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We introduce and consider a proximal point algorithm for solving minimization problems using
the technique of Güler. This proximal point algorithm is obtained by substituting the usual
quadratic proximal term by a class of convex nonquadratic distance-like functions. It can be seen
as an extragradient iterative scheme. We prove the convergence rate of this new proximal point
method under mild assumptions. Furthermore, it is shown that this estimate rate is better than the
available ones.

1. Introduction

The purpose of this paper is twofold. Firstly, it proposes an extension of the proximal
point method introduced by Güler [1] in 1992, where the usual quadratic proximal term
is substituted by a class of strictly convex distance-like functions, called Bregman functions.
Secondly, it offers a general framework for the convergence analysis of the proximal point
method of Güler. This framework is general enough to apply different classes of Bregman
functions and still yield simple convergence proofs. The methods being analyzable in this
context are called Güler’s generalized proximal point algorithm, and are closely related to the
Bregman proximal methods [2–5]. The analysis, we develop is different from the works in
[4, 5], since our method is based on Güler’s technique.

2. Preliminaries

To be more specific, we consider the minimization problem in the following form:

f∗ := min
{
f(x) : x ∈ R

n}, (2.1)
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where f : R
n → R ∪ {∞} is a closed proper convex function. To solve the problem (2.1),

Teboulle [6], Chen and Teboulle [2, 6], Eckstein [4] and Burachik [3] proposed a general
scheme using the Bregman proximal mappings of the type Jc

Jc

(
y
)
:= arg min

x∈Rn

{
f(x) + c−1Dh

(
x, y
)}

, (2.2)

where Dh is given by

Dh
(
x, y
)
:= h(x) − h

(
y
) − 〈∇h

(
y
)
, x − y

〉
, (2.3)

with h is a strictly convex and continuously differentiable function.
Throughout this paper, ‖ · ‖ denotes the l2-norm and 〈·, ·〉 denotes the Euclidean inner

product in R
n. Let G be a continuous single-valued mapping from R

n into R
n. The mapping

G is Lipschitz continuous with Lipschitz constant L, if for all x, y ∈ R
n, ‖G(x) − G(y)‖ ≤

L‖x − y‖. We denote also by ρ(x,X) the distance of x to the set X and it is given by ρ(x,X) =
miny∈X‖x − y‖. Further notations and definitions used in this paper are standard in convex
analysis and may be found in Rockafellar’s book [7].

This type of kernels was introduced first by [8] in 1967. The corresponding algorithm
using these Bregman proximal mappings is called the Generalized Proximal Point Method (GPPM)
and known also under the terminology of Bregman Proximal Methods. These proximal method
solve (2.1) by considering a sequence of unconstrained minimization problems, which can be
summed as follows.

Algorithm 2.1. (1) Initialize x0 ∈ R
n : f(x0) < ∞, c0 > 0.

(2) Compute the solution xk+1 by the iterative scheme:

xk+1 := argmin
x∈Rn

{
f(x) + c−1k Dh

(
x, xk

)}
, (2.4)

where {ck} is a sequence of positive numbers and Dh(·, ·) is defined by (2.3).

For Dh(x, y) = (1/2)‖x − y‖2, Algorithm 2.1 coincides with the classical proximal point
algorithm (PPA) introduced by Moreau [9] and Martinet [10].

Under mild assumptions on the data of (2.1) ergodic convergence was proved [2, 5]
when σn =

∑n
k=1 ck → ∞ with the following global rate of convergence estimate:

f(xn) − f(x) = O
(

1
σn

)
, ∀x ∈ R

n. (2.5)

Our purpose in this paper is to propose an algorithm of the same type as Algorithm 2.1 which
has better convergence rate. To this goal, we propose to combine Güler’s scheme [1] and the
Bregman proximal method. The main difference concerns the generation of an additional
sequence {yk} ⊂ R

n in the unconstrained minimization (2.4) in such a way:

xk+1 := argmin
x∈Rn

{
f(x) + c−1k Dh

(
x, yk

)}
. (2.6)
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We show (see Section 4) that this new proximal method possesses the following rate estimate

f(xn) − f(x) = O
(

1
γ2n

)

, ∀x, γn =
n∑

k=1

√
ck, (2.7)

which is faster than (2.5). Further, the convergence in terms of the objective values occurs
when γn → ∞ which is weaker than σn → ∞.

We briefly recall here the notion of Bregman functions called also D-functions
introduced by Brègman ([8], 1967), developed and used in the proximal theory by [4, 6, 11–
13]. Let S be an open subset of R

n and let h : S → R be a finite-valued continuously
differentiable function on S be and let Dh defined by

Dh
(
x, y
)
:= h(x) − h

(
y
) − 〈∇h

(
y
)
, x − y

〉
, x ∈ S, y ∈ S. (2.8)

Definition 2.2. h is called a Bregman function with zone S or a D-function if:
(a) h is continuously differentiable on S and continuous on S,

(b) h is strictly convex on S,

(c) for every λ ∈ R, the partial level sets L1(y, λ) = {x ∈ S : Dh(x, y) ≤ λ} and L2(x, λ) =
{y ∈ S : Dh(x, y) ≤ λ} are bounded for every y ∈ S and x ∈ S, respectively,

(d) if {yk} ∈ S is a convergent sequence with limit y∗, then Dh(y∗, yk) → 0,

(e) if {xk} and {yk} are sequences such that yk → y∗ ∈ S, {xk} is bounded and
Dh(xk, yk) → 0, then xk → y∗.

From the above definition, we extract the following properties (see, for instance, [6,
13]).

Lemma 2.3. Let h be a Bregman function with zone S. Then,

(i) Dh(x, x) = 0 and Dh(x, y) ≥ 0 for x ∈ S and y ∈ S,

(ii) for all a, b ∈ S and c ∈ S,

Dh(c, a) +Dh(a, b) −Dh(c, b) = 〈∇h(b) − ∇h(a), c − a〉, (2.9)

(iii) for all a, b ∈ S,

Dh(a, b) +Dh(b, a) ≤ ‖∇h(a) − ∇h(b)‖ × ‖a − b‖. (2.10)

(iv) for all x ∈ S h∗(∇h(x)) = 〈x,∇h(x)〉 − h(x),

(v) let {xk} ∈ S such that xk → x∗ ∈ S, thenDh(x∗, xk) → 0 and Dh(xk, x∗) → 0.

Lemma 2.4. (i) Let g : R
n → R be a strictly convex function such that

g ∈ C2(Rn), lim
‖x‖→∞

g(x)
‖x‖ = +∞, (2.11)

then g is a Bregman function.
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(ii) If g is a Bregman function, then g(x) + c�x + d for any c ∈ R
n, d ∈ R, also is a Bregman

function.

Remark 2.5. Dh(·, ·) cannot be considered as a distance because of the lack of the triangle
inequality and the symmetry property. Dh(·, ·) is usually called an entropy distance.

The paper is organized as follows. In Section 3, we recall briefly the proximal point
method of Güler. Section 4 will be devoted to the presentation and convergence analysis of
the proposed algorithm. Finite convergence is shown in Section 5. Finally, in Section 6 we
present an application of this method to solve variational inequalities problem.

3. Extragradient Algorithm

In 1992, Güler [1] has developed a new proximal point approach similar to the classical one
(PPA) based on the idea stated by Nesterov [14].

Güler’s proximal point algorithm (GPPA) can be summed up as follows.

Algorithm 3.1. (i) Initialize x0 ∈ R
n : f(x0) < ∞, c0 > 0, A > 0.

Define ν0 := x0, A0 := A, k = 0.

(ii) Compute αk = (
√
(Akck)

2 + 4Akck −Akck)/2.
(iii) Compute the solution xk+1 by the iterative scheme:

yk = (1 − αk)xk + αkνk,

xk+1 := argmin
z∈Rn

{
f(z) + (2ck)−1

∥∥z − yk

∥∥2
}
,

νk+1 = νk −
xk+1 − yk

αk
,

Ak+1 = (1 − αk)Ak.

(3.1)

For the convergence analysis, see Güler [1].

Remark 3.2. The GPPA can be seen as a suitable conjugate gradient type modification of the
PPA of Rockafellar applied to (2.1).

4. Main Result

4.1. Introduction

The method that we are proposing is a modification of Güler’s new proximal point approach
GPPA discussed in Section 3 and can be considered as a nonlinear (or a nonquadratic) version
of GPPA with Bregman kernels. In this paper it is shown that this method, which we call
BGPPA possesses the strong convergence results obtained by Güler [1] and therefore this
new scheme provides faster (global) convergence rates than the classical Bregman proximal



Journal of Applied Mathematics 5

point methods (cf. [2, 4–6, 11, 13, 15]). In this paper, we propose the following algorithm
generalizing Güler’s proximal point algorithm and summed up as follows.

Algorithm 4.1. (i) Initialize: x0 ∈ R
n : f(x0) < ∞, c0 > 0, A > 0.

Define ν0 := x0, A0 := A, k = 0
(ii) Compute: αk such that α2

k
= (1 − αk)Akck/LL

∗.
(iii) Compute the solution xk+1 by the iterative scheme:

yk = (1 − αk)xk + αkνk,

xk+1 := argmin
z∈Rn

{
f(z) + (ck)−1Dh

(
z, yk

)}
,

νk+1 = ∇h∗
(

∇h(νk) +
xk+1 − yk

αk

)

,

Ak+1 = (1 − αk)Ak.

(4.1)

In this section we develop convergence results for the generalized Güler’s proximal
point algorithm GGPPA presented in Section 4.2. Our analysis is basically based on the
following lemma.

Lemma 4.2 ([1, page 654]). One has

k−1∏

j=0

(
1 − αj

) ≤ 1
[
1 +
(√

A/2
)∑k−1

j=0
√
cj
]2 (4.2)

for all αj ∈ [0, 1[ and A > 0.

Theorem 4.3. For all x ∈ S such that f(x) < ∞, one has the following convergence rate estimate:

f
(
xk
)
− f(x) ≤ 4

(
f
(
x0) − f(x) +ADh

(
x, x0))

A
(∑k−1

j=0
√
cj
)2 . (4.3)

Proof. Using the fact that φ0(x) := f(x0) +ADh(x, x0), x0 ∈ S, and Lemma 4.2, we obtain

f
(
xk
)
− f(x) ≤

k−1∏

j=0

(
1 − αj

)(
φ0(x) − f(x)

)

≤ 1
[
1 +
(√

A/2
)∑k−1

j=0
√
cj
]2

(
f
(
x0
)
+ADh

(
x, x0

)
− f(x)

)
.

(4.4)

Since [1 + (
√
A/2)

∑k−1
j=0

√
cj]

2 ≥ (
∑k−1

j=0
√
cj)

2
A/4, then (4.3) holds.
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Theorem 4.4. Consider the sequence {xk} generated by GGPPA and let x∗ be a minimizer of f(x)
on R

n. Assume that

(1) h is a Bregman function with zone S such that Dom(∂f) ⊂ S,
(2) Im(∇h) = R

n or Im(∇h) is open,

(3) ∇h is Lipschitz continuous with coefficient L,

then

(a) for all x0 ∈ Dom(∇h), the sequence {xk} is well defined,
(b) the GGPPA possesses this following convergence rate estimate:

f
(
xk
)
− f∗ ≤

4
(
f
(
x0) − f∗ + ρ

(
x0, X∗)2(AL)/2

)

A
(∑k−1

j=0
√
cj
)2 , (4.5)

(c) f(xk) − f∗ → 0, when
∑∞

k=0
√
ck = ∞,

(d)

f
(
xk
)
− f∗ = O

(
1
k2

)
(4.6)

if ck ≥ c > 0.

Proof. (a) Follows from [4, Theorem 4].
(b) Uses assumption (2.3) in the following manner

Dh

(
x, x0

)
= h(x) − h

(
x0
)
−
〈
∇h
(
x0
)
, x − x0

〉

≤
∣∣∣∣∣

∫1

0

[
∇h
(
x0 + t

(
x − x0

))
− ∇h

(
x0
)]∥∥∥x − x0

∥∥∥dt

∣∣∣∣∣

≤ L
∥∥∥x − x0

∥∥∥
2
∫1

0
tdt

≤ L

2

∥∥∥x − x0
∥∥∥
2
,

(4.7)

and by taking x = x∗ in (4.3), then we have

f
(
xk
)
− f∗ ≤

4
(
f
(
x0) − f∗ + (AL/2)

∥∥x∗ − x0
∥∥2
)

A
(∑k−1

j=0
√
cj
)2 . (4.8)

Since x∗ is arbitrary, then (4.5) holds.
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(c) Is obvious.
(d) It suffices to observe that if ck ≥ c > 0, we have

⎛

⎝
k−1∑

j=0

√
cj

⎞

⎠

2

≥
⎛

⎝
k−1∑

j=0

√
c

⎞

⎠

2

= ck2. (4.9)

4.2. Finite Convergence

Note that the finite convergence property was established for the classical proximal point
algorithm in the case of sharp minima, see, for example, [16]. Recently, Kiwiel [5] has extended
this property to his generalized Bregman proximal method (BPM). In the following theorem
we prove that Algorithm 3.1 has this property. Our proof is based on Kiwiel’s one [5, Theorem
6.1 page 1151].

Definition 4.5. A closed proper convex function f : R
n → R is said to have a sharp minimum

on R
n if and only if there exists τ > 0 such that

f(x) ≥ min
Rn

f + τ min
z∈Argminf

‖x − z‖ ∀x. (4.10)

Theorem 4.6. Under the same hypothesis as in Theorem 4.4 and by considering GGPPA with f
having a sharp minimum on R

n and ck being bounded, then there exists k such that 0 ∈ ∂f(xk) and
xk ∈ X∗.

Proof. Straightforward, using Theorem 4.4 and [5, Theorem 6.1, page 1151].

5. Convergence Rate of GGPPA

If {xk} is a sequence of points, one forms the sequence {zn} of weighted averages given by

zn =
n∑

k=1

ck
σn

xk, σn =
n∑

k=1

ck, (5.1)

where ck > 0. If the sequence {zn} converges, then {xk}k is said to converge ergodically.

Theorem 5.1. GGPPA possesses the following convergence rate:

f(xn) − f∗ = o

(
1
σn

)
, (5.2)

that is, σn(f(xn) − f∗) → 0. Furthermore, if ck ≥ c > 0, then one has

f(xn) − f∗ = o

(
1
n

)
. (5.3)
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Proof. Let x∗ be a minimizer of f . For brevity, we denoteWk = f(xk)−f∗, Vk = f(yk)−f∗ and
Δ = ∇h(yk) − ∇h(xk+1). At optimality in the unconstrained minimization in GGPPA, we can
write

Δ
ck

∈ ∂f
(
xk+1

)
, (5.4)

and by the convexity of f , we have

ck
(
f
(
xk+1

)
− f(x)

)
≤
〈
xk+1 − x,Δ

〉
. (5.5)

Setting x = xk in (5.5), we obtain

ck(Wk −Wk+1) ≥
〈
xk − xk+1,Δ

〉
, (5.6)

and for x = yk, we have

ck(Vk −Wk+1) ≥
〈
yk − xk+1,Δ

〉
. (5.7)

Or again, if we set x = x∗ in (5.5), and using the Cauchy-Schwartz inequality, we obtain

ck
(
f
(
xk+1

)
− f∗
)
≤
〈
xk+1 − x∗,Δ

〉
, (5.8)

that is,

ckWk+1 ≤
〈
xk+1 − yk,Δ

〉
+
〈
yk − x∗,Δ

〉
. (5.9)

Since h is convex, 〈xk+1 − yk,Δ〉 ≤ 0. Then we can write

ckWk+1 ≤
〈
yk − x∗,Δ

〉
, (5.10)

that is,

c2kW
2
k+1 ≤

∥∥∥yk − x∗
∥∥∥
2
‖Δ‖2. (5.11)

Using the relation ‖Δ‖2 ≤ L〈Δ, yk − xk+1〉 and the inequality (5.7), we get the relation

c2kW
2
k+1 ≤ Lck(Vk −Wk+1)

∥∥∥yk − x∗
∥∥∥
2
. (5.12)
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For short we denote Mk = ‖yk − x∗‖ thus, (5.12) becomes

ckW
2
k+1 + LM2

kWk+1 ≤ LM2
kVk. (5.13)

Then by dividing both terms by LM2
k > 0, we get

Wk+1

(
ck

LM2
k

Wk+1 + 1

)

≤ Vk. (5.14)

Since the left-side term is positive, then

V −1
k ≤ W−1

k+1

(
ck

LM2
k

Wk+1 + 1

)−1
. (5.15)

Now following Güler [17, page 410], we use the fact that (1 + x)−1 ≤ 1 − 2x/3, for all x ∈
[0, 1/2]. To apply this inequality, it suffices to show that (ck/LM2

k
)Wk+1 is less than or equal

to 1/2. This can be deduced from this relation (see Lemma 2.3 (ii)):

ckWk+1 ≤
〈
Δ, xk+1 − x∗

〉
= Dh

(
x∗, yk

)
−Dh

(
x∗, xk+1

)
−Dh

(
xk+1, yk

)
. (5.16)

Indeed, since Dh(·, ·) ≥ 0, then (the proof of this next inequality can be found in the proof of
Theorem 4.4-(b))

ckWk+1 ≤ Dh

(
x∗, yk

)
≤ L

2

∥∥∥x∗ − yk
∥∥∥
2
=

LM2
k

2
. (5.17)

Therefore, 0 < (ck/LM2
k
)Wk+1 ≤ 1/2 and we obtain

0 ≤ V −1
k ≤ W−1

k+1

(

1 − 2ck
3LM2

k

Wk+1

)

. (5.18)

To continue the proof, we will separate some different cases.

Case 1. If f(xk+1) ≤ f(yk) ≤ f(xk). Then Wk+1 ≤ Vk ≤ Wk and we have V −1
k ≥ W−1

k . Thus,
(5.18) becomes

W−1
k ≤ V −1

k ≤ W−1
k+1

(

1 − 2ck
3LM2

k

Wk+1

)

, (5.19)

and by summation from k = 0 to k = n, we get

0 ≤
n∑

k=0

W−1
k ≤

n∑

k=0

W−1
k+1 −

n∑

k=0

2ck
3LM2

k

, (5.20)
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that is,

0 ≤ W−1
0 ≤ W−1

n+1 −
n∑

k=0

2ck
3LM2

k

. (5.21)

Then,

0 ≤ Wn+1 ≤ 3L

2
∑n

k=0 ck
∥
∥yk − x∗∥∥−2

. (5.22)

Since x∗ is an arbitrary solution, we can write

0 ≤ Wn+1 ≤ 3L

2
∑n

k=0 ckρ
(
yk,X∗)−2

, (5.23)

and by multiplying both terms by σn+1 =
∑n

k=0 ck, we obtain

0 ≤ σn+1Wn+1 ≤ 3L

2
∑n

k=0(ck/σn+1)ρ
(
yk,X∗)−2

. (5.24)

Since yk and xk+1 converge to the same point (indeed, we can see it via the formula giving
νk+1 in the algorithm GGPPA and ρ(xk+1, X∗) → 0, then ρ(xk+1, X∗)−2 → ∞; hence, we obtain

0 ≤ σn+1

(
f
(
xn+1

)
− f∗
)
−→ 0, (5.25)

which implies

f
(
xn+1

)
− f∗ = o

(
1

σn+1

)
, (5.26)

that is,

f(xn) − f∗ = o

(
1
σn

)
. (5.27)

Case 2. If f(xk+1) ≤ f(xk) ≤ f(yk). ThenWk+1 ≤ Wk ≤ Vk and we have W−1
k+1 ≥ W−1

k therefore;

for n ≥ k we have W−1
n+1 ≥ W−1

k . Thus, using inequality (5.18), we write

W−1
n+1 ≥ W−1

k+1 ≥
2ck

3LM2
k

, (5.28)
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and by summation from k = 0 to k = n, we get

(n + 1)W−1
n+1 ≥

n∑

k=0

2ck
3LM2

k

. (5.29)

Then,

0 ≤ Wn+1 ≤ 3L(n + 1)

2
∑n

k=0 ck
∥
∥yk − x∗∥∥−2

. (5.30)

Since x∗ is an arbitrary solution, we can write

0 ≤ Wn+1 ≤ 3L(n + 1)

2
∑n

k=0 ckρ
(
yk,X∗)−2

, (5.31)

and by multiplying both terms by σn+1 =
∑n

k=0 ck, we obtain

0 ≤ σn+1Wn+1 ≤ 3L

2
∑n

k=0(ck/(n + 1)σn+1)ρ
(
yk,X∗)−2

. (5.32)

Since yk and xk+1 converge to the same point (indeed, we can see it via the formula giving
νk+1 in the algorithm GGPPA and ρ(xk+1, X∗) → 0, then ρ(xk+1, X∗)−2 → ∞; hence, we obtain

0 ≤ σn+1

(
f
(
xn+1

)
− f∗
)
−→ 0, (5.33)

which implies,

f
(
xn+1

)
− f∗ = o

(
1

σn+1

)
, (5.34)

that is,

f(xn) − f∗ = o

(
1
σn

)
. (5.35)

Case 3. If f(xk) ≤ f(xk+1) ≤ f(yk). In this case we observe that sequence {f(xk)} is
increasing, which may imply a divergence of the approach.

Since f is convex, then the following convergence rate estimate can be derived directly.

Corollary 5.2. If one assumes that ck ≥ c > 0 for all k, then

f(zn) − f∗ = o

(
1
n

)
. (5.36)
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6. Conclusion

We have introduced an extragradient method to minimize convex problems. The algorithm
is based on a generalization of the technique originally proposed by Nesterov [14] and
readapted by Güler in [1, 17], where the usual quadratic proximal term was substituted
by a class of convex nonquadratic distance-like functions. The new algorithm has a better
theoretical convergence rate compared to the available ones. This motivates naturally the
study of the numerical efficiency of the new algorithm and its application to solve variational
inequality problems [18, 19]. Also, further efforts are needed to consider the given study for
nonconvex situations and apply it to solve nonconvex equilibrium problems [20].
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[8] L. M. Brègman, “A relaxation method of finding a common point of convex sets and its application to
the solution of problems in convex programming,”USSR Computational Mathematics and Mathematical
Physics, vol. 7, no. 3, pp. 620–631, 1967.
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France, vol. 93, pp. 273–299, 1965.

[10] B. Martinet, Algorithmes pour la résolution de problèmes d’optimisation et de minimax, Thèse d’Etat, Uni-
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Güler by V. Rachmanov, 1988.

[15] A.N. Iusem, B. F. Svaiter, andM. Teboulle, “Entropy-like proximalmethods in convex programming,”
Mathematics of Operations Research, vol. 19, no. 4, pp. 790–814, 1994.



Journal of Applied Mathematics 13

[16] M. C. Ferris, “Finite termination of the proximal point algorithm,”Mathematical Programming, vol. 50,
no. 3, pp. 359–366, 1991.
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