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The time-fractional heat conduction equation with the Caputo derivative of the order 0 < α < 2
is considered in a half-space in axisymmetric case under two types of Robin boundary condition:
the mathematical one with the prescribed linear combination of the values of temperature and the
values of its normal derivative and the physical condition with the prescribed linear combination
of the values of temperature and the values of the heat flux at the boundary.

1. Introduction

The generalized Fourier law, the time-nonlocal dependence between the heat flux vector q
and the temperature gradient grad T with the “long-tail memory” power kernel [1, 2] (see
also [3]) as

q(t) = − k

Γ(α)
∂

∂t

∫ t

0
(t − τ)α−1grad T(τ)dτ, 0 < α ≤ 1;

q(t) = − k

Γ(α − 1)

∫ t

0
(t − τ)α−2grad T(τ)dτ, 1 < α ≤ 2,

(1.1)

where Γ(α) is the gamma function, can be interpreted in terms of the fractional calculus:

q(t) = −kD1−α
RL grad T(t), 0 < α ≤ 1,

q(t) = −kIα−1grad T(t), 1 < α ≤ 2,
(1.2)
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and in combination with the law of conservation of energy as

ρmC
dT

dt
= −div q (1.3)

results in the time-fractional heat conduction equation with the Caputo fractional derivative

∂αT

∂tα
= aΔT, 0 < α ≤ 2. (1.4)

Here, ρm is the mass density, C denotes the specific heat capacity, and a = k/(ρmC) is the
thermal diffusivity coefficient.

Recall that the Riemann-Liouville fractional integral Iαf(t) and derivativeDα
RLf(t) are

defined as follows (see [4–6]):

Iαf(t) =
1

Γ(α)

∫ t

0
(t − τ)α−1f(τ)dτ, α > 0, (1.5)

Dα
RLf(t) =

dm

dtm

[
1

Γ(m − α)

∫ t

0
(t − τ)m−α−1f(τ)dτ

]
, m − 1 < α < m, (1.6)

whereas the Caputo fractional derivative has the following form [5–7]:

dαf(t)
dtα

=
1

Γ(m − α)

∫ t

0
(t − τ)m−α−1 dmf(τ)

dτm
dτ, m − 1 < α < m. (1.7)

A detailed explanation of derivation of time-fractional heat conduction equation (1.4)
from the constitutive equations (1.2) and the law of conservation of energy (1.3) can be found
in [8]. Here we briefly present the main idea. In the case 0 < α ≤ 1, as a consequence of (1.2),
(1.3), and (1.6), we have

∂T

∂t
= a

∂

∂t

[
1

Γ(α)

∫ t

0
(t − τ)α−1ΔT(τ)dτ

]
, (1.8)

or after integration with respect to time as

T(t) − T(0) = aIαΔT. (1.9)

Applying to both sides of (1.9) the Caputo derivative ∂α/∂tα, and taking into account that for
α > 0 [6],

∂α

∂tα
IαT(t) = T(t), (1.10)

we obtain the time-fractional heat conduction equation (1.4) for 0 < α ≤ 1.
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Similarly, for 1 < α ≤ 2, we get

∂T

∂t
= aIα−1ΔT. (1.11)

Applying ∂α−1/∂tα−1 to both sides of (1.11) gives (1.4) for 1 < α ≤ 2 as the following equality
fulfills [5]

∂α−1

∂tα−1
∂T

∂t
=

∂αT

∂tα
. (1.12)

If the heat conduction equation is investigated in a bounded domain, the boundary
conditions should be prescribed. The mathematical Robin boundary condition is a
specification of a linear combination of the values of temperature and the values of its normal
derivative at the boundary of the considered domain

(
c1T + c2

∂T

∂n

)∣∣∣∣
S

= F0(xS, t), (1.13)

with some nonzero constants c1 and c2, while the physical Robin boundary condition specifies
a linear combination of the values of temperature and the values of the heat flux at the
boundary of the domain. For example, the condition of convective heat exchange between
a body and the environment with the temperature Te

q · n|S = h(T |S − Te), (1.14)

where h is the convective heat transfer coefficient, leads to

(
hT + kD1−α

RL

∂T

∂n

)∣∣∣∣
S

= hTe(xS, t), 0 < α ≤ 1,

(
hT + kIα−1

∂T

∂n

)∣∣∣∣
S

= hTe(xS, t), 1 < α ≤ 2.

(1.15)

The literature on mathematical aspects concerning correctness of initial-boundary-
value problems for time-fractional diffusion equation and form and properties of its solutions
is quite extensive (see, e.g., [9–16], among others). Geometrical explanation of fractional
calculus is given in [17–19].

There are only a few papers [20, 21] in which the fractional diffusion is investigated
under the mathematical Robin boundary condition. In previous publications, problems for
a cylinder [22] and a sphere [23] under mathematical and physical Neumann boundary
conditions were considered. In the present paper, for the first time, the solutions to time-
fractional heat conduction equation in a half-space are studied under both the mathematical
and physical Robin boundary conditions. The Laplace integral transform with respect to
time t, the Hankel transform with respect to the spatial coordinate r, and the sin-cos-
Fourier transforms with respect to spatial coordinate z are used. The solutions under the
mathematical and physical Neumann boundary conditions are obtained as particular cases.
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2. Mathematical Preliminaries

2.1. Laplace Transform

The Laplace transform is defined as

L{f(t)} = f∗(s) =
∫∞

0
f(t)e−stdt, (2.1)

where s is the transform variable.
The inverse Laplace transfrom is carried out according to the Fourier-Mellin formula:

L−1 {f∗(s)
}
= f(t) =

1
2πi

∫ c+i∞

c−i∞
f∗(s)estds, t > 0, (2.2)

where c is a positive fixed number.
The Laplace transform of the Riemann-Liouville fractional integral of the order α is

carried out according to the formula similar to the Laplace transform ofm-fold primitive of a
function as

L{Iαf(t)} = 1
sα

f∗(s). (2.3)

The Caputo derivative for its Laplace transform requires the knowledge of the initial
values of the function f(0+) and its integer derivatives f (k)(0+) of the order k = 1, 2, . . . , m − 1

L
{

dαf(t)
dtα

}
= sαf∗(s) −

m−1∑
k=0

f (k)(0+)sα−1−k, m − 1 < α < m, (2.4)

whereas the Riemann-Liouville derivative for its Laplace transform rule requires the
knowledge of the initial values of the fractional integral Im−αf(0+) and its derivatives of the
order k = 1, 2, . . . , m − 1

L{Dα
RLf(t)

}
= sαf∗(s) −

m−1∑
k=0

DkIm−αf(0+)sm−1−k, m − 1 < α < m. (2.5)

The reader interested in applications of integral transforms in fractional calculus is referred
to [4–7, 24].
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2.2. Hankel Transform

The Hankel transform is used to solve problem in cylindrical coordinates in the domain 0 ≤
r < ∞ and is defined as

H{f(r)} = f∗(η) =
∫∞

0
f(r)Jν

(
ηr
)
r dr,

H−1{f∗(η)} = f(r) =
∫∞

0
f∗(η)Jν(ηr)η dη,

(2.6)

where Jν(r) is the Bessel function of the order ν.
The following formula is fulfilled:

H
{

d2f(r)

dr2
+
1
r

df(r)
dr

− ν2

r2
f(r)

}
= −η2f∗(η). (2.7)

2.3. Sin-Cos-Fourier Transform

In the case of boundary condition of the third kind with the prescribed boundary value of
linear combination of a function and its normal derivative

z = 0: − df

dz
+Hf = ϕ0, (2.8)

the following sin-cos-Fourier transform [25] is employed:

F{f(z)} = f∗(ξ) =
∫∞

0
K(z, ξ)f(z)dz,

F−1{f∗(ξ)
}
= f(z) =

2
π

∫∞

0
K(z, ξ)f∗(ξ)dξ,

(2.9)

with the kernel

K(z, ξ) =
ξ cos(zξ) +H sin(zξ)√

ξ2 +H2
. (2.10)

Application of the sin-cos-Fourier transform to the second derivative of a function
gives

F
{

d2f(z)
dz2

}
= −ξ2f∗(ξ) − ξ√

ξ2 +H2

[
df(z)
dz

−Hf(z)
]∣∣∣∣∣

z=0

. (2.11)
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3. Solution to the Problem under Mathematical Robin
Boundary Condition

Consider the axisymmetric time-fractional heat conduction equation in cylindrical coordi-
nates

∂αT

∂tα
= a

(
∂2T

∂r2
+
1
r

∂T

∂r
+
∂2T

∂z2

)
,

0 ≤ r < ∞, 0 < z < ∞, 0 < t < ∞, 0 < α ≤ 2,

(3.1)

with zero initial conditions

t = 0: T = 0, 0 < α ≤ 2,

t = 0:
∂T

∂t
= 0, 1 < α ≤ 2,

(3.2)

and the mathematical Robin boundary condition

z = 0: HT − ∂T

∂z
= f(r, t). (3.3)

The zero conditions at infinity are also assumed

lim
r→∞

T(r, z, t) = 0, lim
z→∞

T(r, z, t) = 0. (3.4)

The solution to the initial-boundary-value problem (3.1)–(3.4) can be written as

T =
∫ t

0

∫∞

0
f
(
ρ, τ
) Gm

(
r, z, ρ, t − τ

)
ρdρ dτ, (3.5)

where Gm(r, z, ρ, t) is the fundamental solution being the solution of the following problem:

∂αGm

∂tα
= a

(
∂2Gm

∂r2
+
1
r

∂Gm

∂r
+
∂2Gm

∂z2

)
,

0 ≤ r < ∞, 0 < z < ∞, 0 < t < ∞, 0 < α ≤ 2,

t = 0: Gm = 0, 0 < α ≤ 2,

t = 0:
∂Gm

∂t
= 0, 1 < α ≤ 2,

z = 0: HGm − ∂Gm

∂z
=

1
r
δ
(
r − ρ

)
δ(t).

(3.6)

Here, δ(r) is the Dirac delta function.



International Journal of Differential Equations 7

The Laplace transform with respect to time t, the Hankel transform with respect to the
spatial coordinate r, and the sin-cos-Fourier transform with respect to the spatial coordinate
z result in

G∗∗∗
m =

aξJ0
(
ρη
)

√
ξ2 +H2

1
sα + a

(
ξ2 + η2

) , (3.7)

where each of the integral transforms is denoted by the asterisk.
Invertion of the integral transforms leads to

Gm

(
r, z, ρ, t

)
=

2atα−1

π

∫∫∞

0

ξ2 cos(zξ) + ξH sin(zξ)
ξ2 +H2

× Eα,α

[
−a
(
ξ2 + η2

)
tα
]
J0
(
rη
)
J0
(
ρη
)
ηdξ dη.

(3.8)

Here, Eα,β is the Mittag-Leffler function in two parameters α and β defined by the series
representation:

Eα,β(z) =
∞∑

m=0

zm

Γ
(
αm + β

) , α > 0, β > 0, z ∈ C. (3.9)

The essential role of the Mittag-Leffler function in fractional calculus results from the
following formula for the inverse Laplace transform

L−1
{

sα−β

sα + b

}
= tβ−1Eα,β(−btα). (3.10)

Consider several particular cases of solution (3.8).
The case H = 0 corresponds to the mathematical Neumann boundary condition with

the prescribed boundary value of the normal derivative of temperature, and the solution
reads

Gm

(
r, z, ρ, t

)
=

2atα−1

π

∫∫∞

0
Eα,α

[
−a
(
ξ2 + η2

)
tα
]

× cos(zξ)J0
(
rη
)
J0
(
ρη
)
ηdξ dη.

(3.11)
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In the case of classical heat conduction (α = 1), the Mittag-Leffler function:

E1,1

(
−x2
)
= e−x

2
, (3.12)

and taking into account the following integrals [26, 27]:

∫∞

0
xe−ax

2
J0(bx)J0(cx)dx =

1
2a

exp

(
−b

2 + c2

4a

)
I0

(
bc

2a

)
, a > 0,

∫∞

0
e−ax

2
cos(cx)dx =

√
π

2
√
a
exp

(
− c2

4a

)
, a > 0,

∫∞

0

1
x2 + b2

e−ax
2
cos(cx)dx

=
π

4b
eab

2
[
e−bc erfc

(√
ab − c

2
√
a

)
+ ebc erfc

(√
ab +

c

2
√
a

)]
, a > 0, b > 0,

∫∞

0

x

x2 + b2
e−ax

2
sin(cx)dx

=
π

4
eab

2
[
e−bc erfc

(√
ab − c

2
√
a

)
− ebc erfc

(√
ab +

c

2
√
a

)]
, a > 0, b > 0,

(3.13)

where I0(x) is the modified Bessel function, erfcx is the complementary error function, we
get

Gm

(
r, z, ρ, t

)
=

1
2t

exp

(
−r

2 + ρ2 + z2

4at

)
I0
( rρ

2at

)

×
{

1√
πat

−H exp

[(√
atH +

z

2
√
at

)2
]
erfc
(√

atH +
z

2
√
at

)}
.

(3.14)

For the wave equation (α = 2),

E2,2

(
−x2
)
=

sinx
x

, (3.15)
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and after evaluation of the necessary integrals appearing in solution (3.8) (under assumption
ρ = 0) [26, 27]

∫∞

0

x√
x2 + p2

sin
(
b
√
x2 + p2

)
J0(cx)dx =

⎧⎨
⎩

1√
b2 − c2

cos
(
p
√
b2 − c2

)
, 0 < c < b,

0, 0 < b < c.

∫∞

0

cos
(
px
)
cos
(
qx
)

x2 + b2
dx =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

π

2b
e−bp cosh

(
bq
)
, 0 < q < p,

π

2b
e−bq cosh

(
bp
)
, 0 < p < q,

b > 0,

∫∞

0

x cos
(
px
)
sin
(
qx
)

x2 + b2
dx =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−π
2
e−bp sinh

(
bq
)
, 0 < q < p,

π

2
e−bq cosh

(
bp
)
, 0 < p < q,

b > 0,

(3.16)

we obtain the solution

Gm(r, z, 0, t)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
a√

at2 − r2

[
δ
(√

at2 − r2 − z
)
−He−H(

√
at2−r2−z)

]
0 < r <

√
at,

0 < z <
√
at2 − r2,

0
√
at < r < ∞,

√
at2 − r2 < z < ∞

(3.17)

Of particular interest is also the case α = 1/2 for which

E1/2,1/2(−x) = 1√
π

− xex
2
erfc x =

2√
π

∫∞

0
e−u

2−2xuu du, x ≥ 0,

Gm

(
r, z, ρ, t

)
=

1
2
√
πt

∫∞

0
exp

(
−u2 − r2 + ρ2 + z2

8a
√
tu

)
I0

(
rρ

4a
√
tu

)

×
{

1√
2πaut1/4

−H exp

[(√
2auHt1/4 +

z

2
√
2aut1/4

)2
]

× erfc
(√

2auHt1/4 +
z

2
√
2aut1/4

)}
du.

(3.18)
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4. Solution to the Problem under Physical Robin Boundary Condition

Consider the following axisymmetric time-fractional heat conduction equation:

∂αT

∂tα
= a

(
∂2T

∂r2
+
1
r

∂T

∂r
+
∂2T

∂z2

)
,

0 ≤ r < ∞, 0 < z < ∞, 0 < t < ∞, 0 < α ≤ 2,

(4.1)

under zero initial conditions

t = 0: T = 0, 0 < α ≤ 2,

t = 0:
∂T

∂t
= 0, 1 < α ≤ 2,

(4.2)

and the physical Robin boundary condition

z = 0: HT −D1−α
RL

∂T

∂z
= f(r, t), 0 < α ≤ 1,

z = 0: HT − Iα−1
∂T

∂z
= f(r, t), 1 < α ≤ 2,

(4.3)

where H = h/k.
The solution to the initial-boundary-value problem (4.1)–(4.3) has the form

T =
∫ t

0

∫∞

0
f
(
ρ, τ
)Gp

(
r, z, ρ, t − τ

)
ρdρ dτ, (4.4)

where the fundamental solution Gp(r, z, ρ, t) fulfills the following equation

∂αGp

∂tα
= a

(
∂2Gp

∂r2
+
1
r

∂Gp

∂r
+
∂2Gp

∂z2

)
,

0 ≤ r < ∞, 0 < z < ∞, 0 < t < ∞, 0 < α ≤ 2,

(4.5)

under the following conditions:

t = 0: Gp = 0, 0 < α ≤ 2,

t = 0:
∂Gp

∂t
= 0, 1 < α ≤ 2,

z = 0: HGp −D1−α
RL

∂Gp

∂z
=

1
r
δ
(
r − ρ

)
δ(t), 0 < α ≤ 1,

z = 0: HGp − Iα−1
∂Gp

∂z
=

1
r
δ
(
r − ρ

)
δ(t), 1 < α ≤ 2.

(4.6)
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The Laplace transform with respect to time t leads to the following equation:

sαG∗
p = a

(
∂2G∗

p

∂r2
+
1
r

∂G∗
p

∂r
+
∂2G∗

p

∂z2

)
, 0 ≤ r < ∞, 0 < z < ∞, 0 < α ≤ 2, (4.7)

and the following boundary condition:

z = 0: sα−1HG∗
p −

∂G∗
p

∂z
=

1
r
δ
(
r − ρ

)
sα−1. (4.8)

In this case, the kernel of the sin-cos-Fourier transform with respect to the spatial
coordinate z depends on the Laplace transform variable s

K(z, ξ, s) =
ξ cos(zξ) + sα−1H sin(zξ)√

ξ2 +
(
sα−1H

)2 , (4.9)

and in the transform domain we obtain

G∗∗∗
p =

aξJ0
(
ρη
)

√
ξ2 +

(
sα−1H

)2
sα−1

sα + a
(
ξ2 + η2

) . (4.10)

Inversion of the Laplace transform in (4.10) depends on the value of α. For 0 < α ≤ 1,
we have

Gp

(
r, z, ρ, t

)
=

2a
π

∫∫∞

0

∫ t

0
ηJ0
(
rη
)
J0
(
ρη
)
τα−1 Eα,α

[
−a
(
ξ2 + η2

)
τα
]

×
{
(t − τ)−αE2−2α,1−α

[
−H

2

ξ2
(t − τ)2−2α

]
cos(zξ)

+
H

ξ
(t − τ)1−2αE2−2α,2−2α

[
−H

2

ξ2
(t − τ)2−2α

]
sin(zξ)

}
dτ dξ dη,

(4.11)

whereas for 1 < α ≤ 2, we get

Gp

(
r, z, ρ, t

)
=

2a
π

∫∫∞

0

∫ t

0
J0
(
rη
)
J0
(
ρη
)
Eα

[
−a
(
ξ2 + η2

)
τα
]

×
{

ξ2

H2 (t − τ)2α−3 E2α−2,2α−2

[
− ξ2

H2 (t − τ)2α−2
]
cos(zξ)

+
ξ

H
(t − τ)α−2E2α−2,α−1

[
−H

2

ξ2
(t − τ)2−2α

]
sin(zξ)

}
dτ dξ dη.

(4.12)
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The fundamental solution under physical Neumann boundary condition is obtained forH =
0 as

Gp

(
r, z, ρ, t

)
=

2a
π

∫∫∞

0
Eα

[
−a
(
ξ2 + η2

)
tα
]
J0
(
rη
)
J0
(
ρη
)
η cos(zξ)dξ dη. (4.13)

Formulae (4.11) and (4.12) simplify for α = 1/2 and α = 3/2, respectively, taking into
account (3.12) and that

E1,1/2

(
−x2
)
=

1√
π
[1 − 2xD(x)], (4.14)

where

D(x) = e−x
2
∫x

0
eu

2
du (4.15)

is the Dawson integral.

5. Conclusion

We have derived the analytical solutions to time-fractional heat conduction equation in a half-
space under mathematical and physical Robin boundary conditions. The integral transform
technique has been used. It should be emphasized that in the case of physical Robin boundary
condition, the order of integral transforms is important as the kernel of the sin-cos-Fourier
transform depends on the Laplace transform variable. The limiting caseH = 0 corresponds to
solutions of problems under mathematical and physical Neumann boundary conditions with
the prescribed boundary value of the normal derivative and with the prescribed boundary
value of the heat flux, respectively. The difference between mathematical and physical
boundary conditions (as well as the difference between the solutions) disappears in the case
of standard heat conduction equation (α = 1).
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