(t) = 0, i = 2, 3, (2.1)

provided

∫∞

0
|r(t)|F

(
ϕ(t)
)
dt < ∞, (2.2)

where for u > 0

F(u) = max
{
f(v) : |v − u| ≤ 1

2
u

}
. (2.3)

Proof. Without loss of generality, we prove the existence of solutions of (1.1) satisfying (2.1)
for c = 1.

Let u and v be two linearly independent solutions of (1.3) with Wronskian d = 1.
Denote

w(s, t) = u(s)v(t) − u(t)v(s), z(s, t) =
∂

∂t
w(s, t). (2.4)
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As claimed by the assumptions on q, all solutions of (1.3) and their derivatives are bounded.
Thus, put

M = sup{|w(s, t)| + |z(s, t)| : s ≥ 0, t ≥ 0}, L =
2(2M + 1)

q0
. (2.5)

Let t ≥ t0 be such that ϕ(t) ≥ t0 for t ≥ t. Define

ϕ(t) =

⎧
⎨

⎩

ϕ(t) if t ≥ t,

ϕ
(
t
)

if t0 ≤ t ≤ t,
(2.6)

and choose t0 ≥ 0 large so that

∫∞

t0

|r(s)|F
(
ϕ(s)

)
ds ≤ 1

2L
,

1
q0

∫∞

t0

∣∣q′(t)
∣∣dt ≤ 1

2
. (2.7)

Denote by C[t0,∞) the Fréchet space of all continuous functions on [t0,∞), endowed
with the topology of uniform convergence on compact subintervals of [t0,∞), and consider
the set Ω ⊂ C[t0,∞) given by

Ω =
{
x ∈ C[t0,∞) :

t

2
≤ x(t) ≤ 3t

2

}
. (2.8)

Let T > t0 and define on [t0, T] the function

g(t) = γ ′′(t) + q(t)γ(t), (2.9)

where

γ(t) = −
∫T

t

∫∞

τ

r(s)f
(
x
(
ϕ(s)

))
w(s, τ)dsdτ (2.10)

and x ∈ Ω. Then,

γ ′(t) =
∫∞

t

r(s)f
(
x
(
ϕ(s)

))
w(s, t)ds, (2.11)

γ ′′(t) =
∫∞

t

r(s)f
(
x
(
ϕ(s)

))
z(s, t)ds,

γ ′′′(t) = −r(t)f
(
x
(
ϕ(t)
))

− q(t)γ ′(t).
(2.12)

Moreover, g(T) = γ ′′(T), and it holds for t ∈ [t0, T] that

g ′(t) = γ ′′′(t) + q(t)γ ′(t) + q′(t)γ(t) = −r(t)f
(
x
(
ϕ(t)
))

+ q′(t)γ(t). (2.13)
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Integrating, we obtain

g(t) = g(T) −
∫T

t

g ′(s)ds = γ ′′(T) +
∫T

t

r(s)f
(
x
(
ϕ(s)

))
ds −

∫T

t

q′(s)γ(s)ds. (2.14)

From here and (1.3), we get

γ(t) =
1

q(t)

(

γ ′′(T) − γ ′′(t) +
∫T

t

r(s)f
(
x
(
ϕ(s)

))
ds −

∫T

t

q′(s)γ(s)ds

)

. (2.15)

Thus,

∣
∣γ(t)

∣
∣ ≤ 1 + 2M

q0

∫∞

t

|r(s)|F
(
ϕ(s)

)
ds +

1
q0

max
t≤s≤T

∣
∣γ(s)

∣
∣
∫∞

t0

∣
∣q′(s)

∣
∣ds, (2.16)

and so

(

1 − 1
q0

∫∞

t0

∣∣q′(s)
∣∣ds

)

max
t≤s≤T

∣∣γ(s)
∣∣ ≤ 1 + 2M

q0

∫∞

t

|r(s)|F
(
ϕ(s)

)
ds, (2.17)

or, in view of (2.7),

∣∣γ(t)
∣∣ ≤ L

∫∞

t

|r(s)|F
(
ϕ(s)

)
ds. (2.18)

Thus, from (2.10), as T → ∞, we get

∣∣∣∣

∫∞

t

∫∞

τ

r(s)f
(
x
(
ϕ(s)

))
w(s, τ)dsdτ

∣∣∣∣ ≤ L

∫∞

t

|r(s)|F
(
ϕ(s)

)
ds. (2.19)

Hence, the operator T : Ω → Ω given by

T(x)(t) = t −
∫ t

t0

∫∞

σ

∫∞

τ

r(s)f
(
x
(
ϕ(s)

))
w(s, τ)dsdτ dσ (2.20)

is well defined for any x ∈ Ω. Moreover, in view of (2.19), we have

∣∣T′(x)(t) − 1
∣∣ ≤ L

∫∞

t

|r(s)|F
(
ϕ(s)

)
ds. (2.21)

From here, in virtue of (2.7) we get

|T(x)(t) − t| ≤ Lt

∫∞

t0

|r(s)|F
(
ϕ(s)

)
ds ≤ 1

2
t. (2.22)
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Hence, T(Ω) ⊂ Ω. From (2.5) and (2.11), we have

∣
∣T′′(x)(t)

∣
∣ =
∣
∣γ ′(t)

∣
∣ ≤ M

∫∞

t

|r(s)|F
(
ϕ(s)

)
ds, (2.23)

and so limt→∞T′′(x)(t) = 0. Similarly,

∣
∣T′′′(x)(t)

∣
∣ =
∣
∣γ ′′(t)

∣
∣ ≤ M

∫∞

t

|r(s)|F
(
ϕ(s)

)
ds, (2.24)

and thus, limt→∞T′′′(x)(t) = 0, too. In addition,

T(4)(x)(t) = γ ′′′(t) = −q(t)T′′(x)(t) − r(t)f
(
x
(
ϕ(t)
))
. (2.25)

Hence, any fixed point of T is a solution of (1.1) for large t.
Let us show that T(Ω) is relatively compact, that is, T(Ω) consists of functions

equibounded and equicontinuous on every compact interval of [t0,∞). Because T(Ω) ⊂ Ω,
the equiboundedness follows. Moreover, in view of (2.7), T′(u)(t) is bounded for any u ∈ Ω,
which yields the equicontinuity of the elements in T(Ω).

Now we prove the continuity of T in Ω. Let {xn}, n ∈ N, be a sequence in Ω, which
uniformly converges to x ∈ Ω on every compact interval of [t0,∞). Fixing T > t0, in virtue of
(2.23), the dominated convergence Lebesgue theorem gives

lim
n→∞

∫T

σ

∫∞

τ

r(s)
(
f
(
xn

(
ϕ(s)

)))
w(s, τ)dsdτ =

∫T

σ

∫∞

τ

r(s)
(
f
(
x
(
ϕ(s)

)))
w(s, τ)dsdτ. (2.26)

Moreover,

∣∣∣∣

∫∞

σ

∫∞

τ

r(s)
(
f
(
xn

(
ϕ(s)

))
− f
(
x
(
ϕ(s)

)))
w(s, τ)dsdτ

∣∣∣∣

≤
∣∣∣∣∣

∫T

σ

∫∞

τ

r(s)
(
f
(
xn

(
ϕ(s)

))
− f
(
x
(
ϕ(s)

)))
w(s, τ)dsdτ

∣∣∣∣∣

+
∫∞

T

∫∞

τ

|r(s)|
(
f
(
xn

(
ϕ(s)

))
+ f
(
x
(
ϕ(s)

)))
|w(s, τ)|dsdτ.

(2.27)

In view of (2.19), we have

∫∞

T

∫∞

τ

|r(s)|
(
f
(
xn

(
ϕ(s)

))
+ f
(
x
(
ϕ(s)

)))
|w(s, τ)|dsdτ ≤ 2M

∫∞

T

|r(s)|F
(
ϕ(s)

)
ds. (2.28)

Thus, choosing T sufficiently large, we get from (2.27)

lim
n→∞

∫∞

σ

∫∞

τ

r(s)f
(
xn

(
ϕ(s)

))
w(s, τ)dsdτ =

∫∞

σ

∫∞

τ

r(s)f
(
x
(
ϕ(s)

))
w(s, τ)dsdτ, (2.29)
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and so the continuity of T inΩ follows. By the Tychonoff fixed point theorem, the operator T
has a fixed point x, which is an unbounded solution of (1.1) satisfying (2.1).

Remark 2.2. With minor modifications, Theorem 2.1 gives also the existence of eventually
negative unbounded AL-solutions. The details are omitted.

Remark 2.3. When ϕ(t) ≡ t, Theorem 2.1 is related with Theorem 1 in [15], from which the
existence of unbounded AL-solutions of (1.1) can be obtained under stronger assumptions.
A comparison between Theorem 1 in [15] and Theorem 2.1 is given in Section 4.

Our next result gives a necessary condition for the existence of unbounded solutions
x of (1.1) satisfying for large t and some α and β

0 < α ≤ x′(t) ≤ β. (2.30)

Theorem 2.4. Assume either r(t) ≥ 0 or r(t) ≤ 0.
Equation (1.1) does not have eventually positive solutions x satisfying (2.30) for large t and

some α and β provided

∫∞

0
|r(t)|F

(
ϕ(t)
)
dt = ∞, (2.31)

where for u > 0

F(u) = min
{
f(v) :

α

2
u ≤ v ≤ 2βu

}
. (2.32)

Proof. Assume r(t) ≥ 0, and let x be an eventually positive solution of (1.1) satisfying (2.30).
Then, there exists τ such that

α

2
t ≤ x(t) ≤ 2tβ for t ≥ τ. (2.33)

Consequently, in view of (2.31), we have

lim
t→∞

∫ t

τ

r(s)f
(
x
(
ϕ(s)

))
ds = ∞. (2.34)

Thus, integrating (1.1), we get

lim
t→∞

(

x′′′(t) +
∫ t

τ

q(s)x′′(s)ds

)

= −∞. (2.35)
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Furthermore,

∣
∣
∣
∣
∣

∫ t

τ

q(s)x′′(s)ds

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
q(t)x′(t) − q(τ)x′(τ) −

∫ t

τ

q′(s)x′(s)ds

∣
∣
∣
∣
∣

≤ 2βQ + β

∫∞

τ

∣
∣q′(s)

∣
∣ds < ∞,

(2.36)

where Q = sups≥0q(s). Hence limt→∞x
′′′(t) = −∞, which gives a contradiction with the

boundedness of x′. Finally, if r(t) ≤ 0, the argument is similar and the details are left to
the reader.

3. Bounded Solutions

In this section we study the existence of bounded AL-solutions of (1.1). The following holds.

Theorem 3.1. If

∫∞

0
|r(t)|t dt < ∞, (3.1)

then, for any c ∈ R \ {0}, there exists a solution x of (1.1) satisfying

lim
t→∞

x(t) = c, lim
t→∞

x(i)(t) = 0, i = 1, 2. (3.2)

Proof. Without loss of generality, we prove the existence of solutions of (1.1) satisfying (3.2)
for c = 1.

We proceed by a similar way to that in the proof of Theorem 2.1, and we sketch the
proof.

Let M be the constant given in (2.5), and let

K = max
{
f(u) :

1
2
≤ u ≤ 3

2

}
, L1 =

2K(2M + 1)
q0

. (3.3)

Choose t0 ≥ 0 large so that

∫∞

t0

t|r(t)|dt ≤ 1
2L1

,
1
q0

∫∞

t0

∣∣q′(s)
∣∣ds ≤ 1

2
, (3.4)

and define ϕ as in (2.6). Denote by C[t0,∞) the Fréchet space of all continuous functions
on [t0,∞), endowed with the topology of uniform convergence on compact subintervals of
[t0,∞), and consider the set Ω ⊂ C[t0,∞) given by

Ω =
{
x ∈ C[t0,∞) :

1
2
≤ x(t) ≤ 3

2

}
. (3.5)
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Let T > t0, and, for any x ∈ Ω, consider again the function γ given in (2.10). Reasoning as in
the proof of Theorem 2.1, with minor changes, we obtain

∣
∣
∣
∣

∫∞

t

∫∞

τ

r(s)f
(
x
(
ϕ(s)

))
w(s, τ)dsdτ

∣
∣
∣
∣ ≤ L1

∫∞

t

|r(s)|ds. (3.6)

Hence, in virtue of (3.1), the operator H : Ω → Ω given by

H(x)(t) = 1 +
∫∞

t

∫∞

σ

∫∞

τ

r(s)f
(
x
(
ϕ(s)

))
w(s, τ)dsdτ dσ (3.7)

is well defined and limt→∞H(x)(t) = 1. In view of (3.6), we get

∣∣H′(x)(t)
∣∣ ≤ L1

∫∞

t

|r(s)|ds. (3.8)

A similar estimation holds for |H′′(x)|. Thus, limt→∞H(i)(x)(t) = 0, i = 1, 2. In view of (3.4),
from (3.8), we obtain

|H(x)(t) − 1| ≤ L1

∫∞

t

s|r(s)|ds ≤ 1
2
, (3.9)

that is, H(Ω) ⊂ Ω. Moreover, a standard calculation gives

H(4)(x)(t) = −q(t)H(2)(x)(t) − r(t)f
(
x
(
ϕ(s)

))
, (3.10)

and so any fixed point of H is, for large t, a solution of (1.1). Proceeding by a similar way to
that in the proof of Theorem 2.1, we obtain that H(Ω) is relatively compact.

Now we prove the continuity of H in Ω. Let {xn}, n ∈ N, be a sequence in Ω, which
uniformly converges to x ∈ Ω on every compact interval of [t0,∞). Since

∣∣∣∣

∫∞

τ

r(s)
(
f
(
xn

(
ϕ(s)

)))
w(s, τ)ds

∣∣∣∣ ≤ KM

∫∞

τ

|r(s)|ds, (3.11)

in virtue of (3.1), the dominated convergence Lebesgue theorem gives

lim
n→∞

∫∞

σ

∫∞

τ

r(s)
(
f
(
xn

(
ϕ(s)

)))
w(s, τ)dsdτ =

∫∞

σ

∫∞

τ

r(s)
(
f
(
x
(
ϕ(s)

)))
w(s, τ)dsdτ. (3.12)
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Moreover, fixing T > t0, we have

∣
∣
∣
∣

∫∞

t

∫∞

σ

∫∞

τ

r(s)
(
f
(
xn

(
ϕ(s)

))
− f
(
x
(
ϕ(s)

)))
w(s, τ)dsdτ dσ

∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

∫T

t

∫∞

σ

∫∞

τ

r(s)
(
f
(
xn

(
ϕ(s)

))
− f
(
x
(
ϕ(s)

)))
w(s, τ)dsdτ dσ

∣
∣
∣
∣
∣

+
∫∞

T

∫∞

σ

∫∞

τ

|r(s)|
(
f
(
xn

(
ϕ(s)

))
+ f
(
x
(
ϕ(s)

)))
|w(s, τ)|dsdτ dσ.

(3.13)

In view of (3.9), we have

∫∞

T

∫∞

σ

∫∞

τ

|r(s)|
(
f
(
xn

(
ϕ(s)

))
+ f
(
x
(
ϕ(s)

)))
|w(s, τ)|dsdτ dσ ≤ 2L1

∫∞

T

s|r(s)|ds, (3.14)

and so, choosing T sufficiently large, from (3.13) we obtain the continuity of H in Ω. Hence,
by the Tychonoff fixed point theorem, the operatorH has a fixed point x, which is a bounded
solution of (1.1) satisfying (3.2).

Remark 3.2. When n = 4, Theorem 3.1 extends to equations with deviating argument of a
similar result stated in [15] for (1.7). Observe that our approach used here is completely
different from that in [15].

The next result shows that, under additional assumptions, condition (3.1) can be also
necessary for the existence of bounded AL-solutions of (1.1).

Theorem 3.3. Assume either

r(t) ≥ 0, q′′(t) ≥ 0 for large t (3.15)

or

r(t) ≤ 0, q′′(t) ≤ 0 for large t. (3.16)

If

∫∞

0
|r(t)|t dt = ∞, (3.17)

then (1.1) does not have solutions x satisfying

0 < α ≤ x(t) ≤ β, (3.18)
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for large t and some α and β. Consequently, every bounded solution x of (1.1) satisfies

lim inf
t→∞

|x(t)| = 0. (3.19)

The following lemmas are needed for proving Theorem 3.3.

Lemma 3.4. Assume q′′(t) ≥ 0 for t ≥ T ≥ 0, and let x be a solution of (1.1) satisfying (3.18) for
t ≥ T . Then, there exist two constantsM1,M2 such that for t ≥ T

−
∫ t

T

sq(s)x′′(s)ds < tq′(t)x(t) − tq(t)x′(t) +M1, (3.20)

∫ t

T

(s − T)q′(s)x′(s)ds < M2. (3.21)

If q′′(t) ≤ 0 for t ≥ T ≥ 0, inequalities (3.20), (3.21) hold in the opposite order.

Proof. Suppose q′′(t) ≥ 0 on [T,∞). We have

∫ t

T

sq(s)x′′(s)ds = tq(t)x′(t) − Tq(T)x′(T) −
∫ t

T

q(s)x′(s)ds −
∫ t

T

sq′(s)x′(s)ds. (3.22)

Since

∫ t

T

sq′(s)x′(s)ds = tq′(t)x(t) − Tq′(T)x(T) −
∫ t

T

q′(s)x(s)ds −
∫ t

T

sq′′(s)x(s)ds,

∫ t

T

q(s)x′(s)ds = q(t)x(t) − q(T)x(T) −
∫ t

T

q′(s)x(s)ds,

(3.23)

from (3.22), we get

−
∫ t

T

sq(s)x′′(s)ds = tq′(t)x(t) − tq(t)x′(t) + q(t)x(t)

− 2
∫ t

T

q′(s)x(s)ds −
∫ t

T

sq′′(s)x(s)ds +K1,

(3.24)

where K1 is a suitable constant. Since q, x are bounded, q′′(t) ≥ 0, in view of (1.1), inequality
(3.20) follows.

Moreover, q′ is nondecreasing for t ≥ T . Because q is a positive bounded function,
then q′(t) ≤ 0 on [T,∞). Thus, inequality (3.21) follows integrating by parts and using (1.1).
Finally, if q′′(t) ≤ 0 on [T,∞), the argument is similar.

Lemma 3.5. Let x be a solution of (1.1) satisfying (3.18) for large t. If

∫∞

0
|r(t)|dt < ∞, (3.25)



12 Abstract and Applied Analysis

then x′′ is bounded. If, in addition, r(t) ≥ 0, q′′(t) ≥ 0 for t ≥ T ≥ 0 and (3.17) holds, then for large t

x′′′(t) + q(t)x′(t) < q′(t)x(t). (3.26)

If r(t) ≤ 0, q′′(t) ≤ 0 for t ≥ T ≥ 0, inequality (3.26) holds in the opposite order.

Proof. Since limt→∞ϕ(t) = ∞, there exists τ such that for t ≥ τ

0 < α ≤ x
(
ϕ(t)
)
≤ β. (3.27)

Without loss of generality, let τ = T . Thus, inft≥Tf(x(ϕ(t))) > 0.
Let u and v be two linearly independent solutions of (1.3) with Wronskian d = 1.

By assumptions on q, all solutions of (1.3) and their derivatives are bounded. Thus, by the
variation constant formula, there exist constants c1 and c2 such that

x′′(t) = c1u(t) + c2v(t) −
∫ t

T

(u(s)v(t) − u(t)v(s))r(s)f
(
x
(
ϕ(s)

))
ds, (3.28)

and, in view of (3.25), x′′ is bounded.
Let us prove (3.26), and suppose r(t) ≥ 0, q′′(t) ≥ 0 on [T,∞). Multiplying (1.1) by t

and integrating from T to t, we get

tx′′′(t) − x′′(t) +
∫ t

T

sq(s)x′′(s)ds = Tx′′′(T) − x′′(T) −
∫ t

T

sr(s)f
(
x
(
ϕ(s)

))
ds, (3.29)

or, in view of Lemma 3.4,

tx′′′(t) ≤ x′′(t) + tq′(t)x(t) − tq(t)x′(t) −
∫ t

T

sr(s)f
(
x
(
ϕ(s)

))
ds +K2, (3.30)

where K2 is a suitable constant. Since x′′ is bounded and

∫ t

T

sr(s)f
(
x
(
ϕ(s)

))
ds ≥ inf

t≥T
f
(
x
(
ϕ(t)
))
∫ t

T

sr(s)ds, (3.31)

from (3.17) and (3.30), we have

lim
t→∞

t
(
x′′′(t) − q′(t)x(t) + q(t)x′(t)

)
= −∞, (3.32)

which gives the assertion. The case r(t) ≤ 0, q′′(t) ≤ 0 on [T,∞) can be treated in a similar
way.
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Proof of Theorem 3.3. Suppose r(t) ≥ 0, q′′(t) ≥ 0 for t ≥ T ≥ 0. Without loss of generality,
assume also that (3.27) holds for t ≥ T . Define

v(t) = x′′(t) + q(t)x(t), (3.33)

z(t) = x′′′(t) + q(t)x′(t) −
∫ t

T

q′(s)x′(s)ds. (3.34)

Then, z′(t) = −r(t)f(x(ϕ(t))) ≤ 0 and

z(t) = z(T) −
∫ t

T

r(s)f
(
x
(
ϕ(s)

))
ds. (3.35)

Since q′(t) ≤ 0 for t ≥ T , we have

v′(t) ≤ z(t) +
∫ t

T

q′(s)x′(s)ds = z(T) −
∫ t

T

r(s)f
(
x
(
ϕ(s)

))
ds +

∫ t

T

q′(s)x′(s)ds. (3.36)

Case I. Assume

∫∞

0
r(t)dt = ∞. (3.37)

Since for t ≥ T we have q′′(t) ≥ 0 and, as claimed, q′(t) ≤ 0, we get

∫ t

T

q′(s)x′(s)ds = q′(t)x(t) − q′(T)x(T) −
∫ t

T

q′′(s)x(s)ds ≤ −q′(T)x(T). (3.38)

Thus, from (3.36), we obtain limt→∞v
′(t) = −∞, that is, v is unbounded. Hence, in view of

(3.33), we obtain a contradiction with the boundedness of x.

Case II. Now assume (3.17) and (3.25). In view of Lemma 3.5, without loss of generality, we
can suppose that (3.26) holds for t ≥ T . Then,

z(T) = x′′′(T) + q(T)x′(T) < q′(T)x(T). (3.39)

Hence, z(T) < 0. Integrating (3.36), we get

v(t) ≤ v(T) + z(T)(t − T) −
∫ t

T

(s − T)r(s)f
(
x
(
ϕ(s)

))
ds +

∫ t

T

(s − T)q′(s)x′(s)ds, (3.40)

and, in view of Lemma 3.4, we have

v(t) ≤ v(T) + z(T)(t − T) +M2. (3.41)
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Thus, limt→∞v(t) = −∞, that is, as before, a contradiction. Finally, the case r(t) ≤ 0, q′′(t) ≤ 0
for large t follows in a similar way.

4. Applications

Here we present some applications of our results to a particular case of (1.1), namely, the
equation

x(4)(t) + q(t)x′′(t) + r(t)
∣
∣x
(
ϕ(t)
)∣∣λ sgn x

(
ϕ(t)
)
= 0 (λ > 0), (4.1)

jointly with some suggestions for future research.

4.1. Coexistence of Both Types of AL-Solutions

Applying Theorems 2.1–3.3 to this equation, we obtain the following.

Corollary 4.1. (a) Let r(t)/= 0 for large t. Equation (4.1) has unbounded AL-solutions if and only if

∫∞

0
|r(t)|ϕλ(t)dt < ∞. (4.2)

(b) Assume either (3.15) or (3.16). Equation (4.1) has bounded AL-solutions if and only if
(3.1) holds.

Corollary 4.1 shows also that the deviating argument can produce a different situation
concerning the unboundedness of solutions with respect to the corresponding equation
without delay, as the following example illustrates.

Example 4.2. In view of Corollary 4.1(a), the equation

x(4)(t) + q(t)x(2)(t) +
1

(t + 1)2

∣∣∣x
(√

t
)∣∣∣

3/2
sgn x

(√
t
)
= 0, (4.3)

where q satisfies (i), has unbounded AL-solutions, while the corresponding ordinary
equation

x(4)(t) + q(t)x(2)(t) +
1

(t + 1)2
|x(t)|3/2 sgn x(t) = 0, (4.4)

in view of Theorem 2.4, does not have unbounded AL-solutions. Moreover, if in addition
q′′(t) > 0 for large t, then from Corollary 4.1(b) (4.3) does not have bounded AL-solutions.

The following example shows that the opposite situation to the one described in
Example 4.2 can occur.
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Example 4.3. Consider the equation

x(4)(t) + q(t)x(2)(t) +
1

(t + 1)3
x
(
t2
)
= 0, (4.5)

where q satisfies (i). From Theorem 3.1, (4.5) has bounded AL-solutions and the same occurs
for the corresponding ordinary equation. Nevertheless, in view of Corollary 4.1(a), (4.5) has
no unbounded AL-solutions.

Examples 4.2 and 4.3 illustrate also that the coexistence of both AL-solutions for (4.1)
can fail. Sufficient conditions for the coexistence of these solutions immediately follow from
Corollary 4.1.

Corollary 4.4. Let r(t)/= 0 for large t.
(a) Assume for large t

ϕ(t) ≥ t1/λ. (4.6)

If (4.1) has unbounded AL-solutions, then (4.1) also has AS bounded solutions.
(b) Assume for large t

ϕ(t) ≤ t1/λ, sgn r(t) = sgn q′′(t). (4.7)

If (4.1) has bounded AL-solutions, then (4.1) also has unbounded AL-solutions.
For the equation without deviating argument

x(4)(t) + q(t)x′′(t) + r(t)|x(t)|λ sgn x(t) = 0 (λ > 0), (4.8)

from Corollary 4.4 we get the following.

Corollary 4.5. Let r(t)/= 0 for large t.
(a) Assume λ ≥ 1. If (4.8) has unbounded AL-solutions, then (4.8) has also bounded AL-

solutions.
(b)Assume 0 < λ ≤ 1 and sgn r(t) = sgn q′′(t) for large t. If (4.8) has bounded AL-solutions,

then (4.8) has also unbounded AL-solutions.

4.2. Comparison with Some Results in [15]

As claimed, the existence of unbounded AL-solutions for (4.8) follows also from Theorem 1
in [15]. For n = 4 this result reads as follows.

Theorem A. If

∫∞

0
|r(t)|tλ+1dt < ∞, (4.9)
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then there exists a solution x of (4.8) such that

x(i)(t) = t(i) + εi(t), i = 0, . . . , 3, (4.10)

where εi are functions of bounded variation for large t and limt→∞εi(t) = 0.

Therefore, when ϕ(t) ≡ t, Theorem 2.1 ensures the existence of unbounded AL-
solutions of (4.8) under a weaker condition than (4.9), namely,

∫∞

0
|r(t)|tλdt < ∞. (4.11)

On the other hand, Theorem A gives an asymptotic formula for such solutions.

4.3. An Open Problem

Equation (1.1) can admit also other types of nonoscillatory solutions, as the following
examples show.

Example 4.6. Consider the equation

x(4)(t) + x(2)(t) − 2t2 + 4t + 26

(t + 1)7/2
|x(t)|3/2 sgn x(t) = 0. (4.12)

In virtue of Corollary 4.1(b), (4.12) has no bounded AL-solutions. Nevertheless, this equation
admits nonoscillatory bounded solutions because x(t) = (1 + t)−1 is a solution of (4.12).

Example 4.7. Consider the equation

x(4)(t) + x(2)(t) +
t2 + 4t + 10

(t + 2)4
(
log(t + 2)

)3x
3(t) = 0. (4.13)

Thus, (3.1) holds, while
∫∞
0 t3r(t)dt = ∞. Hence, in virtue of Corollary 4.1, (4.13) has

bounded AL-solutions, but no unbounded AL-solutions. Nevertheless, this equation admits
nonoscillatory unbounded solutions because x(t) = log(t + 2) is a solution of (4.13).

The existence of nonoscillatory solutions x satisfying either limt→∞x(t) = 0 or
lim |x(t)| = ∞, limt→∞x

′(t) = 0 will be a subject of our next research.
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