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A coupled method of Laplace transform and Legendre wavelets is presented to obtain exact
solutions of Lane-Emden-type equations. By employing properties of Laplace transform, a new
operator is first introduced and then its Legendre wavelets operational matrix is derived to convert
the Lane-Emden equations into a system of algebraic equations. Block pulse functions are used to
calculate the Legendre wavelets coefficient matrices of the nonlinear terms. The results show that
the proposed method is very effective and easy to implement.

1. Introduction

The Lane-Emden-type equation has attracted much attention from mathematicians and
physicists, since it is widely used to investigate the theory of stellar structure, the thermal
behavior of spherical cloud gas, and theory of thermionic currents [1–3]. One of the general
forms of Lane-Emden type equations is

y′′ +
2
x
y′ + f

(
x, y

)
= g(x), 0 ≤ x ≤ 1, (1.1)



2 Journal of Applied Mathematics

subject to conditions

y(0) = a, y′(0) = b, (1.2)

where a and b are constants and f(x, y) is a nonlinear function of x and y.
The solution of the Lane-Emden equations is numerically challenging due to the

singularity behavior at the origin and nonlinearities. Therefore, much attention has been
paid to searching for the better and more efficient methods for determining a solution,
approximate or exact, analytical or numerical, to the Lane-Emden equations. The existing
methods fall into two groups: the analytical methods and the numerical ones. The analytical
methods express the exact solution of the equation in the form of elementary functions
and convergent function series, such as the Adomian decomposition method (ADM) [4–
7], homotopy perturbation method (HPM) [8–10], variational iteration method (VIM)
[11–13], homotopy analysis method (HAM) [14, 15], power series solution [16], and
differential transformation method [17, 18]. Unlike the analytical methods, the numerical
ones approximate the exact solution on a finite set of distinct points, such as the Legendre
Tau method [19] and sinc-collocation method [20], Lagrangian approach [21], successive
linearization method [22], wavelets and collocation method [23–26], and spectral method
[27].

The Laplace transform is a wonderful tool for solving linear differential equations
and has enjoyed much success in this realm. However, it is totally incapable of handling
nonlinear equations because of the difficulties caused by nonlinear terms. Since Laplace
Adomian decomposition method (LADM) was proposed by Khuri [28] and then developed
by Khan [29] and Khan andGondal [30], the couplemethods that based on Laplace transform
and other methods have received considerable attention in the literature. What is more, the
homotopy perturbation method [31] and the variational iteration method [32] are combined
with the well-known Laplace transform to develop a highly effective technique for handling
many nonlinear problems. For example, the coupledmethods [33–38] based on the homotopy
perturbation method and Laplace transform have been proved to be very effective for the
solution of nonlinear problems.

Wavelets theory, as a relatively new and emerging area in mathematical research,
has received considerable attention in dealing with various problems of dynamic systems.
The fundamental idea of this technique is that it reduces these problems to those of
solving a system of algebraic equations, thus greatly simplifies the problem and reduces
the computation cost [6]. Moreover, wavelets establish a connection with fast numerical
algorithms. Yousefi [25] has obtained the numerical solutions of the Lane-Emden equations
(1.1) by converting it into an integral equation and then using Legendre wavelets and
Gaussian integration method. Furthermore, Pandey et al. [26] obtained the numerical
solutions of Lane-Emden equations by using the operational matrix of derivative of the
Legendre polynomials.

Motivated and inspired by the ongoing research in these areas, we propose a coupled
method of Laplace transform and Legendre wavelets to establish exact solutions of (1.1). The
advantage of our method is its capability of combining the two powerful methods to obtain
exact solutions of nonlinear equations. The remainder of the paper is organized as follows.
In Section 2, we describe some preliminaries about Legendre wavelets and Block function
pulses. The proposed method is detailed in Section 3. Four examples are given in Section 4
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to demonstrate the validity and applicability of the proposed method. Finally the concluding
remarks are given in Section 5.

2. Preliminaries

2.1. Legendre Wavelets

Legendre wavelets ψnm(t) = ψ(k, n̂,m, t) have four arguments: n̂ = 2n − 1, n = 1, 2, 3, . . . , 2k−1,
k is any positive integer, m is the order for Legendre polynomials, and t is the normalized
time. They are defined on the interval [0, 1) as follows:

ψnm(t) =

⎧
⎪⎨

⎪⎩

√
m + 1
2

2k/2Lm
(
2kt − n̂), for

n̂ − 1
2k

≤ t ≤ n̂ + 1
2k

,

0, otherwise,
(2.1)

wherem = 0, 1, 2, . . .M − 1, n = 1, 2, . . . , 2k−1. The coefficient
√
m + 1/2 is for orthonormality,

the dilation parameter a = 2−k, and the translation parameter b = n̂2−k. Here, Lm(t) are
Legendre polynomials of orderm defined on the interval [−1, 1].

A function f(t) defined over [0, 1), may be expanded by Legendre wavelet series as

f(t) =
+∞∑

n=1

+∞∑

m=0

cnmψnm(t), (2.2)

with

cnm =< f(t), ψnm(t) >, (2.3)

and < ·, · > denoting the inner product.
If the infinite series in (2.2) is truncated, then it can be written as

f(t) =
2k−1∑

n=1

M−1∑

m=0

cnmψnm(t) = CTΨ(t), (2.4)

where C and Ψ(t) are 2k−1M × 1 matrices defined as

C(t) = [c10, c11, . . . , c1M−1, c20, . . . , c2M−1, . . . , c2k−10, . . . , c2k−1M−1]
T , (2.5)

Ψ(t) =
[
ψ10(t), ψ11(t), . . . , ψ1M−1(t), . . . , ψ2k−10(t), . . . , ψ2k−1M−1(t)

]T
. (2.6)
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2.2. Block Pulse Functions

Block pulse functions (BPFs) form a complete set of orthogonal functions that are defined on
the interval [0, b) as

bi(t) =

⎧
⎨

⎩
1,

i − 1
m

b ≤ t < i

m
b,

0, elsewhere
(2.7)

for i = 1, 2 , . . . , m. It is also known that for arbitrary absolutely integrable function f(t) on
[0, b) can be expanded in block pulse functions:

f(t) � ξTBm(t), (2.8)

in which

ξT =
[
f1, f2, . . . , fm

]
, Bm(t) = [b1(t), b2(t), . . . , bm(t)], (2.9)

where fi are the coefficients of the block-pulse function, given by

fi =
m

b

∫b

0
f(t)bi(t)dt =

m

b

∫ (i/m)b

((i−1)/m)b
f(t)bi(t)dt. (2.10)

The elementary properties of BPFs are as follows.

(1) Disjointness: the BPFs are disjoined with each other in the interval t ∈ [0,T):

bi(t)bj(t) = δijbi(t) (2.11)

for i, j = 1, 2, . . . , m.

(2) Orthogonality: the BPFs are orthogonal with each other in the interval t ∈ [0,T):

∫T

0
bi(t)bj(t)dt = hδij (2.12)

for i, j = 1, 2, . . . , m.

(3) Completeness: the BPFs set is complete when m approaches infinity. This means
that for every f ∈ L2([0, T)), when m approaches to the infinity, Parseval’s identity
holds:

∫T

0
f2(t)dt =

∞∑

i=1

f2
i ‖bi(t)‖2, (2.13)
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where

fi =
1
h

∫T

0
f(t)bi(t)dt. (2.14)

Definition 2.1. Let A and B are two vectors ofm; then A ⊗ B = (ai × bi)m.

Lemma 2.2. Assuming f(t) and g(t) are two absolutely integrable functions, which can be expanded
in block pulse function as f(t) = FB(t) and g(t) = GB(t) respectively, then one has

f(t)g(t) = FB(t)BT (t)GT = HB(t), (2.15)

whereH = F ⊗G.

Proof. By using the property of BPFs in (2.11), we have

FB(t)BT (t)GT =
[
f1g1φ1(t) f2g2φ2(t) · · · fmgmφm(t)

]
= HB(t), (2.16)

and this completes the proof.

2.3. Nonlinear Term Approximately

The Legendre wavelets can be expanded intom-set of block-pulse functions as

Ψ(t) = Φm×mBm(t). (2.17)

Taking the collocation points as in the following,

ti =
i − 1/2
2k−1M

, i = 1, 2, . . . , 2k−1M. (2.18)

Them-square Legendre matrix Φm×m is defined as

Φm×m �
[
Ψ(t1) Ψ(t2) · · · Ψ(t2k−1M)

]
. (2.19)

The operational matrix of product of Legendre wavelets can be obtained by using the
properties of BPFs. Let f(t) and g(t) be two absolutely integrable functions, which can be
expanded in Legendre wavelets as f(t) = FTΨ(t) and g(t) = GTΨ(t), respectively.

From (2.17), we have

f(t) = FTΨ(t) = FTΦmmB(t), g(t) = GTΨ(t) = GTΦmmB(t). (2.20)
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By employing Lemma 2.2 and (2.17), we get

f(t)g(t) =
(
FTΦmm ⊗GTΦmm

)
B(t)

=
(
FTΦmm ⊗GTΦmm

)
inv(Φmm)ΦmmB(t)

=
(
FTΦmm ⊗GTΦmm

)
inv(Φmm)Ψ(t).

(2.21)

3. Laplace Legendre Wavelets Method (LLWM)

In this section, we will briefly demonstrate the utilization of the LLWM for solving the Lane-
Emden equations given in (1.1).

By multiplying x and then applying the Laplace transform to both sides of (1.1), we
obtain

−s2L′{y
} − y(0) + L{xf(x, y) − xg(x)} = 0, (3.1)

where L is operator of Laplace transform and L′{y} = dL{y}/ds.
Equation (3.1) can be rewritten as

L′{y
}
= −s−2y(0) + s−2L{xf(x, y) − xg(x)}. (3.2)

By integrating both sides of (3.2) from 0 to swith respect to s, we have

L
{
y
}
=
∫s

0
L′{y

}
ds = −

∫ s

0
s−2y(0)ds +

∫s

0
s−2L

{
xf

(
x, y

) − xg(x)}ds. (3.3)

Taking the inverse Laplace transform to (3.3), we get

y = L−1
{
−
∫s

0
s−2y(0)ds

}
+ L−1

{∫s

0
s−2L

{
xf

(
x, y

) − xg(x)}ds
}
. (3.4)

By using the initial conditions from (1.2), we have

y = a + L−1
{∫ s

0
s−2L

{
xf

(
x, y

) − xg(x)}ds
}
. (3.5)

For convenience, we define an operator Π = L−1{∫s0 s−2L{·}ds}. Therefore, (3.5) can be
represented as

y = a + Π
{
xf

(
x, y

) − xg(x)}. (3.6)

Now, we will show how to derive the Legendre wavelets operational matrix of
operator Π. First of all, three corollaries are given.
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Corollary 3.1. Let Ψ(x) be the one-dimensional Legendre wavelets vector defined in (2.6), then one
has

xΨ(x) = ABA−1Ψ(x), (3.7)

where B isM ×M matrix

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 0 1
0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

M×M

. (3.8)

Proof. Let Φ(x) = [1, x, x2, . . . , xM−1]T ; then by expanding Ψ(x) by Φ(x), we obtain

Ψ(x) = AΦ(x), (3.9)

where A isM ×Mmatrix. For example, whenM = 5, we have

A5 × 5 =

⎡

⎢⎢⎢⎢⎢
⎣

1 0 0 0 0
−√3 2

√
3 0 0 0√

5 −6√5 6
√
5 0 0

−√7 12
√
7 −30√7 20

√
7 0

3 −60 270 −420 210

⎤

⎥⎥⎥⎥⎥
⎦
. (3.10)

From (3.9), we obtain

xΨ(x) = xAΦ(x) = AxΦ(x) = ABΦ(x) = ABA−1AΦ(x) = ABA−1Ψ(x), (3.11)

and this completes the proof.

Corollary 3.2. Let Ψ(x) be the one-dimensional Legendre wavelets vector defined in (2.6), then one
has

Π{Ψ(x)} ≈ HΨ(x). (3.12)

Proof. From the definition of operator Π, we can know

Π{xm} = L−1
{∫s

0
s−2L{xm}ds

}
= L−1

{∫s

0

m!
sm+3

ds

}

= L−1
{ −m!
(m + 2)sm+2

}
=

−1
(m + 2)(m + 1)

xm+1.

(3.13)



8 Journal of Applied Mathematics

By further analysis, we obtain

Π{Φ(x)} = DBΦ(x), (3.14)

where matrix B is give in (3.8) and matrix D is defined as

D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1
2

0 · · · 0 0

0 −1
6

· · · 0 0
...

...
. . .

...
...

0 0 · · · − 1
(M − 1)M

0

0 0 · · · 0 − 1
M(M + 1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

M×M

. (3.15)

So we finally have

Π{Ψ(x)} = Π{AΦ(x)} = AΠ{Φ(x)} = ADBΦ(x) = ADBA−1Ψ(x). (3.16)

LetH = ADBA−1, we get (3.12), and this completes the proof.

Corollary 3.3. LetΨ(x) be the one dimension Legendre wavelets vector defined in (2.6); then one has

Π{xΨ(x)} = HxΨ(x), (3.17)

whereHx = ABDBA−1:

Π{xΨ(x)} = Π
{
ABA−1Ψ(x)

}
= ABDBA−1Ψ(x). (3.18)

In order to use Legendre wavelets method, we approximate y(x), f(x, y), and xg(x)
as

y(x) = CTΨ(x), f
(
x, y

)
= FTΨ(x), xg(x) = GTΨ(x). (3.19)

Substituting (3.19) into (3.6) and then using the Corollary 3.3, we have

CTΨ(x) = OTΨ(x) + Π
{
x
(
FT −GT

)
Ψ(x)

}
= OTΨ(x) + FTHxΨ(x) −GTHΨ(x). (3.20)

Finally, we can get

CT = OT + FTHx −GTH. (3.21)

Equation (3.21) is a nonlinear equation which can be solved for the elements of C in (3.19) by
the Newton iterative method.



Journal of Applied Mathematics 9

0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x

N
um

er
ic

al
 s

ol
ut

io
n

(a)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

A
bs

ol
ut

e 
er

ro
r

×10−12

(b)

Figure 1: Numerical solution and absolute error of Example 4.1.

4. Numerical Examples

In this section, four different examples are examined to demonstrate the effectiveness and
high accuracy of the LLWM.

Example 4.1. Consider the lane-Emden equation given in [6]

y′′(x) +
2
x
y′(x) + y(x) = 6 + 12x + x2 + x3, 0 ≤ x ≤ 1, (4.1)

subject to the initial conditions

y(0) = 0, y′(0) = 0, (4.2)

with the exact solution y = x2 + x3.
Applying the method proposed in Section 3, we have

CT (I −Hx) = −GTH. (4.3)

When k = 1 andM = 5, the numerical solution and the absolute error of Example 4.1
are plotted in Figure 1. We see that a good approximation is obtained by using a few terms of
Legendre wavelets.



10 Journal of Applied Mathematics

Example 4.2. Consider the lane-Emden equation of index n:

y′′(x) +
2
x
y′(x) + yn(x) = 0, 0 ≤ x ≤ 1, n = 1, 2, 3, 4, 5, (4.4)

subject to the initial conditions

y(0) = 1, y′(0) = 0. (4.5)

When n = 1 and n = 5, the exact solutions are y = sinx/x and (1 + x2/2)−1/2, respectively.
Applying the method developed in Section 3, we have

CT = OT + FTHx. (4.6)

From [18], we can get the four terms approximate solution of (4.4) as follows:

n = 2, y(x) =

(

1 − x2

6
+
x4

60
− x6

7560
+

x8

8505

)

,

n = 3, y(x) =

(

1 − x2

6
+
x4

40
− 19x6

5040
+

619x8

1088640

)

,

n = 4, y(x) =

(

1 − x2

6
+
x4

30
− x6

140
+

43x8

27216

)

,

n = 5, y(x) =

(

1 − x2

6
+
x4

24
− 5x6

432
+

35x8

10368

)

.

(4.7)

In the case of n = 1, when k = 1 andM = 11, the results of Example 4.2 are plotted in
Figure 2. We observe that the accuracy of LLWM solution is very high. For the case of n = 5,
which has strong nonlinearity, we plot the results when k = 1 andM = 16 in Figure 3. It can
be noted that the LLWM solution is very close to the exact solution. In addition, we give the
numerical solutions of difference n in Figure 4.

Example 4.3. Consider the Lane-Emden equation given in [7] by

y′′(x) +
2
x
y′(x) + y3(x) −

(
6 + x6

)
= 0, 0 ≤ x ≤ 1, (4.8)

subject to the initial conditions

y(0) = 0, y′(0) = 0, (4.9)

with the exact solution y = x2.
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Figure 2: Numerical solution and absolute error of Example 4.2 when n = 1.
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Figure 3: Numerical solution and absolute error of Example 4.2 when n = 5.
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Figure 4: Numerical solutions of Example 4.2 for difference n.

Applying the method developed in Section 3, we have

CT = FTHx −GTH. (4.10)

When k = 1 andM = 9, the numerical solution and the absolute error of Example 4.3
are plotted in Figure 5. We observe that the accuracy of LLWM is very high and only needs a
few terms of Legendre wavelets.

Example 4.4. Consider the following nonlinear Lane-Emden differential equation [7, 8, 13]:

y′′ +
2
t
y′ + 4

(
2ey + ey/2

)
= 0, (4.11)

subject to initial conditions

y(0) = 0, y′(0) = 0. (4.12)

The exact solution is y(x) = −2 ln(1 + x2).
Here, we first expand f(x, y) = 4(2ey + ey/2) by Taylor series and then have

f
(
x, y

)
= 12 + 10y +

9
2
y2 +

17
12
y3 +

11
32
y4 +

13
192

y5 + · · · . (4.13)

Considering only the first five terms we can write

Π
{
xf

(
x, y

)} ≈ Π
{
x

[
12 + 10y +

9
2
y2 +

17
12
y3 +

11
32
y4

]}
. (4.14)
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Figure 5: Numerical solution and absolute error of Example 4.3.

We let g(x) = 12x and then approximate g(x) and f(x, y) − g(x) by the Legendre
wavelets as

g(x) = GTΨ(x), f
(
x, y

) − g(x) = FTΨ(x). (4.15)

By applying the LLWM, we have

CT = FTHx +GTH. (4.16)

The analytical methods, such as the ADM [7], HPM [8], and VIM [13], can get the
exact solution of Example 4.4. From [7, 8, 13], we can know that the four-term solution of the
above methods is y(x) = −2(x2 − (1/2)x4 + (1/3)x6 − (1/4)x8).

When k = 1 andM = 9, the numerical solutions of Example 4.4 are plotted in Figure 6.
We observe that the LLWM solution is more accurate than the four-term solution of HPM or
ADM or VIM. The LLWM can only get the approximate solution because of the error caused
by expanding the nonlinear term. However, the LLWM can avoid the symbolic computation
and only needs a few terms of Legendre wavelets. Since the exact solution is an analytic
function, the higher accuracy can be obtained by takingM > 9.
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5. Conclusion

In this paper, we have successfully developed a coupled method of Laplace transform and
Legendre wavelets (LLWM) for solution of Lane-Emden equations. The advantage of our
method is that only small size operational matrix is required to provide the solution at high
accuracy. It can be clearly seen in the paper that the proposed method works well even
in the case of high nonlinearity. Compared to the analytical methods, such as the ADM,
VIM, and HPM, the LLWM can only get the approximate solution because of the error
caused by expanding highly nonlinear terms. However, the developed vector-matrix form
makes LLWM a promising tool for Lane-Emden-type equations, because LLWM is computer-
oriented and can use many existing fast algorithms to reduce the computational cost.
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