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We provide a new definition for reproducing kernel space with weighted integral and present
a method to construct and calculate the reproducing kernel for the space. The new reproducing
kernel space is an enlarged reproducing kernel space, which contains the traditional reproducing
kernel space. The proposed method of this paper is a universal method and is suitable for the case
of that the weight is variable. Obviously, this newmethod will generalize a number of applications
of reproducing kernel theory to many areas.

1. Introduction

A reproducing kernel is a basic tool for studying the spline interpolation of differential
operators and is also the base of the reproducing kernel method, which were widely used in
numerical analysis, genetic models, pattern analysis, and so forth. The concept of reproducing
kernel is derived from the study of the integration equation, and paper [1] studied specially
the reproducing kernels and presented its primary theory. From then on, the reproducing
kernel theory and the reproducing kernel method have been studied by many authors [2–7].

LetWm
2 [0, T] denote the function space on a finite interval [0, T],Wm

2 [0, T] = {f(t), t ∈
[0, T], f (m−1)(t) ∈ L2[0, T]}, and this space becomes a reproducing kernel Hilbert space
(RKHS) if we endow it with some inner product. This kind of the reproducing kernel space
is the most popular space for solving the boundary value problems using reproducing kernel
method. But in paper [8], the author firstly considered the reproducing kernel space with
weighted integral W2

2,ρ[0, T] = {u(t), t ∈ [0, T], u′(t) is an absolute continuous real-valued
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function on [0, T],
∫T
0

√
t(u′′(t))2dt < +∞} and used it solving Volterra integral equation with

weakly singular kernel. It is obvious that W2
2 [0, T] ⊆ W2

2,ρ[0, T] and W2
2,ρ[0, T] will be more

widely applied.
In this paper, we are concerned with the reproducing kernel space with weighted

integral Wm
2,α[0, T] = {u(t), t ∈ [0, T], u′(t), . . . , u(m−1) are absolute continuous real-valued

functions on [0, T],
∫T
0 tα(u(m)(t))2 dt < +∞}, where α is a constant and satisfies 0 ≤ α < 1

(when α = 0, Wm
2,α[0, T] is Wm

2 [0, T]). The method for computing the corresponding
reproducing kernel is given.

2. Preliminaries

In order to get themain results of the paper, we introduce themethod of Zhang for calculating
the reproducing kernel ofWm

2 [a, b] in a nutshell in this section.
The method of Zhang has very powerful system modeling capability. The idea is

coming from the relationship between the Green function with reproducing kernel.
Set L = Dm + am−1Dm−1 + · · · + a1D + a0(t), t ∈ [a, b], where aj(t) ∈ Cj[a, b] and KerL

= {f ∈ Wm
2 [a, b] : Lf = 0}.

Definition 2.1. ϕ1(t), . . . , ϕm(t) are the basis in KerL. The i-th row of Wronskian matrix
is (ϕ(i−1)

1 (t), . . . , ϕ(i−1)
m (t)), and the last line of its inverse matrix is (ϕ̃1(t), . . . , ϕ̃m(t)). Call

ϕ̃1(t), . . . , ϕ̃m(t) are the adjunct functions of ϕ1(t), . . . , ϕm(t).

Lemma 2.2. Assume

g(t, τ) =
m∑

i=1

ei(t)ẽi(τ)(t − τ)0+ (2.1)

and γ1, . . . , γm is a system of linear independent functions in KerL and satisfies

γk

∫b

a

g(·, τ)u(τ)dτ =
∫b

a

γkg(·, τ)u(τ)dτ, (2.2)

where e1(t), . . . , em(t) are the dual basis of KerL relative to γ1, . . . , γm, and ẽ1(t), . . . , ẽm(t) are the
adjunct functions of e1(t), . . . , em(t). Then for any functions f ∈ Wm

2 [a, b], they satisfy the form

f(t) =
m∑

i=1

(
γif
)
ei(t) +

∫b

a

G(t, τ) · Lf(τ)dτ, (2.3)

where G(t, τ) is defined below

G(t, τ) = g(t, τ) −
m∑

i=1

(
γig(·, τ)

)
ei(t) (2.4)

and the expression is exclusive.
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Lemma 2.3. L is a linear differential operator. Assume γ1, . . . , γm are linear independent functions
in KerL, satisfying (2.2). Then Wm

2 [a, b] is a Hilbert space if the inner product is defined by the
following form:

(
f, h
)
=

m∑

i=1

(
γif
)(
γih
)
+
∫b

a

Lf(t)Lh(t) dt, f, h ∈ Wm
2 [a, b]. (2.5)

Lemma 2.4. Under the assumptions of Lemma 2.2 and the inner product (2.5), the Hilbert space
Wm

2 [a, b] is reproducing kernel Hilbert space with the reproducing kernel can be denoted by

K(t, τ) =
m∑

i=1

ei(t)ei(τ) +
∫b

a

G(t, x)G(τ, x) dx. (2.6)

3. The New Method for Computing the Reproducing Kernel

It is known that the reproducing kernel of a reproducing kernel Hilbert space is existence and
uniqueness. The reproducing kernelK of a Hilbert spaceH completely determines the space
H.

This section discusses the method of calculating reproducing kernels for the following
two cases. The first case is when the weight is constant. In the second case we deal with the
general space Wm

2,α[0, T], where 0 ≤ α < 1, and the result of this part is the main result of this
paper.

3.1. Case 1: The Weight Is Constant

For general space Wm
2 [0, T], let L = Dm be the linear differential operator of order m, and let

λ1, λ2, . . . , λm be the linear independent functions on KerL, where KerL is defined by KerL =
{f ∈ Wm

2 [0, T], Lf = 0}. Let e1, e2, . . . , em be the dual basis of KerL relative to λ1, λ2, . . . , λm.
That means

Lei = 0, λiej = δij , i, j = 1, 2, . . . , m. (3.1)

Let G be the Green’s function of L and satisfy

LtG(t, s) = δ(t − s), λiG(·, s) = 0, i = 1, . . . , m. (3.2)

By the Lemma 2.4, Wm
2 [0, T] is a reproducing kernel Hilbert space if the inner product is

defined by the following form:

(
f, h
)
1 =

m∑

i=1

(
λif
)
(λih) +

∫T

0
Lf(t)Lh(t)dt, f, h ∈ Wm

2 [0, T] (3.3)
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and the reproducing kernel is

K1(t, τ) =
m∑

i=1

ei(t)ei(τ) +
∫T

0
G(t, x)G(τ, x)dx. (3.4)

Let

(
f, h
)
2 =

m∑

i=1

ai

(
λif
)
(λih) +

∫T

0
bLf(t)Lh(t)dt, f, h ∈ Wm

2 [0, T], (3.5)

where both a1, a2, . . . , am and b are positive real numbers. The following proposition holds.

Theorem 3.1. Using the above hypothesis, Wm
2 [0, T] is a reproducing kernel Hilbert space if it has

been endowed with the inner product (3.5) and the reproducing kernel is

K2(t, τ) =
m∑

i=1

ei(t)ei(τ)
ai

+
∫T

0

1
b
G(t, x)G(τ, x) dx. (3.6)

Proof. Let L̃ =
√
bL =

√
bDm, and λ̃if =

√
aiλif .

It is obvious that λ̃1, λ̃2, . . . , λ̃m are also the linear independent functions on Ker L̃. From
Lemma 2.3, we have that Wm

2 [0, T] is a Hilbert space if the inner product is defined by

(
f, h
)
L̃ =

m∑

i=1

(
λ̃if
)(

λ̃ih
)
+
∫T

0
L̃f(t)L̃h(t)dt

=
m∑

i=1

ai

(
λif
)
(λih) +

∫T

0
bLf(t)Lh(t)dt =

(
f, h
)
2.

(3.7)

Next, we will proof K2(t, s) is the reproducing kernel of the space Wm
2 [0, T] with the inner

product (·, ·)2.
K1(t, s) is the reproducing kernel of the space Wm

2 [0, T] with the inner product (·, ·)1.
In particular, K1(t, s) is contained inWm

2 [0, T]. So K2(t, s) is also contained inWm
2 [0, T].

For any f ∈ Wm
2 [0, T],

(
f(s), K2(t, s)

)
2 =

m∑

i=1

ai

(
λif
)
(λiK2(t, ·)) +

∫T

0
bf (m)(s)

∂m

∂sm
K2(t, s)ds. (3.8)
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From (3.1) and (3.2), we have

(
f(τ), K2(t, τ)

)
2

=
m∑

i=1

ai

(
λif
)
λi

(
m∑

i=1

ei(t)ei(τ)
ai

)

+
∫T

0
bf (m)(τ)

∂m

∂τm

∫T

0

1
b
G(t, x)G(τ, x)dx dτ

=
m∑

i=1

(
λif
)
λi

(
m∑

i=1

ei(t)ei(τ)

)

+
∫T

0
f (m)(τ)

∂m

∂τm

∫T

0
G(t, x)G(τ, x)dx dτ.

(3.9)

Similarly, from (3.1) and (3.2), we obtain

f(t) =
(
f(τ), K1(t, τ)

)
1

=
m∑

i=1

(
λif
)
λi

(
m∑

i=1

ei(t)ei(τ)

)

+
∫T

0
f (m)(s)

∂m

∂τm

∫T

0
G(t, x)G(τ, x)dx dτ.

(3.10)

So f(t) = (f(τ), K2(t, τ))2 holds.
The proof is complete.

3.2. Case 2: The Weight Is Variable

In this case, we construct the inner product of the space Wm
2,α[0, T], and calculate the

corresponding reproducing kernel.
Define L1 = tα/2Dm. From the definition of the space Wm

2,α[0, T], we know that L1 :
Wm

2,α[0, T] → L2[0, T] (mapping the spaceWm
2,α[0, T] to the square integrable space on [0, T]).

Under the hypothesis of Case 1, λ1, λ2, . . . , λm are also the linear independent functions
on KerL1, where KerL1 is defined by KerL1 = {f ∈ Wm

2,α[0, T], L1f = 0}, and e1, e2, . . . , em is
also the dual basis of KerL1 relative to λ1, λ2, . . . , λm. ẽ1(t), . . . , ẽm(t) are the adjunct functions
of e1(t), . . . , em(t).

Similar to Case 1, define an algorithm (·, ·)3 as the following form

(
f, h
)
3 =

m∑

i=1

(
λif
)
(λih) +

∫T

0
L1f(t)L1h(t)dt, f, h ∈ Wm

2,α[0, T] (3.11)

Theorem 3.2. Under the above assumption, (·, ·)3 is the inner product of the space Wm
2,α[0, T].

If act in accordance with the four basic rules of the inner product, the proof of this
proposition is easy. So one overlaps the proof.

Divide the space Wm
2,α[0, T] into two parts KerL1 and (KerL1)

⊥, where KerL1 is the
linear space of order m. From the results in [9], one has the following proposition.
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Proposition 3.3. Under the above assumption, KerL1 is the reproducing kernel Hilbert space with
the inner product below

(
f, h
)
4 =

m∑

i=1

(
λif
)
(λih) f, h ∈ KerL1 (3.12)

and the corresponding reproducing kernel is

K4(t, τ) =
m∑

i=1

ei(t)ei(τ). (3.13)

Let

g1(t, τ) =
1

τα/2

m∑

i=1

ei(t)ẽi(τ)(t − τ)0+ =

⎧
⎪⎨

⎪⎩

1
τα/2

m∑

i=1

ei(t)ẽi(τ), t ≥ τ,

0, t < τ,

G1(t, τ) = g1(t, τ) −
m∑

i=1

(
λig1(·, τ)

)
ei(t).

(3.14)

It is obvious that G1(t, τ) = (1/τα/2) G(t, τ).
The following theorem holds.

Theorem 3.4. G1 is the Green’s function of L1 and for any f ∈ Wm
2 [0, T], u(t) = L1f(t), satisfies

L1t

∫T

0
G1(t, τ)u(τ)dτ = u(t),

λiG1(·, τ) = 0, i = 1, 2, . . . , m.

(3.15)

Proof. For any i = 1, 2, ·, m, we have

λiG1(·, τ) = τα/2λiG(·, τ). (3.16)

From (3.2),

λiG1(·, τ) = τα/2λiG(·, τ) = 0, i = 1, 2, ·, m. (3.17)

Then from the results in [9, 10], for any f ∈ Wm
2 [0, T], we obtain

Lt

∫T

0
G(t, τ)Lf(τ)dτ = Lf. (3.18)
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So

L1t

∫T

0
G1(t, τ)u(τ)dτ = tα/2Lt

∫T

0

1
τα/2

G(t, τ)τα/2Lf(τ)dτ

= tα/2Lf(t) = L1f(t) = u(t).

(3.19)

The proof is complete.

Remark 3.5. If acting in accordance with the process of the paper [9], we have

K3(t, τ) =
m∑

i=1

ei(t)ei(τ) +
∫T

0
G1(t, x)G1(τ, x)dx. (3.20)

But K3(t, τ) is not the reproducing kernel of Wm
2 [0, T], since K3(t, τ) /∈ Wm

2 [0, T].

Now, we will give an important property of the arbitrary element of Wm
2,α[0, T].

Theorem 3.6. For any f ∈ Wm
2,α[0, T], L1f(t) = u(t). Then there are some real constant c1,

c2, . . . , cm, satisfying

f(t) =
m∑

i=1

ciei(t) +
∫T

0

(
m∑

i=1

ei(t)ẽi(τ)

)

u(τ)dτ, (3.21)

and the expression is exclusive.

Proof. L1 = tα/2Dm is a linear mapping, and L1 : Wm
2,α[0, T] → L2[0, T] is a homomorphic

mapping. For any u(t) ∈ L2[0, T], we have a function h(x) satisfies

h(t) =
∫T

0

(
m∑

i=1

ei(t)ẽi(τ)

)

u(τ)dτ. (3.22)

Because L1h(t) = u(t) ∈ L2[0, T], h(t) ∈ Wm
2,α[0, T] holds. So L1 : Wm

2,α[0, T] → L2[0, T] is a
surjective homomorphism.

KerL1 = Span{e1, e2, . . . , em} is a linear system and the dimension of the system is m.
So from the knowledge of the group homomorphism, we have

L1 : Wm
2,α [0, T]/KerL1 −→ L2 [0, T] (3.23)

is isomorphic.
On the one hand for any h(t) ∈ Wm

2,α[0, T]/KerL1, there exists the exclusive u(t),
satisfying L1h(t) = u(t). On the other hand for the u(t) ∈ L2[0, T], h0(t) =
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∫T
0 (
∑m

i=1 ei(t)ẽi(τ))u(τ)dτ satisfies h0(t) ∈ Wm
2,α[0, T]/KerL1 and L1h0(t) = u(t). So for

h(t) ∈ Wm
2,α[0, T]/KerL1, that holds

h(t) =
∫T

0

(
m∑

i=1

ei(t)ẽi(τ)

)

L1h(τ)dτ. (3.24)

For any f(t) ∈ Wm
2,α[0, T], f(t) = f0(t) + h(t) holds, where f0(t) ∈ KerL1 and

h(t) ∈ Wm
2,α[0, T]/KerL1. At the same time, the decomposition is exclusive because of the

orthogonality between KerL1 and Wm
2,α[0, T]/KerL1.

Furthermore, KerL1 = Span{e1, e2, . . . , em}, so f0(t) =
∑m

i=1 ciei(t), where c1, c2, . . . , cm
are real numbers, and the expression is exclusive.

So for any f(t) ∈ Wm
2,α[0, T], we have

f(t) = f0(t) + h(t) =
m∑

i=1

ciei(t) +
∫T

0

(
m∑

i=1

ei(t)ẽi(τ)

)

u(τ)dτ, (3.25)

where c1, c2, . . . , cm are real numbers, and the the expression is exclusive.
The proof is complete.

Then similar to the Theorem 3.4, we have the following theorem.

Theorem 3.7. G1 is the Green’s function of L1 and for any f ∈ Wm
2,α[0, T], L1f(t) = u(t), satisfies

L1t

∫T

0
G1(t, τ)u(τ)dτ = u(t). (3.26)

Proof. For any f ∈ Wm
2,α[0, T], L1f(t) = u(t),

L1t

∫T

0
G1(t, τ)u(τ)dτ = tα/2Lt

∫T

0

1
τα/2

G(t, τ)τα/2Lf(τ)dτ

= tα/2Lt

∫T

0
G(t, τ)Lf(τ)dτ.

(3.27)

From Theorem 3.6, we have

Lf(t) = Lt

∫T

0
G(t, τ)Lf(τ)dτ. (3.28)

Thus, we know that (3.26) is true.
The proof is complete.

Theorem 3.8. Under the above hypothesis and the inner product (·, ·)3, Wm
2,α[0, T] is the Hilbert

space.



Journal of Applied Mathematics 9

Proof. The norm of the space is denoted by ‖u‖3 =
√
(u, u)3, where u ∈ Wm

2,α[0, T].
Suppose that {fn}∞n=1 is a Cauchy sequence inWm

2,α[0, T], that is,

∥
∥fn+p − fn

∥
∥2
3 −→ 0 (n −→ ∞). (3.29)

From Theorems 3.6 and 3.1, we have

∥
∥fn+p − fn

∥
∥2
3 =

m∑

i=1

(
λifn+p − λifn

)2 +
∫T

0

[
L1
(
fn+p(t) − fn(t)

)]2
dt −→ 0 (n −→ ∞). (3.30)

By the completeness of KerL1 and L2[0, T], there exist a real number ri, (i = 1, 2, . . . , m) and a
real function h ∈ L2[0, T], such that

lim
n→∞

λifn = ri, i = 1, 2, . . . , m,

lim
n→∞

∫T

0

[
L1fn(t) − h(t)

]2 = 0.
(3.31)

Set f0(t) =
∑m

i=1 riei(t) +
∫T
0 G1(t, τ)h(τ) dτ . It follows that f0 ∈ Wm

2,α[0, T] and

∥∥fn − f0
∥∥2
3 −→ 0 (n −→ ∞). (3.32)

SoWm
2,α[0, T] is complete. Namely, Wm

2,α[0, T] is Hilbert space.
The proof is complete.

Theorem 3.9. Under the above hypothesis and the inner product (·, ·)3,Wm
2,α[0, T] is the reproducing

kernel Hilbert space, and the reproducing kernel is

K3(t, τ) =
m∑

i=1

ei(t)ei(τ) +
∫T

0
G1(t, x)G1(τ, x)dx. (3.33)

Proof. From Theorem 3.8 and Proposition 3.3, we only need to demonstrate that

K5(t, τ) =
∫T

0
G1(t, x)G1(τ, x)dx. (3.34)

is the reproducing kernel of (KerL1)
⊥, where the inner product is defined by

(
f, h
)
5 =
∫T

0
L1f(t)L1h(t)dt, f, h ∈ (KerL1)⊥. (3.35)

From Theorem 3.7, L1K5(t, τ)/= 0, so K5(t, τ) ∈ (KerL1)
⊥.
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For any h ∈ (KerL1)
⊥,

(h(τ), K5(t, τ))5 =
∫T

0
L1h(τ)L1

∫T

0
G1(t, x)G1(τ, x)dx dτ. (3.36)

From Theorem 3.7,

(h(τ), K5(t, τ))5 =
∫T

0
L1h(τ)G1(t, τ)dτ. (3.37)

Furthermore, from the definition of the (KerL1)
⊥, we have

∫T

0
L1h(τ)G1(t, τ)dτ =

m∑

i=1

(λih)ei(t) +
∫T

0
L1h(τ)G1(t, τ)dτ. (3.38)

Finally, from the Theorem 3.6,

h(t) =
m∑

i=1

(λih)ei(t) +
∫T

0
L1h(τ)G1(t, τ)dτ. (3.39)

So

(h(τ), K5(t, τ))5 = h(t). (3.40)

The proof is complete.

4. Example

Example 4.1. We consider the space mentioned in the introduction W2
2,1/2[0, 1] = {u(t), t ∈

[0, 1], u′(t) is an absolute continuous real-valued function on [0, 1],
∫1
0

√
t(u′′(t))2dt < +∞}.

Let L = D2, λ1u = u(0), and λ2u = u′(0). Using Theorems 3.8 and 3.9, W2
2,1/2[0, 1] is endowed

with the inner product:

(u, v)3 = u(0)v(0) + u′(0)v′(0) +
∫1

0

√
xu′′(x)v′′(x)dx (4.1)

and the corresponding reproducing kernel is

K
(
x, y
)
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 + xy +
4xy3/2

3
− 4y5/2

15
, y ≤ x,

1 + xy +
4x3/2y

3
− 4x5/2

15
, y > x.

(4.2)

This result is in accord with Theorem 2.1 of [8].
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If λ1u = u(0) and λ2u = u(1) and the inner product of W2
2,1/2[0, 1] is given by

(u, v)3 = u(0)v(0) + u(1)v(1) +
∫1

0

√
xu′′(x)v′′(x)dx, (4.3)

using the method of this paper, the reproducing kernel of the this space is

K
(
x, y
)
= 1 − x − y +

46xy
15

+
4
(
y − 5

)
xy3/2

15
+
4(x − 5)x3/2y

15

−

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

4y3/2(y − 5x
)

15
, y ≤ x,

4x3/2(x − 5y
)

15
, y > x.

(4.4)

Example 4.2. We consider the space W4
2,α[0, 1] = {u(t), t ∈ [0, 1], u(3)(t) is an absolute

continuous real-valued function on [0, 1],
∫1
0 t

α(u(4)(t))2 dt < +∞}. Let L = D4, λ1u = u(0),
λ2u = u(1), λ3u = u′(0) and λ4u = u′(1). The inner product is given by

(u, v)3 = u(0)v(0) + u(1)v(1) + u′(0)v′(0) + u′(1)v′(1) +
∫1

0
xαu(4)(x)v(4)(x)dx (4.5)

Similar to Example 4.1, we can compute the reproducing kernel of the reproducing kernel
space W4

2,α[0, 1] is

K
(
x, y
)
= (x − 1)2x

(−1 + y
)2
y + x2(−3 + 2x)y2(−3 + 2y

)

+ (−1 + x)x2(−1 + y
)
y2 + (−1 + x)2(1 + 2x)

(−1 + y
)2(1 + 2y

)

−
(
2(−1 + x)x2(3 + 3α

(−1 + y
) − 8y

)
y2)

(
720 − 1764α + 1624α2 − 735α3 + 175α4 − 21α5 + α6

)

−
(
10x2(−3 + 2x)

(
1 + a

(−1 + y
) − 3y

)
y2)

(−5040 + 13068α − 13132α2 + 6769α3 − 1960α4 + 322α5 − 28α6 + α7
)

− r
(
x, y
) − r

(
y, x
)
+

{
R
(
x, y
)
, y ≤ x,

R
(
y, x
)
, y > x,

(4.6)
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where

r
(
x, y
)

=
x(4−α)y2(−3(−42 + 55α − 14α2 + α3)x − 3

(−14 + 23α − 10α2 + α3)x2(−2 + y
))

6(−7 + α)(−2 + α)(−1 + α)
(
360 − 342α + 119α2 − 18α3 + α4

)

+

(
x(4−α)y2((−210 + 107α − 18α2 + α3)y +

(−6 + 11α − 6α2 + α3)x3(−3 + 2y
)))

(
6(−7 + α)(−2 + α)(−1 + α)

(
360 − 342α + 119α2 − 18α3 + α4

)) ,

R
(
x, y
)

=
y(4−α)((−7 + α)(−6 + α)(−5 + α)x3 − 3(−7 + α)(−6 + α)(−1 + α)x2y

)

6(−7 + α)(−6 + α)(−5 + α)(−4 + α)(−3 + α)(−2 + α)(−1 + α)

+
y(4−α)(3(−7 + α)(−2 + α)(−1 + α)xy2 − (−3 + α)(−2 + α)(−1 + α)y3)

6(−7 + α)(−6 + α)(−5 + α)(−4 + α)(−3 + α)(−2 + α)(−1 + α)
.

(4.7)

5. Conclusion

In this paper, we have proposed a method to compute the reproducing kernel on the
reproducing kernel space with weighted integral. Theorems 3.8 and 3.9 are the most
important theorems of the paper. To our best knowledge, Theorem 3.6 is the first results about
the component of the space Wm

2,α[0, T]. From the example, we know that the reproducing
kernel space of [8] is just one space of the Wm

2,α[0, T], and the proposed method of this paper
is a universal method.
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