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We first show the existence and uniqueness of (pseudo) almost periodic solutions of some types
of parabolic equations. Then, we apply the results to a type of Cauchy parabolic inverse problems
and show the existence, uniqueness, and stability.

1. Introduction

Zhang in [1, 2] defined pseudo almost periodic functions. As almost periodic functions,
pseudo almost periodic functions are applied to many mathematical areas, particular to the
theory of ordinary differential equations. (e.g., see [3–26] and references therein). However,
the study of the related topic on partial differential equations has only a few important
developments. On the other hand, almost periodic functions to various problems have been
investigated (e.g., see [27–32] and references therein), but little has been done about the
inverse problems except for our work in [33–36]. In [36], we study pseudo almost periodic
solutions to parabolic boundary value inverse problems. In this paper, we devote such
solutions to cauchy problems.

To this end, we need first to define the spaces in amore general setting. Let J ∈ {R,Rn}.
Let C(J) (resp., C(J × Ω), where Ω ⊂ Rm) denote the C∗-algebra of bounded continuous
complex-valued functions on J (resp. J × Ω) with the supremum norm. For f ∈ C(J) (resp.,
C(J×Ω)) and s ∈ J , the translation of f by s is the function Rsf(t) = f(t+s) (resp., Rsf(t, Z) =
f(t + s, Z), (t, Z) ∈ J ×Ω).

Definition 1.1. (1) A function f ∈ C(J) is called almost periodic if for every ε > 0 the set

T
(
f, ε

)
=
{
τ ∈ J :

∥∥Rτf − f
∥∥ < ε

}
(1.1)
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is relatively dense in J . Denote byAP(J) the set of all such functions. The number (vector) τ
is called ε-translation number (vector) of f .

(2) A function f ∈ C(J × Ω) is said to be almost periodic in t ∈ J and uniform on
compact subsets of Ω if f(·, Z) ∈ AP(J) for each Z ∈ Ω and is uniformly continuous on
J ×K for any compact subset K ⊂ Ω. Denote by AP(J ×Ω) the set of all such functions. For
convenience, such functions are also called uniformly almost periodic.

(3) A function f ∈ C(J)(C(J ×Ω)) is called pseudo almost periodic if

f = g + ϕ, (1.2)

where g ∈ AP(J)(AP(J ×Ω)) and ϕ ∈ PAP0(J)(PAP0(J ×Ω)),

PAP0(J) =

{

ϕ ∈ C(J) : lim
r→∞

1
(2r)n

∫

[−r,r]n

∣∣ϕ(x)
∣∣dx = 0

}

,

PAP0(J ×Ω) =

{

ϕ ∈ C(J ×Ω) : lim
r→∞

1
(2r)n

∫

[−r,r]n

∣∣ϕ(x,Z)
∣∣dx = 0

}

,

(1.3)

uniformly with respect to Z ∈ K, where K is any compact subset of Ω. Denote by
PAP(J)(PAP(J ×Ω)) the set of all such functions.

Set

APT(J) ∈ {AP(J), PAP(J)},

APT(J ×Ω) ∈ {AP(J ×Ω), PAP(J ×Ω)}.
(1.4)

Members of APT(J)(APT(J ×Ω)) are called almost periodic type.
We will use the notations throughout the paper: Rm

T = Rm × (0, T), ‖F‖T =
sup{|F(x, t)| : x ∈ Rn, 0 ≤ t ≤ T}. F ∈ APT(Rn × Rm

T ) means that F(x(1), x(2), t) is almost
periodic type in x(1) ∈ Rn and uniformly for (x(2), t) ∈ Rm

T ; F ∈ APT(Rn × Rm) means that
F(x(1), x(2)) is almost periodic type in x(1) ∈ Rn and uniformly for x(2) ∈ Rm.

Let

Z(x, t; ξ, s) =
1

(
2
√
π(t − s)

)n+m exp

{

−
∑

(xi − ξi)
2

4(t − s)

}

, (x, ξ ∈ Rn+m), (1.5)

be the fundamental solution of the heat equation [37].
In the next section, we will show the existence and uniqueness of some type of para-

bolic equations. Sections 3 is devoted to a type of Cauchy Problem respectively.



Abstract and Applied Analysis 3

2. Solutions of Parabolic Equations

Lemma 2.1. Let T > 0. If ϕ ∈ APT(Rn × Rm) and

u(x, t; s) =
∫

Rn+m
ϕ(ξ)Z(x, t; ξ, s)dξ, (2.1)

then for each fixed s ∈ [0, T) u ∈ APT(Rn × Rm × [s, T]).

Proof. First consider the case that ϕ ∈ AP(Rn × Rm). Let τ ∈ Rn be an ε-translation vector of
ϕ:

u
(
x(1) + τ, x(2), t; s

)
− u

(
x(1), x(2), t; s

)

=
∫

Rn+m
ϕ
(
ξ(1), ξ(2)

)[
Z
(
x(1) + τ, x(2), t; ξ(1), ξ(2), s

)
− Z

(
x(1), x(2), t; ξ(1), ξ(2), s

)]
dξ(1)dξ(2)

=
∫

Rn+m

[
ϕ
(
x(1) + τ + ξ(1), x(2) + ξ(2)

)
− ϕ

(
x(1) + ξ(1), x(2) + ξ(2)

)]
Z(0, t; ξs)dξ,

(2.2)

where 0 ∈ Rn+m is the zero vector. Note that
∫
Rn+m Z(0, t; ξ, s)dξ = 1, we get

‖Rτu − u‖ ≤
∥∥Rτϕ − ϕ

∥∥
∫

Rn+m
Z(0, t; ξ, s)dξ < ε, (2.3)

where t ∈ [s, T] and x(2) ∈ B with B a bounded subset of Rm. This shows that u ∈ AP(Rn ×
Rm × [s, T]).

To show that u ∈ PAP(Rn ×Rm × [s, T]) if ϕ ∈ PAP(Rn ×Rm), we only need to show
that u ∈ PAP0(Rn × Rm × [s, T]) if ϕ ∈ PAP0(Rn × Rm). That is,

lim
r→∞

1
(2r)n

∫

[−r,r]n

∣∣∣u
(
x(1), x(2), t; s

)∣∣∣ds(1) = 0, (2.4)

uniformly with respect to (x(2), t) ∈ Ω, here Ω is any compact subset of Rm × [s, T].
Since ϕ ∈ PAP0(Rn × Rm), for ε > 0 there exist positive numbers A and r0 such that,

when r ≥ r0 for all ξ(1) ∈ [−A,A]n and ξ(2) ∈ Ω ∩ Rm, one has

1
(2r)n

∫

[−r,r]n

∣∣∣ϕ
(
x(1) + ξ(1), ξ(2)

)∣∣∣dx(1) <
ε

3
,

∫−A

−∞
+
∫∞

A

∣∣∣ϕ
(
x(1) + ξ(1), ξ(2)

)∣∣∣Z
(
0, x(2), t; ξ, s

)
dξ <

2ε
3
.

(2.5)
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Therefore,

1
(2r)n

∫

[−r,r]n

∣
∣
∣u
(
x(1), x(2), t; s

)∣∣
∣dx(1)

≤ 1
(2r)n

∫

[−r,r]n

∫

Rn+m

∣
∣
∣ϕ

(
x(1) + ξ(1), ξ(2)

)∣∣
∣Z

(
0, x(2), t; ξ, s

)
dξdx(1)

=
∫−A

−∞
+
∫A

−A
+
∫∞

A

Z
(
0, x(2), t; ξ, s

)
dξ

1
(2r)n

∫

[−r,r]n

∣
∣
∣ϕ

(
x(1) + ξ(1), ξ(2)

)∣∣
∣dx(1) < ε

(2.6)

uniformly with respect to (x(2), t) ∈ Ω, where by
∫b
a F(ξ)dξ we mean that

∫b

a

F(ξ)ξ =
∫

[a,b]n+m
F(ξ)dξ =

∫b

a

· · ·
∫b

a

F(ξ)dξ1dξ2 · · ·dξn+m. (2.7)

This shows that u ∈ PAP0(Rn × Rm). The proof is complete.

Corollary 2.2. Let ϕ, ∂ϕ/∂xi ∈ APT(Rn × Rm), and let u be as in Lemma 2.1. Then, ∂u/∂xi ∈
APT(Rn × Rm × [s, T]).

Proof. Note that

∂u(x, t; s)
∂xi

=
∫

Rn+m
ϕ(ξ)

∂Z(x, t; ξ, s)
∂xi

dξ

= −
∫

Rn+m
ϕ(ξ)

∂Z(x, t; ξ, s)
∂ξi

dξ

=
∫

Rn+m

∂ϕ(ξ)
∂ξi

Z(x, t; ξ, s)dξ.

(2.8)

By Lemma 2.1 we get the conclusion.

Lemma 2.3. If f(x, t) ∈ APT(Rn × Rm
T ) and

u(x, t) =
∫ t

0
ds

∫

Rn+m
f(ξ, s)Z(x, t; ξ, s)dξ, (2.9)

then u and ∂u(x, t)/∂xi(i = 1, 2, . . . , n +m) are all inAPT(Rn × Rm
T ).

The proof is similar to that of Lemma 2.1, so we omit it.
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Theorem 2.4. Consider the heat problem

∂u

∂t
−

n+m∑

i=1

[
∂2u

∂x2
i

+ bi(x, t)
∂u

∂xi

]

− c(x, t)u = f(x, t), (x, t) ∈ Rn+m
T ,

u(x, 0) = ϕ(x), x ∈ Rn+m.

(2.10)

If f(x, t), bi(x, t), ∂bi/∂xj (i, j = 1, 2, . . . , n+m), c(x, t) are inAPT(Rn×Rm
T ) and ϕ, ∂ϕ/∂xi (i =

1, 2, . . . , n +m) are inAPT(Rn × Rm), then (2.10) has a unique solution u ∈ APT(Rn × Rm
T ).

Proof. Problem (2.10) has the standard solution (see [37]):

u(x, t) =
∫

Rn+m
ϕ(ξ)Γ(x, t; ξ, 0)dξ +

∫ t

0
ds

∫

Rn+m
f(ξ, s)Γ(x, t; ξ, s)dξ = I1 + I2, (2.11)

where

Γ(x, t; ξ, s) = Z(x, t; ξ, s) +
∫ t

s

∫

Rn+m
Z
(
x, t;y, η

)
·Φ

(
y, η; ξ, s

)
dydη,

Φ
(
y, η; ξ, s

)
=

∞∑

l=1

(LZ)l
(
y, η; ξ, s

)
, (LZ)1 = LZ,

(LZ)l+1
(
y, η; ξ, s

)
=
∫ t

s

∫

Rn+m

[
LZ

(
y, η;v, σ

)]
(LZ)l(v, σ; ξ, s)dvdσ,

(2.12)

and L is the parabolic operator

L =
n+m∑

i=1

[
∂2

∂x2
i

+ bi(x, t)
∂

∂xi

]

+ c(x, t) − ∂

∂t
. (2.13)

Now, we show that u ∈ APT(Rn × Rm
T ) :

I1 =
∫

Rn+m
ϕ(ξ)Z(x, t; ξ, 0)dξ

+
∫

Rn+m
ϕ(ξ)dξ

∫ t

0
dη

∫

Rn+m
Z
(
x, t;y, η

) ∞∑

l=1

(LZ)l
(
y, η; ξ, 0

)
dy

= u1(x, t) +
∞∑

l=1

∫ t

0
dη

∫

Rn+m
Z
(
x, t;y, η

)
dy

∫

Rn+m
ϕ(ξ)(LZ)l

(
y, η; ξ, 0

)
dξ,
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I2 =
∫ t

0
ds

∫

Rn+m
f(ξ, s)Z(x, t; ξ, s)dξ

+
∫ t

0
ds

∫

Rn+m
f(ξ, s)dξ

∫ t

s

dη

∫

Rn+m
Z
(
x, t;y, η

) ∞∑

l=1

(LZ)lZ
(
y, η; ξ, s

)
dy

= u2(x, t) +
∞∑

l=1

∫ t

0
dη

∫

Rn+m
Z
(
x, t;y, η

)
dy

∫η

0
ds

∫

Rn+m
f(ξ, s)(LZ)l

(
y, η; ξ, s

)
dξ.

(2.14)

By Lemmas 2.1 and 2.3, ui ∈ APT(Rn × Rm
T ) (i = 1, 2, ).

Obviously,

LZ(x, t; ξ, s) =
n+m∑

i=1

bi(x, t)
∂Z(x, t; ξ, s)

∂xi
+ c(x, t)Z(x, t; ξ, s). (2.15)

By Lemmas 2.1 and 2.3 we only need to show that the functions

wl(x, t) =
∫

Rn+m
ϕ(ξ)(LZ)l(x, t; ξ, 0)dξ,

vl(x, t) =
∫ t

0
ds

∫

Rn+m
f(ξ, s)(LZ)l(x, t; ξ, s)dξ,

(2.16)

are in APT(Rn × Rm
T ). We do this by induction. By Lemmas 2.1 and 2.3 and Corollary 2.2, it

is true for the case l = 1. Suppose that wl(x, t), vl(x, t) ∈ APT(Rn × Rm
T ). Then,

wl+1(x, t) =
∫

Rn+m
ϕ(ξ)dξ

∫ t

0
dη

∫

Rn+m
LZ

(
x, t;y, η

)
(LZ)l

(
y, η; ξ, 0

)
dy

=
∫ t

0
dη

∫

Rn+m
LZ

(
x, t;y, η

)
dy

∫

Rn+m
ϕ(ξ)(LZ)l

(
y, η; ξ, 0

)
dξ

=
∫ t

0
dη

∫

Rn+m
wl

(
y, η

)
LZ

(
x, t;y, η

)
dy.

(2.17)

By the induction assumption and Lemma 2.3, we have wl+1(x, t) ∈ APT(Rn × Rm
T ). Similarly

one shows that vl+1(x, t) ∈ APT(Rn × Rm
T ). The proof is complete.

3. Cauchy Problem

Starting this section we will apply the results of the last section to inverse problems of partial
differential equations. We will investigate two types of initial value problems in this and
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the next sections, respectively. We will keep the notation in Section 2 and, at the same time,
introduce the following new notation:

x = (x1, x2, . . . , xn−1), ξ = (ξ1, ξ2, . . . , ξn−1),

X = (x, xn), ζ = (ξ, ξn).
(3.1)

The following estimates are easily obtained:

∥
∥
∥
∥
∥

∫ t

0
ds

∫

Rn

Z(X, t; ζ, s)dζ

∥
∥
∥
∥
∥
T

≤ m(T), (3.2)

where m(T) are positive and increasing for T ≥ 0 and m(T) → 0 as T → 0.
To show the main results of this and the next sections, the following lemmas are

needed. The first lemma is the Gronwall-Bellman lemma; the convenient reference should
be an ODE text, for instance, it is proved on page 15 of [38].

Lemma 3.1. Let ϕ, φ, and χ be real, continuous functions on [0, T] with χ ≥ 0. If

ϕ(t) ≤ φ(t) +
∫ t

0
χ(s)ϕ(s)ds (t ∈ [0, T]), (3.3)

then

ϕ(t) ≤ φ(t) +
∫ t

0
χ(s)φ(s) exp

{∫ t

s

χ
(
ρ
)
dρ

}

ds (t ∈ [0, T]). (3.4)

Lemma 3.2. Let ϕ be a continuous function on [0, T]. If φ, χ1, and χ2 are nondecreasing and non-
negative on [0, T] and

ϕ(t) ≤ φ(t) + χ1(t)
∫ t

0
ϕ(s)ds + χ2(t)

∫ t

0

ϕ(s)
√
t − s

ds (t ∈ [0, T]), (∗)

then

ϕ(t) ≤ φ(t)
[
1 + tχ1(t) + 2

√
tχ2(t)

]
etχ(t), (3.5)

where

χ(t) = tχ2
1(t) + 4

√
tχ1(t)χ2(t) + πχ2

2(t). (3.6)
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Proof. Replacing ϕ(s) in the two integrals of (∗) by the expression on the right-hand side in
(26), changing the integral order of the resulting inequality, and making use of the mono-
tonicity of φ, χ1, and χ2, one gets

ϕ(t) ≤ φ(t)
[
1 + tχ1(t) + 2

√
tχ2(t)

]
+
[
tχ2

1(t) + 4
√
tχ1(t)χ2(t) + πχ2

2(t)
] ∫ t

0
ϕ(s)Ds. (3.7)

Using Lemma 3.1 leads to the conclusion.

Lemma 3.3. Let F(X, t) ∈ C(Rn
T ) and ϕ ∈ C(Rn). If u(X, t) is a solution of the problem

ut −Δu + qu = F(X, t), (X, t) ∈ Rn
T ,

u(X, 0) = ϕ(X), X ∈ Rn,
(3.8)

then

‖u‖T ≤ K(T)
(
T‖F‖T +

∥∥ϕ
∥∥), (3.9)

where K(T) = 1 + T‖q‖TeT‖q‖T .

One sees that K(T) depends on ‖q‖T only and is bounded near zero.

Proof. The solution u can been written as

u(X, t) =
∫

Rn

ϕ(ζ)Z(X, t; ζ, 0)dζ +
∫ t

0
ds

∫

Rn

F(ζ, s)Z(X, t; ζ, s)dζ

−
∫ t

0
ds

∫

Rn

q(ξ, s)u(ζ, s)Z(X, t; ζ, s)dζ,

(3.10)

so,

‖u‖t ≤
∥∥ϕ

∥∥ +
∫ t

0
‖F‖sds +

∫ t

0

∥∥q
∥∥
s‖u‖sds. (3.11)

By Lemma 3.1 one gets the desired result. The proof is complete.

Problem 1. Find functions u(X, t) ∈ APT(Rn−1 × RT ) and q(x, t) ∈ APT(Rn−1
T ) such that

ut −Δu + qu = F(X, t), (X, t) ∈ Rn
T , (3.12)

u(X, 0) = ϕ(X), X ∈ Rn, (3.13)

u(x, 0, t) = h(x, t), (x, t) ∈ Rn−1
T , (3.14)

where ϕ(x, xn), ϕxnxn(x, xn) ∈ APT(Rn−1 × R), h(x, t) ≥ const > 0, h(x, t), (Δh − ht) ∈
APT(Rn−1

T0
), and F(x, xn, t), Fxnxn(x, xn, t) ∈ APT(Rn−1 × RT0). T0 > T > 0 are constants.
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By (3.13) and (3.14), one sees that h(x, 0) = ϕ(x, 0).
We have the following additional problem.

Problem 2. Find functions W(X, t) ∈ APT(Rn−1 × RT ) and q(x, t) ∈ APT(Rn−1
T ) such that

Wt −ΔW + qW = Fxnxn(X, t), (X, t) ∈ Rn
T , (3.15)

W(X, 0) = ϕxnxn(X), X ∈ Rn, (3.16)

W(x, 0, t) = ht −Δh + qh − F(x, 0, t), (x, t) ∈ Rn−1
T . (3.17)

The Cauchy problems with unknown coefficient belong to inverse problems [39]. “In
the last two decades, the field of inverse problems has certainly been one of the fastest
growing areas in applied mathematics. This growth has largely been driven by the needs
of applications both in other sciences and in industry.” [40]. For the two problems above, we
have the following.

Lemma 3.4. Problems 1 and 2 are equivalent to each other.

Proof. Let V (X, t) = uxn(X, t). Then, V (X, t) satisfies

Vt −ΔV + qV = Fxn(X, t), (X, t) ∈ Rn
T , (3.18)

V (X, 0) = ϕxn(X), X ∈ Rn, (3.19)

Vxn(x, 0, t) = ht −Δh + qh − F(x, 0, t), ϕ(x, 0) = h(x, 0), (x, t) ∈ Rn−1
T . (3.20)

So, if Problem 1 has a solution (u, q), then Problems (3.18)–(3.20) have the solution (V, q)with
V (X, t) = uxn(X, t). Obviously V (X, t) ∈ APT(Rn−1 × RT ) if u(X, t) ∈ APT(Rn−1 × RT ).

On the other hand, if V (X, t) ∈ APT(Rn−1 × RT ) and q(x, t) ∈ APT(Rn−1
T ) satisfy

(3.18)–(3.20), then we will show that Problem 1 has a unique solution (u, q) and u(X, t) ∈
APT(Rn−1 × RT ).

The uniqueness comes from the uniqueness of Cauchy Problem (1)-(2). For the
existence, note the fact that if (u, q) is a solution of (3.12)–(3.14), then V = uxn . Thus, we
define

u(X, t) =
∫xn

0
V
(
x, y, t

)
dy + Φ(x, t). (3.21)

It follows from (3.14) that Φ = h. Now, u satisfies (3.13) because

u(X, 0) =
∫xn

0
V
(
x, y, 0

)
dy + h(x, 0) = ϕ(X) − ϕ(x, 0) + h(x, 0) = ϕ(X). (3.22)
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It follows from (3.18), (3.20), and (3.21) that

ut −Δu + qu =
∫xn

0

(
Vt −ΔV + qV

)
dy +

∫xn

0

∂2V
(
x, y, t

)

∂y2
dy

− ∂2

∂x2
n

∫xn

0
V
(
x, y, t

)
dy + ht − ∇h + qh

= F(x, xn, t) − F(x, 0, t) + Vxn(x, xn, t) − Vxn(x, 0, t) − Vxn(x, xn, t)

+ ht −Δh + qh = F(X, t).

(3.23)

Thus, u satisfies (3.12) and (u, q) is a unique solution of Problem 1.

It follows from V (X, t) ∈ APT(Rn−1 ×RT , h(x, t) ∈ APT(Rn−1
T ), and (3.21) that u(X, t)

in (3.21) is in APT(Rn−1 × RT ).
Since we have shown that Problem 1 is equivalent to (3.18)–(3.20), to show the lemma

we only need to show that Problem 2, equivalent to (3.18)–(3.20) too.
If (V, q) is a solution of (3.18)–(3.20), let W(X, t) = Vxn(X, t). Then one can directly

calculate that (W,q) is a solution of (3.15)–(3.17) and W(X, t) ∈ APT(Rn−1 × RT ).
On the other hand, if (W,q) is a solution of (3.15)–(3.17), let

V (X, t) =
∫xn

0
W

(
x, y, t

)
dy + Φ(x, t), (3.24)

where Φ is the solution of the Cauchy problem

Φt −ΔΦ + qΦ = Wxn(x, 0, t) + Fxn(x, 0, t), (x, t) ∈ Rn−1
T

Φ(x, 0) = ϕxn(x, 0), x ∈ Rn−1.

(3.25)

Since W(X, t) ∈ APT(Rn−1 × RT ), Wxn(x, 0, t) ∈ APT(Rn−1
T ). By Theorem 2.4, Φ(x, t) ∈

APT(Rn−1
T ) and so V (X, t) ∈ APT(Rn−1 × RT ).

Obviously, Vxn(x, 0, t) = W(x, 0, t) = ht − Δh + qh − F(x, 0, t), and this shows that V
satisfies (3.20). V satisfies (3.19) because

V (X, 0) =
∫xn

0
W

(
x, y, 0

)
dy + Φ(x, 0) =

∫xn

0
ϕxnxn

(
x, y

)
dy + Φ(x, 0)

= ϕxn(x, xn) − ϕxn(x, 0) + Φ(x, 0) = ϕxn(X).

(3.26)
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Finally,

Vt −ΔV + qV =
∫xn

0

(
Wt −ΔW + qW

)
dy +

∫xn

0

∂2W
(
x, y, t

)

∂y2
dy

− ∂2

∂x2
n

∫xn

0
W

(
x, η, t

)
dη + Φt −ΔΦ + qΦ

= Fxn(x, xn, t) − Fxn(x, 0, t) +Wxn(x, xn, t) −Wxn(x, 0, t) −Wxn(x, xn, t)

+ Φt −ΔΦ + qΦ = Fxn(X, t).
(3.27)

This shows that V satisfies (3.18). The proof is complete.

By (3.15)-(3.16) we have the integral equation about W(X, t):

W(X, t) =
∫

Rn

ϕxnxn(ζ)Z(X, t; ζ, 0)dζ +
∫ t

0
ds

∫

Rn

Fxnxn(ζ, s)Z(X, t; ζ, s)dζ

−
∫ t

0
ds

∫

Rn

q(ξ, s)W(ζ, s)Z(X, t; ζ, s)dζ,

(3.28)

q = Lq

= [Δh − ht + F(x, 0, t)]h−1 + h−1
∫

Rn

ϕxnxn(ζ)Z(x, 0, t; ζ, 0)dζ

+ h−1
∫ t

0
ds

∫

Rn

Fxnxn(ζ, s)Z(x, 0, t; ζ, s)dζ

− h−1
∫ t

0
ds

∫

Rn

q(ξ, s)W(ζ, s)Z(x, 0, t; ζ, s)dζ (x, t) ∈ Rn−1
T ,

(3.29)

where W is determined by (3.28).
It is readily to show that (3.15)–(3.17) are equivalent to (3.28)-(3.29).

Note that, for a given q(x, t) ∈ APT(Rn−1
T ), Theorem 2.4 shows the Cauchy problem

(3.15) and (3.16) (or equivalently (3.28)) has a unique solution W ∈ APT(Rn × RT ). Thus,
(3.29) does define an operator L. To show that Problem 2 (and so Problem 1) has a unique

solution, we only need to show that (3.29) has a solution q(x, t) ∈ APT(Rn−1
T ). That is, L has

a fixed point inAPT(Rn−1
T ). To this end, let

∥∥∥∥[Δh − ht + F(x, 0, t)]h−1 + h−1
∫

Rn

ϕxnxn(ζ)Z(x, 0, t; ζ, 0)dζ

+h−1
∫T

0
ds

∫

Rn

Fxnxn(ζ, s)Z(x, 0, t; ζ, s)dζ

∥∥∥∥∥
T0

=
M

2
.

(3.30)
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Set B(M,T) = {q(x, t) ∈ APT(Rn−1
T ) : ‖q‖T ≤ M}. Now, we show that for small T the operator

L in (3.29) is a contraction from B(M,T) into itself.
If q ∈ B(M,T), then, according to Theorem 2.4, the function W determined by (3.15)-

(3.16) and therefore by (3.28) belongs toAPT(Rn−1 ×RT ). Note that ϕxnxn ∈ APT(Rn−1 ×R),

(Δh−ht) ∈ APT(Rn−1
T ), and Fxnxn ∈ APT(Rn−1×RT ). It follows from Lemma 2.3, Theorem 2.4,

and (3.29) that Lq ∈ APT(Rn−1
T ) and

∥∥Lq
∥∥
T ≤

∥
∥∥
∥[Δh − tt + F(x, 0, t)]h−1 + h−1

∫

Rn

ϕxnxn(ζ)Z(x, 0, t; ζ, 0)dζ

+h−1
∫ t

0
ds

∫

Rn

Fxnxn(ζ, s)Z(x, 0, t; ζ, s)dζ

∥
∥
∥
∥
∥
T

+
∥∥∥h−1

∥∥∥
T

∥∥q
∥∥
T‖W‖Tm(T)

≤ 1
2
M +

∥∥∥h−1
∥∥∥
T
MK0(T)

(∥∥ϕxnxn

∥∥ + T‖Fxnxn‖T
)
m(T),

(3.31)

where K0 comes from Lemma 3.3. Noting that m(T) → 0 ad T → 0, we choose T1 ≤ T0 such
that when T < T1 one has

∥∥∥h−1
∥∥∥
T
K0(T)

(∥∥ϕxnxn

∥∥ + T‖Fxnxn‖T
)
m(T) ≤ 1

2
. (3.32)

So, Lq ∈ B(M,T). For q1, q2 ∈ B(M,T), by (3.29)

∥∥Lq1 − Lq2
∥∥ ≤

∥∥∥h−1
∥∥∥
T

∥∥W1q1 −W2q2
∥∥
Tm(T)

≤ m(T)
∥∥∥h−1

∥∥∥
T

[
‖W1‖T

∥∥q1 − q2
∥∥
T +

∥∥q2
∥∥
T‖W1 −W2‖T

]
.

(3.33)

The function V = W1 −W2 is a solution of the Cauchy problem

Vt −ΔV + q1V = W2
(
q2 − q1

)
, (X, t) ∈ Rn

T ,

V (X, 0) = 0, X ∈ Rn.
(3.34)

Thus, by Lemma 3.3

‖V ‖T ≤ K1(T)‖W2‖T
∥∥q2 − q1

∥∥. (3.35)
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Applying Lemma 3.3 to (W1, q1) and (W2, q2), respectively, one gets

‖W1‖ ≤ K1(T)
(∥∥ϕxnxn

∥
∥ + T‖Fxnxn‖

)
,

‖W2‖ ≤ K2(T)
(∥∥ϕxnxn

∥
∥ + T‖Fxnxn‖

)
.

(3.36)

If we choose T2 ≤ T1 so that when T ≤ T2

2m(T)
∥
∥
∥h−1

∥
∥
∥
T

(∥∥ϕxnxn

∥
∥ + T‖Fxnxn‖

)
K1(T)[1 +MK2(T)] ≤ 1, (3.37)

then
‖Lq1 − Lq2‖T ≤ m(T)‖h−1‖T [‖W1‖ +MK1(T)‖W2‖]‖q2 − q1‖T

≤ m(T)‖h−1‖TK1(T)(1 +MK2(T))(‖ϕxnxn‖ + T‖Fxnxn‖T )‖q2 − q1‖T

≤ 1
2
‖q2 − q1‖T .

One sees that for such T , the operator L is a contraction from B(M,T) into itself and,
therefore, has a unique fixed point in B(M,T). Thus, we have shown.

Theorem 3.5. If functions F, ϕ, and h satisfy the conditions of Problem 1, M and T are determined
by (3.30) and (3.32), (3.37) respectively, then in Rn

T , Problem 1 has a unique solution (u, q) with

u ∈ APT(Rn−1 × RT ) and q ∈ APT(Rn−1
T ).

Furthermore, we have the following.

Theorem 3.6. Let F, ϕ, and h be as in Problem 1. Then, there exists an almost periodic type solution
for Problem 1 in Rn

T0
.

Proof. We show that the conclusion of Theorem 3.5 can be extended to Rn
T0
. Let T = sup{s :

Problem 1 has solution in Rn
s}. By Theorem 3.5, T > 0. Suppose that T < T0. Consider the

problem

ut −Δu + qu = F(X, t), X ∈ Rn, T ≤ t ≤ T0,

u(X, T) = f(X), X ∈ Rn,

u(x, 0, t) = h(x, t), (x, t) ∈ Rn−1 × [T, T0].

(3.38)

For q we can write the integral equation similar to (3.29), but this time its domain is
x ∈ Rn−1, t ∈ [T, T0]. As the proof above, define the ball B1(M,S) inAPT(Rn−1×[T, T0]); then
there exists a t0 > 0 such that the operator Lt0 is a contraction from B1(M,S) into itself. So,
(3.29) has a solution for the domain x ∈ Rn−1, t ∈ [T, T + t0]. This contradicts the definition of
T . We must have T = T0.

For the stability, we have the following.
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Theorem 3.7. Let functions hi, ϕi, and Fi(i = 1, 2) be as in Problem 1. If Wi(X, t) ∈ APT(Rn−1 ×
RT ) and qi ∈ APT(Rn−1

T ) (i = 1, 2) are solutions to (3.15)–(3.17), then

∥
∥q2 − q1

∥
∥
t ≤ c1‖h2 − h1‖t + c2

∥
∥
∥
∥

(
∂

∂t
−Δ

)
(h2 − h1)

∥
∥
∥
∥
t

+ c3

∥
∥
∥
∥
∥

∂2

∂x2
n

(
ϕ2 − ϕ1

)
∥
∥
∥
∥
∥
+ c4‖F2 − F1‖t + c5

∥
∥
∥
∥
∥

∂2

∂x2
n

(F2 − F1)

∥
∥
∥
∥
∥
t

,

(3.39)

where cj (1 ≤ j ≤ 5) depends on T, ‖h1‖t, ‖(∂2/∂x2
n)ϕ1‖, ‖F1‖t, ‖(∂2/∂x2

n)F1‖t, and ‖qi‖t (i =
1, 2) only.

Proof. By (3.29),

h1
(
q2 − q1

)
= −q2(h2 − h1) −

(
∂

∂t
−Δ

)
(h2 − h1) + F2(x, 0, t) − F1(x, 0, t)

+
∫

Rn

∂2

∂ξ2n

(
ϕ2(ζ) − ϕ1(ζ)

)
Z(x, 0, t; ζ, 0)dζ

+
∫ t

0
ds

∫

Rn

∂2

∂ξ2n
(F2 − F1)Z(x, 0, t; ζ, s)dζ

−
∫ t

0
ds

∫

Rn

[
(W2 −W1)q2 +W1

(
q2 − q1

)]
Z(x, 0, t; ζ, s)dζ.

(3.40)

By Lemma 3.3,

‖W1‖t ≤ K1(t)

[∥∥∥∥∥
∂2ϕ1

∂x2
n

∥∥∥∥∥
+ t

∥∥∥∥∥
∂2F1

∂x2
n

∥∥∥∥∥
t

]

. (3.41)

Since the function V = W2 −W1 is the solution of the Cauchy problem

Vt −ΔV + q2V =
∂2

∂x2
n

(F2 − F1) −W1
(
q2 − q1

)
, (X, t) ∈ Rn

T

V (X, 0) =
∂2

∂x2
n

[
ϕ2(X) − ϕ1(X)

]
, X ∈ Rn,

(3.42)

one has

‖V ‖t ≤ K2(T)

[∥∥∥∥∥
∂2

∂x2
n

(
ϕ2 − ϕ1

)
∥∥∥∥∥
+ t

∥∥∥∥∥
∂2

∂x2
n

(F2 − F1)

∥∥∥∥∥
t

+K1(t)

(∥∥∥∥∥
∂2

∂x2
n

ϕ1

∥∥∥∥∥
+ t

∥∥∥∥∥
∂2

∂x2
n

F1

∥∥∥∥∥

)
∥∥q2 − q1

∥∥
t

]

.

(3.43)
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Therefore,

∥
∥q2 − q1

∥
∥
t ≤

∥
∥
∥h−1

1

∥
∥
∥
t

{
∥
∥q2

∥
∥
t‖h2 − h1‖t +

∥
∥
∥
∥

(
∂

∂t
−Δ

)
(h2 − h1)

∥
∥
∥
∥
t

+ ‖F2(x, 0, t) − F1(x, 0, t)‖t

+

∥
∥
∥
∥
∥

∂2

∂x2
n

(
ϕ2 − ϕ1

)
∥
∥
∥
∥
∥
+ T

∥
∥
∥
∥
∥

∂2

∂x2
n

(F2 − F1)

∥
∥
∥
∥
∥
t

+
∫ t

0
K2(s)

[∥∥∥
∥
∥

∂2

∂x2
n

(
ϕ2 − ϕ1

)
∥
∥∥
∥
∥
+ s

∥
∥∥
∥
∥

∂2

∂x2
n

(F2 − F1)

∥
∥∥
∥
∥
s

]
∥
∥q2

∥
∥
sds

+
∫ t

0
K1(s)

[∥∥
∥
∥
∥

∂2

∂x2
n

ϕ1

∥
∥
∥
∥
∥
+ s

∥
∥
∥
∥
∥

∂2

∂x2
n

F1

∥
∥
∥
∥
∥
s

]
∥
∥q2 − q1

∥
∥
sds

+
∫ t

0
K1(s)K2(s)

[∥∥∥∥∥
∂2

∂x2
n

ϕ1

∥∥∥∥∥
+ s

∥∥∥∥∥
∂2

∂x2
n

F1

∥∥∥∥∥
s

]
∥∥q2 − q1

∥∥
s

∥∥q2
∥∥
sds

}

.

(3.44)

Using Lemma 3.1, we get the estimates desired if we let

c1 =
∥∥∥h−1

1

∥∥∥
t

∥∥q2
∥∥
t

[

1 +
∥∥∥h−1

1

∥∥∥
t

∫ t

0
χ(s) exp

{∥∥∥h−1
1

∥∥∥
t

∫ t

s

χ
(
ρ
)
dρ

}

ds

]

,

c2 =
∥∥∥h−1

1

∥∥∥
t

[

1 +
∥∥∥h−1

1

∥∥∥
t

∫ t

0
χ(s) exp

{∥∥∥h−1
1

∥∥∥
t

∫ t

s

χ
(
ρ
)
dρ

}

ds

]

,

c3 =
∥∥∥h−1

1

∥∥∥
t

[

1 +
∫ t

0

∥∥q2
∥∥
sK2(s)ds

][

1 +
∥∥∥h−1

1

∥∥∥
t

∫ t

0
χ(s) exp

{∥∥∥h−1
1

∥∥∥
t

∫ t

s

χ
(
ρ
)
dρ

}

ds

]

,

c4 = c2 c5 = c3,

(3.45)

where

χ(t) =

[∥∥∥∥∥
∂2

∂x2
n

ϕ1

∥∥∥∥∥
+ t

∥∥∥∥∥
∂2

∂x2
n

F1

∥∥∥∥∥
t

]

K1(t)
(
1 +K2(t)

∥∥q2
∥∥
t

)
. (3.46)

The proof is complete.

Corollary 3.8. If Problem 1 has a solution in Rn
T0
, then it has a unique one.
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